
Fast Inverse Square Root

David Eberly
Magic Software, Inc.
http://www.magic-software.com

Created: January 26, 2002

The following code is an edited version of code posted to comp.graphics.algorithms on January 9, 2002.
The subject that started the thread was Fast 2D distance approximation of which the posted code was one
of the follow–ups. The posted code is purported to be from Quake3 and provides an approximation to the
inverse square root of a number, 1/

√
x.

float InvSqrt (float x)
{

float xhalf = 0.5f*x;
int i = *(int*)&x;
i = 0x5f3759df - (i >> 1); // This line hides a LOT of math!
x = *(float*)&i;
x = x*(1.5f - xhalf*x*x); // repeat this statement for a better approximation
return x;

}

So what does this code really do and what is that magic number 0x5f3759df?

The idea is to specify an x and compute y so that y = 1/
√

x. Define F (y) = 1/y2 − x. The y you want is
the positive root of F (y) = 0. You can solve this with Newton’s method. Choose an initial guess y0. The
iteration scheme is

yn+1 = yn − F (yn)/F ′(yn), n ≥ 0

where F ′(y) = −2/y3 is the derivative of F (y). The equation reduces to

yn+1 =
yn(3− xy2

n)
2

.

In the limit as you increase n, the yn values converge to the true value of 1/
√

x. If y0 is a good initial guess,
then 1 or 2 iterations should give you a decent approximation. The source code had the second iteration
commented out, so I suspect one iteration was good enough for Quake3’s purposes.

Now the problem is selecting a good initial guess. This is where the line of code involving x, manipulated as
an integer via variable i, is clever. The IEEE 32–bit float has a mantissa M filling bit positions 0 through
22, an 8–bit biased exponent E filling bits 23 through 30, and a sign bit in position 31. The function expects
nonnegative input, so the sign bit is 0 for the input x. The bias is 127. The true exponent is e = E − 127.
The corresponding number in readable form is x = 1.M ∗ 2e. You want y0 to be a good approximation to
1/
√

x = (1/
√

1.M) ∗ 2−e/2.

1

The biased exponent for −e/2 is −e/2 + 127. In terms of integer arithmetic, this is 0xbe - (E >> 1) where
E is the biased exponent for x. Now look at the magic number 0x5f3759df that shows up in the code. The
sign bit is 0. The next 8 bits form the hex number 0xbe. No coincidence! The statement

i = 0x5f3759df - (i >> 1);

implicitly computes the biased exponent −e/2 + 127.

Now you need an approximation for 1/
√

1.M = 1/
√

1 + M where 0 ≤ M < 1. Define G(M) = 1/
√

1 + M .
You can approximate this by a linear function T (M) = 1− (M/2) using a Taylor series expansion at M = 0.
The approximation is good for M near zero, but not good at M = 1. In fact, as M increases the difference
between G(M) and T (M) increases (G is always larger). To try to balance the differences, you want a better
fitting line, one that cuts through the graph of G(M). The one corresponding to the posted code is

L(M) = 0.966215−M/4

The picture below shows the graph of G(M), the linear function T (M), and the linear function L(M).

For 0 ≤M < 1, L(M) produces numbers in [0.715215, 0.966215] which are not normalized. Instead write

L(M) = (1.93243−M/2)/2.

The values 1.93243 −M/2 are 1+something, so are normalized. The actual floating point representation
used for 1.93243 is 0x3ff759df. When you subtract 1 from the exponent to account for the division by 2 in
L(M), you get 0x5f3759df, the magic number in the code. Therefore, the statement

i = 0x5f3759df - (i >> 1);

also implicitly computes the mantissa for the initial guess y0.

2

I do not know why 0.966215−M/4 was chosen in the first place. I thought it might be based on requiring
the slope to be −1/4 and choosing a constant C using a least squares integral approach that minimizes the
integral of squared errors between C −M/4 and 1/

√
1 + M where the integration is on 0 ≤ M ≤ 1, but a

quick check showed this is not the case.

3

