
+---+
| |
| |
| |
| |
| |
| |
| |
| |
| Microbee 16K Basic |
| |
| |
| Users Manual |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

**

 MICROWORLD l6K BASIC FOR THE MICROBEE

 USERS MANUAL

Welcome and congratulations!
Welcome to the wonderful world of micro computers, now you have
computer power at your fingertips.
Congratulations on choosing and using MICROBEE.
You have an Australian computer designed and produced by a
skilled and dedicated team of Australians at West Gosford on
Australia’s central east coast.
Applied Technology Pty; Ltd; is the parent company responsible
for the design, development and production of MICROBEE and
MICROWORLD BASIC and the selection, editing and publishing of a
large, and rapidly increasing range of software programs and
manuals.
The immediate acceptance and phenomenal success of the MICROBEE
range of Australian personal Computers is due to their
outstanding performance for prices lower than foreign imports.
You will be pleased with your MICROBEE’S performance and proud
you’ve bought Australian.

 COPYRIGHT NOTICE

This manual and program are provided on the understanding that
each is for single end use by the purchaser. Reproduction of this
manual or program by any means whatsoever, or storage in any
retrieval system, other than for the specific use of the original
purchaser, without express written permission of the copyright
holder is strictly prohibited.

 MICROWORLD
 P.O. Box 355
 HORNSBY 2077
 AUSTRALIA
 {C} MICROWORLD 1982

MICROWORLD BASIC FOR THE MICROBEE page 1

 CONTENTS

 SECTION1:INTRODUCTION

1.1 setting up your MICROBEE system. 6
1.2 using this manual. 7
1.3 Abbreviations used in this manual. 8
1.4 MICROWORLD BASIC explained. 8

 SECTION 2:A BROAD OVERVIEW.

2.1 Systems controls. 10
2.2 Constants, variables and expressions. 14
2.3 Entering a program. 16
2.4 A sample program NEW, LIST, RUN, END, REM. 17
2.5 The IMMEDIATE mode STOP, CONT, FRE, LOAD, SAVE. 20
2.6 variables and arrays. 22

 SECTION 3:MICROWORLD BASIC TUTORIAL

3.1 Introducing the system. 26
3.2 Line numbering. 31
3.3 Constants and variables. 34
3.4 saving and loading programs. 36
3.5 Editing programs. 38
3.6 Graphics 41
3.7 Music. 43
3.8 String functions. 44
3.9 Error trapping. 47
3.10 Formatting printing. 49

 SECTION 4:PROGRAMMING.

4.1 Assigning variables LET, DIM. 54
4.2 Arithmetic expression modes
 REAL, INTEGER expressions. 54
4.3 Input/output statements 55
 READ, DATA, RESTORE, INPUT,
 PRMT
 PRINT
 TAB
 ZONE

MICROWORLD BASIC FOR THE MICROBEE page 2

4.4 Mathematical operators +, -, *, I, A 61
4.5 String operator +. 63
4.6 Branching GOTO, ON...GOTO. 63
4.7 Conditional statements relational operators 65
 IF...THEN.
4.8 Loops FOR...NEXT. 67
4.9 Subroutines GOSUB...RETURN. 68
4.10 Graphics and attributes 69
 LORES, HIRES, UNDERLINE, INVERSE,
 NORMAL, PCG,
 SET x,y, RESET x,y, INVERT x,y, POINT (X,Y),
 direct PCG graphics.

4.11 Debugging EDIT, TRACE. 73
4.12 String operations. 74
4.13 Special instructions. 79
4.14 Input and output redirection. 81
4.15 Error messages and codes. 88

 SECTION 5:STATEMENT AND COMMAND DESCRIPTIONS

5.1 Statements and commands 93
 AUTO 93
 CLEAR, CLS, CONT, CURS, 94
 DATA, DELETE, DIM, 95
 EDIT, END, EXEC, 97
 FOR, 99
 GOSUB, GOTO, GX, 100
 HIRES, 103
 IF, IN#, INPUT, INVERSE, INVERT, 104
 LET, LIST, LLIST, LOAD, LOGICAL OPERATORS, 107
 LORES, LPRINT, 110
 NEW, NEXT, NORMAL, 110
 ON ERROR GOTO, ON...GOSUB, ON...GOTO, 111
 OUT, OUT#, OUTL#, 114
 PCG, PLAY, PLOT, POKE, PRINT, PRMT, 115
 READ, REM, RENUM, RESET, RESTORE, RETURN, RUN, 119
 SAVE, SD, SET, SPC, SPEED, STOP, STRS, 122
 TAB, TRACE ON, TRACE OFF, 125
 UNDERLINE, 125
 VAR, 125
 ZONE. 126

5.2 Functions in MICROWORLD LEVEL II BASIC 127
 ABS, ATAN, COS, EXP, 127
 FLT, FRACT, FRE(0), FRE($), 128
 LOG, RND, 129
 SGN, SIN, SQR, 129
 VAL, 130
 ASC, ERRORC, ERRORL, 130
 INT, IN, LEN, 131
 PEEK, POINT, POS, 131
 SEARCH, USED, 132
 CHR$, KEY$, STR$ 133

MICROWORLD BASIC FOR THE MICROBEE page 3

5.3 user defined functions 134

 FNn
 USr

 SECTION 6: APPLICATION PROGRAMS

6.1 Guessing game. 137
6.2 Sorting routines. 137
6.3 Annuities and compound amounts. 138
6.4 Degrees to radians. 139
6.5 Electronics. 139
6.6 Graphics. 140
6.7 Music on the MICROBEE. 140
6.8 PCG car graphics. 141
6.9 Conversion from other BASICS. 141

 SECTION 7:GLOSSARY

7.1 A glossary of personal computer terms. 144

 SECTION 8:INDEX, APPENDIX AND UPDATES

8.1 Index 150
8.2 ASCII, Decimal, Hexadecimal table. 160
8.3 Important memory locations in a ROM MICROBEE 161
8.4 MICROBEE port map. 162
8.5 MICROWORLD BASIC token codes. 163

MICROWORLD BASIC FOR THE MICROBEE page 4

+---+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Section 1. |
| |
| |
| |
| Introduction |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

 SECTION 1: INTRODUCTION

1.1 SETTING UP YOUR MICROBEE SYSTEM

 1. Plug the 5 pin DIN socket at the rear of the MICROBEE.

 2. Connect the video cable to the monitor or modified TV.

 3. To the tape recorder plug the BLUE lead into the AUX/MIC
 and the RED plug to the EAR/MONITOR.

 4. Hook up the POWRE PLUG, MONITOR and TAPE RECORDER to the
 power source.

 5. Switch on the power and turn on the monitor. Adjust the
 monitor (referred to as VDU - for Visual Display Unit)
 for contrast and brightness, and turn the volume control
 to its lowest setting.

 6. If your Tape Recorder has a Tone Control set it to
 maximum tone. Set the Volume Control to about 7 or 8.
 This may need some initial adjustment when you are
 loading tapes.

 [Diagram here.]

MICROWORLD BASIC FOR THE MICROBEE page 7

1.2 USING THIS MANUAL:

 This manual is divided into six sections.

 If you are already familiar with this BASIC go straight to
SECTION 5 which tabulates in summary form, the STATEMENT and
COMMAND DESCRIPTIONS and the FUNCTIONS together with the correct
syntax.

 If you are not sure, then start at SECTION 2 and work
through the examples in this general description. Specfic
operations are described in SECTIONS 3 and 4. These should
provide useful insight into the various subtle features that are
too laborious to describe but become obvious through experiment.

 SECTION 6 describes typical examples of commonly used
subroutines in MICROWORLD BASIC. These should provide
considerable stimulation to developing your own programs under
this powerful BASIC.

 It is highly recommended that you skim through this manual
now to get an overall idea of everything that is detailed. Every
attempt has been made to develop the concepts in a logical
sequence, however sometimes topics have been introduced out of
sequence to help explain a particular point. Make use of the
INDEX 8.1 to clarify any particular subject matter you may
require.

 No doubt you will find yourself asking questions like "I
wonder what would happen if....?" or "Will this routine work?".
Don’t look for the answer in fine print in this manual; try it
for yourself on your computer. The magic of this BASIC is the
interaction between you and the BASIC using the error reporting.
With a little experimenting you will become quite proficient and
capable of adapting MICROWORLD LEVEL II BASIC to any application
you require!

MICROWORLD BASIC FOR THE MICROBEE page 7

 1.3 ABBREVIATIONS USED IN THIS MANUAL:

 char ASCII character
 int-var integer variable
 real-var real variable
 str-var string variable
 var general variable
 (one of above)
 line-no line number
 int integer number
 rel-op relational operator
 str-exp string expression
 int-exp integer expression
 real-exp real expression
 exp general expression
 (one of above)
 [] ASCII space character
 {} optional specification
 <cr> carriage return
 ^C CONTROL key and C together

 1.4 WHAT THIS BASIC IS:

 This BASIC interpreter has been written for the Z80
microprocessor and has been written to conform as close as
possible to the proposed ANSI standard BASIC. As you may already
realise there are many "dialects" of BASIC and as such you may
have to modify programs from various sources to run them under
this particular version of BASIC. Despite the goal of keeping
this BASIC as standard as possible it is necessary to detail some
differences which set this BASIC apart from others you may be
familiar with.

 The first and probably the most significant difference is
the treatment of real and integer numbers and expressions. As you
may realise it is possible to express quantities in integer (i.e
"whole number") format and real (or "floating point") format.
Storage of the wide range of possible values for each format can
consume considerable memory and consequently various techniques
are used to anticipate the memory required. Most other BASICS
have to "parse" or specially look and process each line to
account for mixes of floating point and integer values to
optimise the use of memory. The penalty for this is considerable
loss of speed.

 MICROWORLD BASIC however uses a clever means of circum-
venting this problem by asking the programmer to decide which
format he requires. This is quite logical for many applications
require only integer calculations, and these can be performed at
maximum speed. Other calculations will need floating point mode
and again the programmer has the choice and can select from 4 to

MICROWORLD BASIC FOR THE MICROBEE page 8

14 place precision depending on his requirements.
 The penalty is that you can not implicitly mix the two
formats in the same expression and we will discuss this shortly.

 MICROWORLD BASIC restricts you to use variable types to
designate whether each is floating point or real. Inteqer
variables take the form AI B, R, Z, and real variables ˜ust be of
the form WI, W7, V0, G3 etc. This means it is not possible to use
free form naming of variables such as words or combinations of
numbers and letters as variable names. Not much of a penalty
really...but them’s the rules!!
 To adapt most programs to MICROWORLD BASIC, all you need to
change is the names of real variables from Q, W, E, R, T, Y, etc
to Q0, WI, El, R3, T0, Y7 and make sure you don’t mix integers
3nd real expressions. Never fear....if you do make a mistake the
comprehensive error reporting in MICROWORLD BASIC will show you
EXACTLY where you made the error.

 One of the major features of MICROWORLD LEVEL II BASIC is
the comprehensive error reporting. Some other BASICS require the
programmer to to decode cryptic messages such as uSN ERROR LINE
3300" and usually you waste considerable time in referring to a
list of codes. Not so with MICROWORLD BASIC! If you have made QOY
error in your program that is not acceptable to BASIC, the
MICROWORLD BASIC error report routine stops at the offending
line, positions the cursor over the first place where it found
the error, identifies the type of error and then prints out an
error message in full. An example is the best way of illustrating
the point.

2990 PRINT "HELLO"
3000 NEXT "HELLO"
 produces when run
Illegal variable error in line 3000
03000 NEXT "HELLO"
 ^ cursor points here

 Other differences might arise because of the differences in
memory automatically set aside for arrays, strings etc. The best
policy is to set up sufficient string space and DIMension all
arrays before running any program.

 No doubt if you are an experienced programmer you will
notice several other differences but you will also realise that
it is usually a very simple matter to write simple routines to
"get around" any command, function or statement requirement.

MICROWORLD BASIC FOR THE MICROBEE page 9

+---+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Section 2. |
| |
| |
| |
| A Broad Overview |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

 SECTION 2: A BROAD OVERVIEW

 2.1 SYSTEM CONTROLS:

 This section is just a small summary of some of the features
of hardware on the MICROBEE which affect simple operation of the
BASIC.

 POWERING UP

 To start the MICROBEE for the first time, simply apply
power, and MICROBEE will respond with the sign on heading.
 If the MICROBEE was already "initialised" and the backup
memory battery is installed, the computer will only do a "WARM"
start. This means that all programs and variables that were in
the computer before you switched it off will still be there when
you switch it back on again.

 THE KEYBOARD:

 RESET

 The RESET key is located on the bottom right hand corner of
the keyboard. The use of this key will NOT destroy programs and
variables currently in the machine, but will simply return
control from anywhere to the command level after clearing the
screen and giving the "Ready" prompt.
 To avoid accidental operation of this key, there is a time
delay of approximately one second before anything happens. If the
key is released within this time, the reset will not take place.
 In general, if you desire to regain control of the MICROBEE,
try the the break key first and THEN the RESET key only if break
has no effect (as in most machine language programs). RESET can
be used if for example you wish to abort a SAVE command, or if
you type LOAD by accident (in such a case, the original program
will still be intact).
 Do not use the RESET key during "critical" operations such
as when a line is being inserted at the beginning of a large
program, or during a renumber, or when a load is half way
through.

 If it is desired to totally clear the MICROBEE, the "esc"
key must be held down while the RESET key is pressed. This will
clear the machine entirely and allow recovery from situations
such as when critical scratchpads have been poked, or in case a
machine language program bombs out (crashes).
 To perform this operation, first hold down the "esc" key
(top left hand key), and then without letting esc go, press the
RESET key for about a second. When a beep is heard and the sign
on heading appears, release the esc key. (If you think you might
have held down the esc key for too long, just press BREAK to tell
the MICROBEE to ignore that line which may have esc characters in

MICROWORLD BASIC FOR THE MICROBEE page 10

it.)

 ABORTING A BASIC PROGRAM NORMALLY

 Sometimes it is necessary to abort a running BASIC program,
for example to break a loop. To do this you need to press the
BREAK key or alternatively, the CONTROL (CTRL) key and C at the
same time (Hold down the CONTROL key first, press the C key
momentarily, then release the CONTROL key).
 This break will stop the operation and return control to the
program entry mode.
 If for any reason, you just want to hold up a listing or
actual proqram execution for a time, and resume exactly where it
left off Just press CONTROL S (^S) in the same way as descibed
above for ^C. CONTROL S (^S) will temporarily FREEZE the MICROBEE
and hitting any key (including ^S) will enable it to RESUME
execution from the point at which it was stopped.

 SCREEN POSITIONING ADJUSTMENTS

 Although the screen display of the MICROBEE is set up for
the "average" monitor (converted T.V. set or character display),
in some cases centering of the screen is not within the range of
the vertical and horizontal hold controls of the monitor.
For such cases, the following key sequences will move the
entire frame so as to correct for this.

 esc,A (first press the esc key just like any other key,
 then the A key in the same way, without SHIFT).
 Move the screen one character position to the
 left.
 esc,S Move the screen one character position to the
 right.
 esc,W Move the screen up one line.
 esc,Z Move the screen down one line.

 So that you can see where the edges of the screen are, type
a full line of characters first, before trying to centre the
screen left to right.
 It is not necessary to remember which key does what, just
notice that the four keys A,S,W and Z form a diamond shape giving
the four directions (part of this diamond is also used for
horizontal motion in the "EDIT" mode).

 W

 A * S

 Z

 When you have finished with these "escape codes", press the
"break" key to tell the MICROBEE not to try and interpret these
as a BASIC statement, otherwise an error message will be given

MICROWORLD BASIC FOR THE MICROBEE page 11

when you press the return key.

 For example, suppose you had trouble reading the top line of
your display; type ESC,Z,BRK and continue programming.

 These screen positioning changes stay in force when you
switch the power off as long as you are using the backup battery.
They are however cleared when the COLD start is given (holding
down escape and pressing RESET).
 For the adventurous (and careful) programmer, these escape
codes can also be used in a print statement (to print an escape
without it appearing in the listing and disturbing your screen,
use the PRINT CHR$(27); construction.)

 GENERAL KEYBOARD OPERATION

 The MICROBEE keyboard consists of 60 keys which perform both
character entry and control functions.
 All keys except the RESET, SHIFT, CONTROL and LOCK work in
the following manner; when the key is initially depressed, one
character is generated. While the key is kept held down, the
MICROBEE waits for one second. If the key is still held down by
this time the MICROBEE will start producing that character at the
rate of approximately l0 characters per second until the key is
finally released.
 This easy method of producing many of one character is
called "auto-repeat", and is a feature usually only found on
expensive terminals.

 When an alphabetic key is pressed on the MICROBEE keyboard,
the code generated is usually lower case (unless the alpha-lock
has been activated). This means that to get an upper case
character, you first hold down the shift key and then press the
desired alphabetical key.
 Lower case is fully provided for in MICROBEE BASIC, all
program entry and editing may be done in lower case. The BASIC
converts all BASIC keywords (such as PRINT, LET) and variable
names to upper case, while retaining the entered case for strings
(as in PRINT "Hello, how are YOU"). REMark statements also retain
the case of input.
 To explain this through examples, suppose the following was
typed in (don’t worry about what the commands actually do yet).

10 print "BASIC is an Acronym"
29 rem That was a print statement
39 end

The MICROBEE will convert it to this internally:
00010 PRINT "BASIC is an Acronym"
00020 REM That was a print statement
00030 END

 The shift key also allows access to the punctuation
characters found printed on the top of some of the keys. For

MICROWORLD BASIC FOR THE MICROBEE page 12

example, if the "1" key is pressed by itself, the numeral 1 is
generated, but if the shift key is held down first, the
exclamation mark is generated.

 The CONTROL (marked as CTRL) key allows a third meaning for
some of the keys on the keyboard. As mentioned before, ^S
(abbreviation for CONTROL S) provides a means of pausing the
MICROBEE’s operation for a while. Other CONTROL characters may
also be of interest:

^G sounds a beep from the speaker (bells were used in
 times of old).
^A moves cursor to the left when in "EDIT" mode.
^S moves cursor to the right when in "EDIT" mode as well
 as pausing the computer when RUNning a program or
 LISTing a program.
^W moves the cursor to the next character after the next patch
 of spaces when in "EDIT" mode.

 Most of the control characters used however, have separate
keys. Such keys are

RETURN or ^M Enter the line of characters typed so far as
something to be acted upon (a new program line to be inserted, or
some immediate command to act upon.)

DEL Normally, delete the character to the left of the cursor
and then move the cursor to the left. In "EDIT" mode, this key
deletes the character which the cursor is sitting on, and moves
the rest of the line back to the left.

BACKSPACE or ^H This key normally performs the same function
as the delete key, but differs merely in that the character that
is being deleted is not scrubbed from the screen.

BREAK Used to regain keyboard control when a BASIC program is
running.

ESC or ^[This key is used as described above to clear the
MICROBEE out totally and to reposition the screen in conjunction
with the a,s,w,z keys

LINE FEED or ^J This character moves the cursor down the
screen one line (not usually used in BASIC).

TAB or ^I Tabulate function (not usually used in BASIC), but
used by such things as EDITOR-ASSEMBLER.

 The alpha-lock, or "LOCK" key is a special keyboard function
key which generates no codes, but merely swaps the keyboard
between two states. Normally, the keyboard makes lower-case
characters when alphabetical keys are pressed, and upper case
when the shift key is used. It is sometimes useful, however, to
make upper case characters normally, and lower case when the
shift key is used.

MICROWORLD BASIC FOR THE MICROBEE page 13

 The LOCK key toggles the MICROBEE keyboard between these two
modes of operation.

 2.2 CONSTANTS, VARIABLES AND EXPRESSIONS:

 Before you can understand the rest of this manual you will
need to have a clear understanding of each of these fundamental
concepts From here on we will be using the terms CONSTANT,
VARIABLE and EXPRESSION freely and it will be assumed that the
reader Knows the relationship of each applied to BASIC.

 CONSTANTS:

 A constant is a piece of data contained in a BASIC program
which is fixed and does not change with the running of the
program. Two types of constant are allowed. A constant may be a
NUMERIC CONSTANT, in which case it will be a number.

For example: 6, 284.3, 1.98E-6, -99.2 are all NUMERIC
CONSTANTS. The "E" in the 1.98E-6 is a shorthand notation to
indicate scientific notation, i.e. 1.98 X 10 to the power of -6.

 Alternatively, a constant may be a STRING CONSTANT, in which
it will consist of a "string" or sequence of any printable
characters.

For example: "MICROWORLD" "HELLO 96, HOW ARE YOU" are
STRING CONSTANTS.

 A STRING CONSTANT is always enclosed in quotes to ensure
that the BASIC interpreter knows where it begins and ends.

 Each of the lines below contains a CONSTANT.

 10 LET Al=1.46 1.46 is a NUMERIC CONSTANT
 20 PRINT "HELLO" "HELLO" is a STRING CONSTANT

 VARIABLES:

 A VARIABLE is a group of memory locations which BASIC uses
to store either a number or a string of characters. Each group of
memory locations is referenced by a NAME. This NAME must be
selected to indicate if the VARIABLE is an INTEGER or a REAL
(floating point) NUMBER. The following are some examples of valid
variable names. See below for more information about naming
variables.

For example: A, T, Z, X are valid INTEGER NUMERIC VARIABLES

MICROWORLD BASIC FOR THE MICROBEE page 14

 A1, T0, Z4, Xl are valid REAL NUMERIC VARIABLES
 Al$, R4$, H0$ are valid STRING VARIABLES

 A group of memory locations used to store a number is called
a NUMERIC VARIABLE, while a group of memory locations used to
store a string of characters is called a STRING VARIABLE. The
main difference between CONSTANTS and VARIABLES is that the value
of a CONSTANT is fixed, whereas the value or contents of a
VARIABLE may be altered during the running of a program.

 EXPRESSIONS:

 An expression is any valid combination of the following:

 CONSTANTS
 VARIABLES
 MATHEMATICAL or STRING OPERATORS
 FUNCTIONS

For example: typical EXPRESSIONS are

 (A1+4)*B1
 INT(RND*6)+1
 LEN ("ABCDE")
 "THIS IS "+" AN EXPRESSION"

 BASIC will nearly always allow an EXPRESSION to be used in
any place in a statement where a single variable is specified.

For example:-
 LEN (A1$+"FRED"+B2$)
 SIN(360*E2+0.1)
 POINT (INT(CI+V4),INT(C2+5*M0))

 BASIC will evaluate any EXPRESSION first, according to its
priority rules. These are treated shortly in the section on
mathematical operators. If brackets are included to specify an
order of evaluation for an EXPRESSION then BASIC will commence at
the innermost brackets and work outwards.

 For an EXPRESSION to be valid, each of its components must
evaluate to either a NUMBER or a STRING. It does not make sense
to try to evaluate an expression which consists of a mixture of
numbers and strings. Both of the following expressions are
invalid because they attempt to mix components which evaluate to
both numbers and strings in the one EXPRESSION. Both will
generate an error message.

For example: 10 LET A1$=B1$+A1 INVALID
 20 A1=SIN(A1$+1) INVALID

MICROWORLD BASIC FOR THE MICROBEE page 15

 HOW COMPLICATED CAN AN EXPRESSION BE?

 The length of one line of BASIC code is limited to 184
characters, the length of the input buffer, so that an expression
can never be longer than one line. If more than 184 characters
are typed on the one line the last characters are not echoed, and
will not form part of the line.

 More importantly, the intent of a long expression can be
easily obscured by its complexity. It is better programming
practice to break a long expression into a couple of short
expressions. Short lines are also easier to correct when you make
a typing error. The long expression in line 10 of this example
calculates the resistance of three resistors in parallel.

For example: 5 REM R0 = EFFECTIVE RESISTANCE OF R1,R2,R3
 10 R0=1/((1/R1)+(1/R2)+(1/R3))

This can be more clearly written in four lines:

 5 REM C0 = CONDUCTANCE
 10 C1=1/R1
 20 C2=1/R2
 30 C3=1/R3
 40 C0=C1+C2+C3
 50 R0=1/C0

 Although this second form does use more VARIABLE NAMES and
hence a little more memory, the meaning of the expression is much
clearer.

 2.3 ENTERING A PROGRAM

 The first two COMMANDS with which to become familiar are
 NEW LIST

NEW tells BASIC that it should delete from memory all traces of
any previous program and that you are about to enter a fresh
program. MICROWORLD BASIC will clear the program buffer and
prompt with

 >

LIST will list the program you have entered. LISTing is discussed
in greater detail later.

 YOUR FIRST PROGRAM

 Suppose this is your first time and there is no existing
program in memory. After typing NEW, type a carriage return <cr>.
Every time you want BASIC to act upon a line of text or commands
you have just typed in, press the CARRIAGE RETURN <cr>. Nothing

MICROWORLD BASIC FOR THE MICROBEE page 16

will happen until you do. If you make a mistake while typing in a
line, you can use the BACKSPACE key to backspace along the line
to the mistake, then simply type the correct letters over the
top. After you have pressed <cr> however you will have to use the
EDIT mode described shortly.

 2.4 A SAMPLE PROGRAM

 Try entering the short program below. At the moment you may
not know what each of the BASIC statements does. This does not
matter for now. Getting the program into the computer is the
important thing. Just type each line exactly as it appears and do
not forget to press the CARRIAGE RETURN, abbreviated <cr>
elsewhere in this manual, at the end of each line.

 10 PRINT "WHAT IS YOUR NAME";
 20 INPUT N1$
 30 PRINT "HELLO ";
 40 PRINT N1$
 50 END

 RUNNING THE SAMPLE PROGRAM

 Once the program has been entered and any mistakes have been
corrected by retyping the lines, you can command BASIC to start
executing the program by typing

RUN <cr>

 BASIC will start executing the instructions contained in the
program beginning at the lowest line number, in this case 10, and
working up, in order of line number.

 WHAT WILL HAPPEN

 Since BASIC makes use of everyday words in the English
language, you have probably guessed some of the things this
program will do already. First the computer will print

WHAT IS YOUR NAME?

on the VDU screen. Line 10 causes ’WHAT IS YOUR NAME’ to be
printed and then the INPUT statement on line 20 prints the
question mark to prompt you to input data from the keyboard. When
you have typed in your name, and after you have pressed <cr> to
tell BASIC you have finished typing it, (how else is it going to
know?) BASIC takes the string of characters in your name, and
assigns it to the string variable called N1$.

 Line 40 causes BASIC to print the string constant "HELLO".
It is called a constant because it doesn’t change. BASIC knows
that it is a string because it is enclosed in quotes. The
semicolon at the end of the line tells BASIC not to start a new
line at the end of the print statement, otherwise it would
automatically do so.

MICROWORLD BASIC FOR THE MICROBEE page 17

 The reason for inhibiting the new line is because line 50
prints out your name, which is stored in the variable N1$, and
this should appear on the same line as "HELLO".

 LINE NUMBERS

 Some things are immediately obvious even in this short BASIC
program.

1. Every line begins with a number.
 Line numbers serve several purposes in BASIC. They tell
the BASIC interpreter that "the line being input is the line to
be stored in memory" rather than acted on immediately. If the
line does NOT begin with a number then BASIC assumes that the
line is a command like LIST, RUN or some other instruction and
that you wish to act on that instruction immediatley. Most BASIC
statements can be executed directly. This is called IMMEDIATE
MODE OPERATION and is described shortly.

 The second purpose of a line number is to identify the
order in which BASIC is to execute the instructions. BASIC will
start at the lowest line number and proceed upwards, unless a
branch instruction (GOTO) in the program interrupts this
sequence. If the program does contain branch instructions, then
the line numbers provide a branch address for the branch to go
to.

 Thirdly, if you want to alter the program, you change a
line by either retyping a new line using the same line number or
using the EDIT mode. Alternatively you can insert a new line
number between existing line numbers. That is why line numbers in
the sample program increment by 10, to allow plenty of space for
extra lines to be added. The maximum number of line numbers
allowed is 65534, so that there are ample numbers available for
even the longest program.

2. The first word in each line is an instruction to BASIC to do
something.

 This is called the KEYWORD. A KEYWORD is analogous to
the verb in an English sentence and a STATEMENT is analogous to a
complete sentence. Each line can contain more than one statement
if it is separated by a colon ’:’.

 MULTIPLE STATEMENT LINES

 The sample program above could have been written in much
more concise form by including more than one BASIC statement on
each line.

10 PRINT "WHAT IS YOUR NAME ";:INPUT N1$: PRINT "HELLO";N1$: END

MICROWORLD BASIC FOR THE MICROBEE page 18

 A multiple statement line consists of BASIC statements typed
on the same line and separated by a colon ’:’. The maximum length
of a multiple line statement is 184 characters, since this is the
length of the input buffer.

 Normally it will not make any difference to the execution of
a program whether the lines are typed in separately or typed in
with multiple statements on one line. However if the line
contains an IF...THEN statement, the statement on the line after
the THEN will only be executed if the IF...THEN is TRUE. If it is
FALSE, the program either executes statements after the ELSE
keyword or if there is no ELSE, moves to the next line number and
will ignore all statements after the THEN. This technique is used
to avoid using the GOTO instruction since it allows more than one
instruction to be executed if the test fs TRUE.

 AUTO LINE NUMBERING

 A feature of MICROWORLD LEVEL II BASIC is the AUTO line
numbering facility. This saves considerable time and effort and
leaves you free to concentrate on the programming. To engage AUTO
simply type ’AUTO 10,10’. This tells the BASIC you want to enter
a program starting at line number 10 and stepping ahead in
multiples of 10 lines at a time. You can select any combination
such as ’AUTO 100,5’ or, if you wish you can type ’AUTO <cr>’ and
the BASIC will start at line number 100 and proceed in steps of
10 lines. To qet out of the AUTO mode simply press <cr> twice and
the line numbering returns to the manual mode. Refer to the
command list for more details.

 LISTING

 To LIST the program you have entered use the LIST command.
Typing LIST<cr> will list the entire program. If your program is
very long it is probable that you will only want to look at a
small section at a time.

the command LIST 20,30

will list all of the lines between line 20 and line 30.

NOTE: LLIST is the same as LIST except the output goes to the
printer stream instead of the terminal.

 END

 Line 60 is an END statement. It tells the BASIC that this is
the end of the program. The END statement should be the last
statement in the program.

MICROWORLD BASIC FOR THE MICROBEE page 19

 REM

 A line beginning with REM is considered by BASIC to be a
comment or REMark line. Anything after REM on a line is skipped
over by the BASIC program, including multiple statements! REMarks
do take up memory and also take time to enter. A REMark may not
have any other statements following it since BASIC considers
anything that follows the REM to be a comment... including colons.
A REMark may not follow a DATA statement on the same line or it.
will also be interpreted as data..

 2.5 THE IMMEDIATE MODE

 One of the most helpful features of BASIC as a high level
language is the interactive feature known as the IMMEDIATE MODE.
BASIC allows you to type in a line of instructions and execute it
immediately by pressing <cr>. To execute a BASIC statement in the
IMMEDIATE MODE, merely type in the statement without a line
number. For example:

 PRINT "THIS IS AN IMMEDIATE MODE STATEMENT" <cr>
will cause
 THIS IS AN IMMEDIATE MODE STATEMENT
to be printed on the terminal.

A more useful example is illustrated below. The BASIC line

 FOR I=1 to 10 : PRINT I,I*I,I*I*I: NEXT I

will cause the following table of squares and cubes of the
numbers between 1 and 10 to be printed as follows.

 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 16 216
 7 49 343
 8 64 512
 9 81 729
 10 100 1000

 All this was done with one line of BASIC code. The immediate
mode allows your computer to be used as a powerful calculator
merely by typing a line of BASIC instructions.

 Some instructions are not permitted in the immediate mode.
For example DATA, INPUT. STOP, and RETURN make no sense when
executed in the IMMEDIATE MODE.

MICROWORLD BASIC FOR THE MICROBEE page 20

 STOP...CONTINUE

 STOP does precisely what it says - it stops the execution of
the program. STOP leaves everything ’as is’, all variables will
still contain their current values and all arrays will remain set
up so that the contents of these may be inspected by using PRINT
statements in the IMMEDIATE MODE. After the contents of the
various variables have been inspected, and provided no changes
have been made to the program, the execution of the program can
be resumed from where it stopped by typing CONT to CONTINUE the
program.

 END, however, often signifies the physical end of the
program as well as terminating the execution of the program,
although there is no compulsion for END to be the last statement
of the program.

 FRE

 If you need to know how much memory you have left for
program and variable storage you just type PRINT FRE(0) and BASIC
will return a number representing the available memory.

 SAVE

 The SAVE command can be used to save the BASIC source file
currently in memory on cassette tape. One correct format is SAVE
"file n,me" where "file name" can be up to 6 characters long.
(See Section 4: Statements and Commands).

 LOAD

 The LOAD will load the SAVEd program back into memory. The
simplest format is LOAD <cr> .

MICROWORLD BASIC FOR THE MICROBEE page 21

 2.6 VARIABLES AND ARRAYS

 WHAT IS A VARIABLE?

 A VARIABLE is a temporary storage area for a piece of DATA
which is used by the BASIC interpreter. Each VARIABLE or group of
VARIABLES has a unique name so that it can be referenced by a
BASIC program. As its name suggests a variable can be changed by
the program. MICROWORLD BASIC supports NUMERIC VARIABLES and
STRING VARIABLES and these may be used either alone or as an
ARRAY.

 TYPES OF VARIABLE

 A NUMERIC VARIABLE stores a number. The number may be either
INTEGER or REAL. If INTEGER the number must lie between -32768 to
+32767. If REAL (or ’FLOATING POINT’) it must lie between
1.0000000..*10^-64 to 9.999999..*10^+62. The number of
significant digits is user selectable between 4 and 14.

 A STRING VARIABLE stores a string of characters and treats
them as one entity. An example of a STRING would be a line of
text. A STRING is of variable length, only the number of
characters actually used are stored. The maximum length of a
STRING variable is 255 characters.

 VARIABLE NAMES

 The type of VARIABLE is indicated by its name.
 A NUMERIC VARIABLE name consists of either a single letter
or a single letter followed by a digit between 0 to 7 inclusive.
An INTEGER NUMERIC VARIABLE (i.e a WHOLE number like number of
oranges) is represented by a single alphabetic letter such as A,
M, X, Z. A REAL NUMERIC VARIABLE must be represented by an
alphabetic letter followed by a digit between 0 and 7 such as Q7,
A1, Z0, X3. This is an important difference between MICROWORLD
BASIC and other versions of BASIC. NOTE also that you can’t mix
INTEGER and REAL VARIABLES in the same expressions or a MIXED
MODE ERROR will result.

 A STRING VARIABLE name consists of a single letter A to Z,
followed by a number 0 to 7, followed by ’$’. For example J0$,
X7$ are valid names for STRING VARIABLES.

Examples of VALID VARIABLE NAMES: A, W1, B6$
 INVALID VARIABLE NAMES: AD, T$, QW$, Z9

MICROWORLD BASIC FOR THE MICROBEE page 22

 ARRAY VARIABLES

 Often it is useful to group variables together into an
ARRAY. This enables you to group these similar variables using
the same variable name, but be able to access each variable
indivIdually by means of an index.

 An ARRAY VARIABLE can be visualised as a row of houses in a
street. The street name (variable name) is the same for all the
houses, but you can indicate a particular house by specifying its
number (index). One use for a string array might be to set up a
table of owner’s names vs house number. The array could be called
Q1$(4) and look like this:-

 INDEX CONTENTS

 Q1$(1) "HARRIS"
 Q1$(2) "STARR"
 Q1$(3) "HILL"
 Q1$(4) "MILLS"

 To print the name of the second house you would access the
second element in the array using a statement such as

 PRINT Q1$(2) and "STARR" would be printed out.

 DIMENSIONING ARRAYS

 Since arrays of variables can consume a considerable
quantity of memory, or only a small amount if only a few
variables are involved. To tell the BASIC how much space to leave
it is necessary to DIMension arrays before using them. In our
example above would require a statement:

 10 DIM Q1(4)
This will reserve space for an array of four variables which can
from then on be assigned as being a string or a real number. In
this case, we assigned the variables as Q1$(1) (for example), so
they are treated as strings.

 ARRAYS can be either single dimension as above or may have
more dimensions. In this latter case the DIM statement is as
follows:

 10 DIM B1(10,20)

This reserves space for an array of REAL NUMERIC or STRING
VARIABLES up to 10 rows down and 20 columns. To access an element
of the array you type

 10 PRINT B1(5,18) or
 10 PRINT B1$(5,18)

MICROWORLD BASIC FOR THE MICROBEE page 23

Depending upon whether you had assigned it as a string or a real.

This would produce the value of the variable stored in the 5th
row and the 18th column across.

 Note that arrays are allowed to have their first index as a
0 ; but they may be treated as starting at 1 if desired.

NOTE: Restriction on Variable Names
 MICROWORLD BASIC restricts the use of variable names of the
same letter. You cannot use Al$ and A1 in the same program
because the BASIC will not distinguish the string variable from
the real numeric variable. The type of variable that A1/A1$ is at
any time is determined by the last assignment made to that
variable.

MICROWORLD BASIC FOR THE MICROBEE page 24

+---+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Section 3. |
| |
| |
| |
| Microworld Basic Tutorial |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

 SECTION:3

 A TUTORIAL IN MICROWORLD BASIC

This section of the manual has been written for rank beginners
using a new practical approach which will be effective in
introducing MICROWORLD BASIC as quickly as possible.

The MICROBEE is a friendly computer which we will use to show you
how to use MICROWORLD BASIC. If you require specific descriptions
of commands, statements and functions under this powerful BASIC
refer to Section:5. The following examples should provide useful
reference when you are writing programs and need to cross check a
particular point. This method is particularly effective if you
are familiar with another version of BASIC as the exercises will
serve to highlight differences and subtle points that are often
buried in the text of other user’s manuals.

 3:1 INTRODUCING THE SYSTEM

This is more "wordy" than most because of the necessity to
introduce some fundamental concepts before we can proceed to
actually use the MICROBEE. It is recommended you complete each of
these exercises to familiarise yourself with the MICROBEE and how
it works.

CONCEPTS INTRODUCED. When you complete this experiment you should
be familiar with the following

 The NEW command
 SOFT START
 HARD START
 Repositioning the image on the VDU screen
 IMMEDIATE MODE
 INDIRECT MODE
 ENTERING a line of program
 The RUN command
 The PRINT command

 The MICROBEE in its standard form is supplied with
MICROWORLD BASIC stored in permanent memory. When you have set up
your MICROBEE 16K or 32K using the directions on the connection
diagram and switch it on, the BASIC program runs immediately.

1. TURN ON THE MICROBEE AND PRESS THE RESET KEY

The MICROBEE will respond with

 Ready
 >_

This indicates that the BASIC is ready to receive input from the
keyboard. MICROWORLD BASIC accepts upper and lower case

MICROWORLD BASIC OR THE MICROBEE page 26

characters. However to highlight the steps you carry out in these
exercises we will type in UPPER CASE only. To enter anything into
the BASIC you just type normally on the keyboard and, when you
have finished the word or instruction, press the key marked
RETURN. This is often abbreviated to <CR> meaning press CARRIAGE
RETURN (from the old typewriter days).

TYPE: NEW <CR> (That is press the key ’N’ then ’E’ then ’w’
and then press the ’RETURN’ key)

This initialises the BASIC ready to accept a new program. Because
the MICROBEE is equipped with continuous memory, it has bee
fitted with two types of RESET facilities. These are called HARD
START and SOFT START. A SOFT START resets the program back to the
READY >_ mode but retains the program intact in memory.

FOR A SOFT START PRESS THE RESET KEY

and the MICROBEE will respond with a clear VDU screen with

Ready
>_

in the top left hand corner.

 A HARD START involves resetting the computer so that all the
memory is cleared and any BASIC programs (apart from those in ROM
of course) are erased from memory. A HARD START occurs when the
MICROBEE is powered up when the memory backup batteries are
disconnected. You can also force the MICROBEE to execute a HARD
START by holding down the RESET key for longer than 2 seconds and
then hold down the ESC key with the other hand and, while still
holding down the ESC key release the RESET key. You will know a
HARD START has occurred because the internal loudspeaker will
sound a short tone and the MICROBEE will sign on to the initial
screen message.

 Should you need to adjust the position of the screen display
on the VDU screen, you should examine the following keys on the
keyboard:

MICROWORLD BASIC OR THE MICROBEE page 27

 ESC

 W

 A S

 Z

 ESC S moves the cursor one space to the right
 ESC A moves the cursor one space to the left
 ESC W moves the cursor up one line
 ESC Z moves the cursor down one line

 Note that this information is stored in memory in the
MICROBEE and is retained during a SOFT START. However, a HARD
START will destroy the information and may require you to
reposition the screen.

 IMMEDIATE MODE

The power of BASIC is illustrated with the following
example. Try it for yourself by typing on the keyboard directly.
Remeber that <CR) is our shorthand for ’PRESS THE RETURN KEY’
and this is used to tell the BASIC to enter the line of program.

TYPE: P R I N T 4 + 2 <CR> and the computer will respond with

 6.

 You have now used the BASIC to calculate the sum of 4 and 2.
This is called the IMMEDIATE MODE and, as you see, this causes
BASIC to evaluate the line of program IMMEDIATELY. Why not try
things like PRINT 60 + 20 - 5 <CR). (Notice that the ’-’ sign
and the ’=’ operator are on the same key.) Should you wish to
multiply use the ’*’ key and divide use the n/n key. A little
experimenting will show how these operate.

 INDIRECT MODE

 Most BASIC programs are written in the INDIRECT MODE, using
LINE NUMBERS. The INDIRECT MODE is the NON-IMMEDIATE or deferred
execution mode. The program is not executed until the RUN is
given.

 TYPE:
NEW <CR) to clear out any program in memory
 TYPE:
100 PRINT 4 + 2 <CR)

 The command)- waits for more input or a command.

 TYPE:
RUN <CR>

MICROWORLD BASIC OR THE MICROBEE page 28

 and the computer gives the output 6.

 To program a message, the print command is used. The message
must be written between quotation marks (" "). Add these lines
to the program:-

 TYPE:
110 PRINT "WELCOME TO THE MICROBEE." <CR>
120 PRINT "PROGRAMMING IS FUN. " <CR>

 TYPE:
RUN <CR>
 and the computer will respond with

 6.
 WELCOME TO THE MICROBEE
 PROGRAMMING IS FUN

 The use of LINE NUMBERS in the INDIRECT MODE has retained
the program in memory until the command RUN has been given. To
check that the program is still in memory

 TYPE:
LIST <CR>
 and the MICROBEE will display

 00100 PRINT 4 + 2
 00110 PRINT "WELCOME TO THE MICROBEE."
 00120 PRINT "PROGRAMMING IS FUN."

NOTE: You must use ’0’ for zero, not the letter ’O’.

 EXERCISE:

 To check that you have grasped the fundamental concepts so
far go back to the INDIRECT MODE. Press the RESET key to perform
a soft start and do this:

 TYPE:

NEW <CR>

 TYPE:

100 PRINT 100 + 10 <CR>
 Now test yourself with the following questions.

 1. What will happen when you type RUN <CR>?
 2. What will happen when you type LIST <CR>?
 3. What is the difference between the immediate mode and
the indirect mode?
 4. If you type NEW <CR> and LIST <CR> what should happen?

 Check yourself against the MICROBEE.

MICROWORLD BASIC OR THE MICROBEE page 29

 If you were a beginner at the start of this exercise you
have lost that status and are well on the way to becoming a a
master at MICROWORLD BASIC!

 To further improve your skills, repeat this exercise using
upper and lower case characters and also inserting spaces (by
using the space bar) liberally throughout the program. Notice
that BASIC ignores spaces and whether you have typed in upper or
lower case.

 Now is the time to test three other features of the MICROBEE
keyboard.

 1. press down any white function key such as ’Z’ and watch
what happens. Notice that it AUTO REPEATS after a short delay.

 2. To ’RUB OUT’ the characters typed in press the DEL key
and watch what happens.
 3. Press the LOCK key once and you will notice that any
character typed will be in UPPER CASE even though the
SHIFT key is not pressed. Press the LOCK key once again
to return to normal operation. It would be a good idea
at this point to experiment for yourself with the other
keys to check the function of each.

 3.2 LINE NUMBERING

CONCEPTS: AUTOmatic insertion of line numbers
 Manual insertion and deletion
 RENumbering lines

 The INDIRECT MODE is the usual mode used for BASIC programs.
It involves inserting a line number for each program step. BASIC
executes the program starting from the lowest numbered line and
proceeding line by line until it has completed the highest
numbered line. Note that the line numbers do not have to be
sequential. It is a good idea to leave spare numbers between
program line numbers so that other program steps can be added at
a later stage.

 TYPE:
NEW <CR>
 and enter the following program:

 TYPE:

100 PRINT 4 + 2 <CR>
110 PRINT 4 + 3 <CR>
120 PRINT 4 + 4 <CR>

 TYPE:

MICROWORLD BASIC OR THE MICROBEE page 30

RUN <CR>

 and the computer will respond with

 6.
 7.
 8.

 The program performed line 100 first, then 110 and finally
line 120. To test this try the following:

 TYPE:

105 PRINT 1 + 1 <CR> and then type LIST <CR>. Notice that the new
program line was automatically inserted by the BASIC between
lines 100 and 110. Test it for yourself by typing RUN <CR> and
check that the computer outputs 6, 2, 7, 8 indicating that line
105 was indeed executed ahead of 110.

 AUTOMATIC LINE NUMBERING

 MICROWORLD BASIC allows you to insert line numbers
automatically to save the time and effort involved in inserting
line numbers for every program step. Try the following:

 TYPE:

NEW <CR>

 TYPE:

AUTO <CR>

 and the BASIC will respond with

00100 _

Now enter one line of program (e.g. PRINT 4 + 2 <CR> and notice
that it is entered after the line number. When you press <CR> the
computer responds with

00110 _

You should enter another line finishing with <CR> and notice that
the line is entered and the next line number is incremented.

When you have finished inserting your program press <CR> twice
and the BASIC will exit from the AUTO insert mode.

Notice that the AUTO command only operates in the immediate mode
and defaults (computer jargon for ’goes to automatically’) to a
format starting at line number of 100 and increments at 10 lines
at a time. If you type AUTO after you have already entered part
of your program the insertion will start a new line after the

MICROWORLD BASIC OR THE MICROBEE page 31

program lines already in memory. If you want to enter lines
starting at a llne number other than 100 and with an increment
other than 10 you must specify both with the AUTO command.

 TYPE:

AUTO 1000,25 <CR>

will start line insertion at line 1000 and increment at 25 lines
at a time.

you should try this for yourself. What does AUTO 1000 <CR> do?

 DELETING LINES IN BASIC

 We can insert lines in a BASIC program. How do we eliminate
them if we don’t need them?

A. To eliminate one line from an existing BASIC program just
type the line number and then enter <CR>. Try it for
yourself.

B. To delete a specific line (e.g 110) you can type DELETE 110
<CR>. To delete a larger block of lines type

DELETE 100,150 <CR>
 where 100 is the first line to be deleted and 150 is the
last.

 TYPE:

NEW <CR>

AUTO 500,20 <CR>

 inserts lines starting from 500 and incrementing in steps of 20

500 PRINT 4 + 2 <CR>
520 PRINT "EXERCISE 1" <CR>
540 PRINT "EXERCISE 2" <CR>
560 PRINT "EXERCISE 3" <CR>
580 PRINT 3 + 4 <CR>
600 <CR>

 TYPE:

LIST <CR>

 and notice that the BASIC lists all the lines. Now type

 TYPE:

DELETE 520,560 <CR>

 and then TYPE:

MICROWORLD BASIC OR THE MICROBEE page 32

LIST <CR>

 now notice that lines 520 to 560 have been deleted leaving
the remainder intact.

 RENUMBERING LINES

 A useful feature of MICROWORLD BASIC is the ability to
renumber lines. This is useful if you have run out of space
between lines and need to insert another program line. Consider
the following example:

100 PRINT 4 + 2
101 PRINT 4 + 4
102 PRINT 4 + 5
103 PRINT 4 + 6

You can insert this for yourself with the commands NEW <CR> and
then AUTO 100,1 <CR>. Now suppose you want to insert the step
PRINT 4 + 3 after line 100 you will notice that line 101 is
already allocated. Type LIST <CR> to verify this.

 TYPE:

RENUM <CR>

 this will renumber all lines starting at 100 and
incrementing in steps of 10 lines. To confirm this

 TYPE:

LIST <CR>

 and now insert line 105 as follows

 TYPE:

105 PRINT 4 + 3 <CR>

 Renumber is formatted similarly to AUTO. Typing RENUM
1000,10 will renumber the entire file so that the first line
number will be 1000 and incrementing in steps of 10. The command
RENUM 1000,10,130 will renumber part of the program starting at
line 130 and renumbers line 130 to 1000 and increments the rest
of the lines by 10.

 By now you should be able to INSERT line numbers manually
and AUTOmatically, DELETE and RENUMber lines. These skills are
best practised with more meaningful programs which you will be
able to write soon.

MICROWORLD BASIC OR THE MICROBEE page 33

 3.3 CONSTANTS AND VARIABLES IN MICROWORLD BASIC

 CONCEPTS

 NUMERIC and STRING VARIABLES
 INTEGERS
 REAL NUMBERS
 The INPUT command

 Up to this point we have only used values in our programs
which are constants. Specifically these have been numbers which
do not change throughout the program and these are called numeric
constants. Constants are just numbers and can be represented in
MICROWORLD BASIC as INTEGERS (whole numbers only) or FLOATING
POINT (REAL numbers like 3.2345 or -2.34).

 MICROWORLD BASIC can also deal with ’words’ and these are
called ’STRINGS’. (See example 1 for a full explaination.) It is
possible for a program to contain a string constant as well. One
example might be:

100 PRINT "HELLO"

 here the word ’hello’ is called a string constant. Notice
that we enclose strings inside quotation marks to enable BASIC to
recognize them. A string constant in MICROWORLD BASIC is a
sequence of up to 180 alphanumeric characters enclosed in
quotation marks (e.g. "HELLO").

 MICROWORLD BASIC also uses variables. These can also be
REAL, INTEGER or STRING variables. These have particular names so
that BASIC can treat each separately.

 TYPE NAME RANGE

 REAL An (where n= 0 to 7) +/- 9.99999999999999 E+62
 to +/- 9.99999999999999 E-63

 INTEGER A -32767 to + 32767

 STRING An$ 0 to 180 characters

Where ’A’ is any letter of the alphabet and ’n’ is a number from
o to 7. Real variable names and string variable names should not
use the same letter and digit within the same program or errors
will result. String variables MUST use An$ construction and NOT
A$ which is invalid. Note that MICROWORLD BASIC will not allow
you to mix REAL and INTEGER numbers on the same program line.

 Try a small program. Type NEW <CR> then AUTO <CR> and insert
the following:

100 PRINT "What is your name "; REM note this semicolon!!

MICROWORLD BASIC OR THE MICROBEE page 34

110 INPUT N1$
120 PRINT "Glad to meet you ";N1$

 This little program introduces a new command, INPUT. INPUT
requests data from the keyboard and then assigns it to the string
variable which is then printed out in line 120. Try the program
for for yourself and enter <CR> when you have finished typing
your name. By the way, the semicolon (;) at the end of line 100
means that as you type your name it stays on the same line.
Notice that the question mark (?) is generated automatically.

 TYPE:

RUN <CR>

 and the computer will respond with

 What is your name?

 (You type in your name here followed by the <CR> to
return to BASIC) and the computer will print

 Glad to meet you (your name!)

 Modify the program to make it more interesting. Retype line
120 as follows:

TYPE: 120 PRINT "How old are you ";N1$;<CR>
TYPE: 130 INPUT A <CR>
TYPE: 140 PRINT "Are you really ";A;"years old";N1$;"?"<CR>
TYPE: LIST <CR>

TYPE: RUN <CR> and answer the questions. Remember to use the
<CR> to enter each answer. Note that the second question uses
INPUT A which is a numeric integer variable so be sure to enter
your age as a whole number of years!

EXERCISE: Using the above program write down an example of each
of the following:

 (a) string constant
 (b) string variable
 (c) a numeric variable

NOTE: By now you should be gaining confidence in entering
programs under BASIC. You should be able to use the RESET key for
a SOFT RESET, type NEW to erase an old program, use the AUTO
command and also the RENUMber command. You have already
encountered BASIC commands such as LIST, RUN, INPUT, and PRINT.
If you are not sure of any particular point at this stage it
might be a good idea to read through the particular exercise,
trying variations on programs and referring to the detailed
section later in this manual.

MICROWORLD BASIC OR THE MICROBEE page 35

 Once you have mastered these fundamental concepts you will
be ready to proceed to the next set of exercises.

 3.4 AND LOADING PROGRAMS ON CASSETTE TAPE

 Connect a low cost tape recorder (preferably mains operated)
to the MICROBEE using the coloured 3.5 mm leads-provided. Connect
the RED plug to the EARPHONE and the BLUE plug to the EARPHONE
output on the cassette recorder. Plug the recorder into the 240v
mains, insert a blank cassette (rewound of course) and you are
ready to proceed with this exercise.

 CONCEPTS

 SAVE saving at 300 BAUD
 SAVE F saving at 1200 BAUD
 LOAD loads any program
 File types
 BAD LOAD
 LOAD U
 LOAD?

 SAVING PROGRAMS

 MICROWORLD BASIC has built-in commands to enable you to save
a BASIC program. Even while you are aeveloping a long program it
is a good idea to save it just in case something goes wrong.
Supploe we have the following program in memory:

100 REM this program prints a table of powers
110 FOR A1=l to 10
120 PRINT A1, A1^2, A1^3, A1^4
130 NEXT A1

We can save this program to tape as follows:

1. Connect the tape recorder and switch it on.

2. Insert a cassette (if you have not already done so) and wind
it on until it is past the leader (clear section of tape).

3. Press the RECORD and PLAY buttons on the cassette player as
you would when recording normally and

4. Type:

 SAVE "TEST1" <CR>

5. Wait a short time and you will hear a ’beep’ indicating that
the program has been saved.

MICROWORLD BASIC OR THE MICROBEE page 36

 Note that this process has SAVED a program called TEST1 on
the cassette tape presently in the recorder. The SAVE was at 300
BAUD which is adequate for most applications.

 To SAVE at 1200 BAUD you type

 SAVE F "TEST1" <CR>

 LOADING A TAPE

 To reload the test program or the demonstration cassette
supplied, type NEW <CR> and then follow the procedure detailed
below:

1. Rewind the tape containing the program.

2. TYPE:

 LOAD <CR>

3. Press the PLAY button on the tape recorder.

The screen display on the MICROBEE should respond with the
program name (e.g. NIM B*) (note that the ’*’ flashes as
loading is taking place and the ’B’ means that you are loading a
BASIC file.)

When your program has been loaded, you will hear a ’BEEP’
indicating that BASIC is now ready to RUN the program. stop the
tape recorder and type RUN <CR>.

When you have finished with the program in memory press SOFT
RESET and type LOAD <CR> again. press the PLAY button on the
recorder and the process will be repeated.

NOTE: The LOAD command is identical for 300 and 1200 BAUD
tapes. The speed is determined by the program on the tape and
adjusts automatically.

 BAD LOAD

 When you command the BASIC to LOAD the program is read from
the cassette tape and written into the BASIC file memory. To
ensure that errors don’t occur, the BASIC performs what is called
a CHECK SUM (CRC) error test to verify that the data read from
the tape matches that which was recorded beforehand.

 If the CRC doesn’t match then

 BAD LOAD appears and the program does not load into memory.
If this error message occurs, rewind the tape and start again.
Possibly you should experiment with a different volume control
setting (about 7-8 on a scale of 10 should work fine).

MICROWORLD BASIC OR THE MICROBEE page 37

 LOAD U and LOAD?

 TWO further variations of the LOAD command are used under
MICROWORLD BASIC.

LOAD U is used to override the checksum error used. with the
usual load command. You can use this facility to ’fix’ a faulty
tape and recover mutilated or otherwise faulty programs. Remember
that it is highly likely that the program when loaded under LOAD
U will contain errors so you will have to edit carefully before
typing RUN.

LOAD ? is a useful feature for checking that a program you have
just saved will load without checksum errors. In effect it
enables you to run the tape through without actually loading the
tape and overriding the program currently in memory.

 MACHINE CODE PROGRAMS

 Your MICROBEE can run programs written in machine code (the
actual language used by the Z80 processor) as well as BASIC.
Running machine code programs has the advantage that they run
much faster than under BASIC and, in most cases, require far less
memory. To load a machine code tape you still type:

 LOAD <CR>

but the file type will load as a type ’M’ as follows:

 file M * i.e. a ’M’ appears after the file name in
place of the ’B’ as with BASIC programs.

Nothing else changes. Note however that there is no corresponding
SAVE command for machine code programs unless you use the
optional MICROWORLD machine code monitor.

 When a machine code program has been loaded DO NOT TYPE
RUN. Most machine code programs are intended for AUTO STARTING,
however if you press RESET then you will need to type:

 EXEC <CR> to start the machine code program.

 3.5 EDITING PROGRAMS

CONCEPTS

 EDIT MODE
 ERROR MESSAGES
 AUTO EDIT feature
 ^A moves cursor to the left by one character
 ^S moves cursor to the right by one character
 ^W moves the cursor to the right one word

MICROWORLD BASIC OR THE MICROBEE page 38

 DELete
 GX global search and replace

 One of the most powerful features of MICROWORLD BASIC is the
ease of editing programs. When you have finished typing a line
under BASIC it is enter red into the BASIC memory area the moment
the <CR> has been pressed. To alter this line at any later time
requires that you enter the EDIT mode.

 Try this example to learn about the EDIT feature. TYPE:

NEW <CR> and then

AUTO <CR> and the MICROBEE will respond with

100 _

and you should enter the following line

100 PRINT "COMPUTERS DON’T MAKE MISTEAKS <CR>
110 <CR>

Now look at what we have done! A spelling mistake (misteak???)
exists in line 100. To edit the line you type

 EDIT 100 <CR>

and the computer will respond with

 00100 PRINT "COMPUTERS DON’T MAKE MISTEAKS

notice that the cursor is located under the ’P’ in the line. To
move the cursor use ^S (CONTROL and S pressed at the same time).
Notice that the cursor moves along the line to the right. Try ^A
and see the cursor move to the left. Also try ^W to check that
the cursor moves to the right one word (or a complete block
between spaces) at a time.

 With a little practice you should be able to position the
cursor below the ’E’ in MISTEAKS. Press the DEL key and DELete
the ’E’. OBVIOUSLY DEL DELETES THE CHARACTER ABOVE THE CURSOR.
Now press <CR> and then type LIST <CR>. The MICROBEE will respond
with:

 00100 PRINT "COMPUTERS DON’T MAKE MISTAKS

 Type EDIT <CR> and the MICROBEE will respond with

 00100 PRINT "COMPUTERS DON’T MAKE MISTAKS

Now position the cursor under the second S in MISTAKS and type E.
IN THE EDIT MODE CHARACTERS ARE AUTOMATICALLY INSERTED UNDER THE
CURSOR, FORCING THE REMAINING CHARACTERS TO THE RIGHT BY ONE
CHARACTER SPACE. Press <CR> and you will have the line in memory.

MICROWORLD BASIC OR THE MICROBEE page 39

line 100 is intended to instruct BASIC to print the string
’COMPUTERS DON’T MAKE MISTAKES’. You may recall that strings must
it enclosed in quotation marks (" ") AT BOTH ENDS. Let’s try
and RUN this line.

TYPE: RUN <CR>

and the MICROBEE will respond with

Missing end quote error in line 00100
00100 PRINT "COMPUTERS DON’T MAKE MISTAKES

How we have received an error message from the BASIC. In this
case, it has told us what was specifically wrong and in which
line number the error was detected. It has also bought line 100
into the edit buffer and typing EDIT <CR> will list this line and
enable you move the cursor to the far right end of the line and
insert the end quoted (") as required. Now type RUN and notice
that the MICROBEE will run the program and print out the required
aessage.

 AUTO EDIT MODE

 If you type AUTO 100 <CR> you will notice that the computer
will respond with line 100 on the screen in the EDIT mode. You
can correct the errors and when you press <CR> the next line will
be displayed. If you had had a problem in the program you can
correct it, alternatively you can insert new program lines after
the existing program line numbers every time <CR> is pressed.

 GX GLOBAL SEARCH AND REPLACE

 Sometimes when you are debugging a program it is necessary
to search the whole program for the occurence of a particular
word, string or variable and replace it with another. In our
example let’s search for the word ’COMPUTERS’ and replace it with
’PEOPLE’ as follows. With line 00100 in memory from the earlier
part of this exercise.

TYPE: GX/COMPUTER/PEOPLE/ <CR> and the MICROBEE will respond
with

00180 PRINT "COMPUTERS DON’T MAKE MISTAKES" with the cursor under
the ’S’ in COMPUTERS. Press the’.’ (full stop) key and the
replacement has taken place. pressing any other key would have
caused the routine to bypass the first occurence of COMPUTERS and
searched for the next. Type LIST <CR> and see what has happened.

 EDITING LINE NUMBERS

 Using the ^A facility you can also edit a line number. This
is a neat method of avoiding retyping lines with similar
expressions or that are very similar. Note that when ypou edit
and produce a line number the old one remains in memory. The best

MICROWORLD BASIC OR THE MICROBEE page 40

approach is to try it for yourself.

 3.6 GRAPHICS (LOW AND HIGH RESOLUTION)

CONCEPTS:

 LORES
 HIRES
 SET, RESET
 SETH, RESETH
 PLOT, PLOT I, PLOT R
 USED

 The MICROBEE has a very flexible graphics capability. The
high resolution (HIRES) graphics has a resolution of of 512 dots
by 256 dots and the low resolution (LORES) mode has 128 by 48
dots. The graphics are generated using a programmable CHARACTER
GENERATOR since this technique makes most efficient use of memory
without losing valuable program space as in other computer
systems.

 In the HIRES mode the actual PCG (programmabel character
generator) characters are used to develop the graphics. Because
these are limited to 128 different characters you may have to
take care with complex graphics using the total screen area. In
the LORES mode no such limits are imposed and the screen graphics
are similar to those used by the TANDY in the TRS80 computer.

Type in the following program:

100 CLS: LORES
110 X=INT(RND*128):Y=INT(RND*48)
120 SET X,Y
130 GOTO 110

The program proceeds as follows:

Line 100 clears the screen and selects the LORES mode (note that
we can put two or more commands on a line if they are separated
by a colon).

Line 110 sets the value of X to an integral value randomly
between 0 and 128. It also sets the value of Y to an integral
value between 0 and 48.

Line 120 sets a point on the screen at the values generated in
line 110.

Line 130 loops back to line 110.

TYPE: RUN <CR> and watch what happens. White dots will start
appearing randomly on the screen as the program progresses. using
the EDIT command from the last exercise, change line 100 to read

MICROWORLP BASIC OR THE MICROBEE page 41

100 CLS: HIRES and RUN again. See the difference between HIGH
and LOW resolution?
 SCREEN ALLOCATIONS LORES MODE

 SET 0,0 bottom left of screen
 SET 0,47 top left of screen
 SET 127,47 top right of screen
 SET 127,0 bottom right of screen
 SET 64,24 centre of screen

 SAMPLE PROGRAM:

 100 CLS
 110 LORES
 120 INPUT "TYPE IN COORDINATES X,Y ";X,Y
 130 SET X, Y
 140 GOTO 120

Line 120 causes the BASIC to request you to enter the coordinates
of X and Y. You should the integral numbers you want for X and
then for Y. The program will do the rest for you. Notice what
happens if you enter coordinates greater than 127 for X and 48
for Y. Why not change line 110 to HIRES and repeat? Now the
coordinates for X should not exceed 511 and for Y should not
exceed 255. Look at the difference in resolution!

 SCREEN ALLOCATIONS HIRES MODE

 SET 0,0 bottom left of screen
 SET 0,255 top left of screen
 SET 511,255 top right of screen
 SET 511,0 bottom right of screen
 SET 256,128 center of screen

 PLOTTING LINES

 MICROWORLD BASIC contains a powerful command which uses the
graphics facility to enable you to PLOT lines from one point to
another. Try this problem:

 100 CLS
 110 HIRES
 120 PLOT 0,0 to 511,255 to 511,0 to 0,0
 200 GOTO 200

By now you should be able to grasp the BASIC programs with some
measure of confidence. Line 100 clears the screen and line 110
selects the HIRES mode. The new expression is line 120 which is
probably self-evident. You should check the coordinates above to
see where the plot will run. Line 200 just creates a LOOP to stop
the BASIC prompt (>) appearing on the screen.

TYPE: RUN <CR> and watch the results!

MICROWORLD BASIC OR THE MICROBEE page 42

Try another variation on the theme! The command PLOT I will
INVERT a PLOT that has been SET.

TYPE: GX/PLOT/PLOT I/ <CR>

TYPE: RUN <CR> and watch what happens.

A similar command is PLOT R which RESETS the condition on the
screen.

 3.7 MUSIC BY BEEthoven

 The MICROBEE can easily be programmed to play musical tones
under BASIC. The duration of each tone can also be set between
1/8 second and 255 times 1/8 seconds. The notes are as follows:

 NUMBER NOTE FREQUENCY

 0 REST -----
 1 A 220
 2 A# 233
 3 B 247
 4 C 262
 5 C# 277
 6 D 294
 7 D# 311
 8 E 330
 9 F 349
 10 F# 370
 11 G 392
 12 G# 415
 13 A 440
 14 A# 466
 15 B 494
 16 C 523
 17 C# 554
 18 D 587
 19 D# 622
 20 E 659
 21 F 698
 22 F# 740
 23 G 784
 24 G# 831

 Using this table it is easy to encode tones ar music
directly. Try the following:

TYPE:

100 PLAY 10,40;20,80 <CR>

when RUN this program will play F# for 5 seconds followed by E

MICROWORLD BASIC OR THE MICROBEE page 43

for 10 seconds.

Try the following program:

90 REM WHEN THE SAINTS GO MARCHING IN
100 PLAY 4,2; 8,2; 9,2; 11,10; 4,2; 8,2; 9,2; 11,10
110 PLAY 4,2; 8,2; 9,2; 11,4; 8,4; 4,2; 8,4; 6,10
120 PLAY 8,2; 8,2; 6,2; 4,8; 8,4; 11,4; 11,2; 9,10
130 PLAY 8,2; 9,2; 11,4; 8,4; 4,4; 6,4; 4,10

and type RUN <CR> to hear the tune. As you can hear, it is easy
to make music on the MICROBEE!

 3.8 STRING OPERATIONS

 CONCEPTS

 STRING ARRAYS
 STRING VARIABLES
 STRS
 IMPLICIT STRING FUNCTIONS
 Simulating LEFT$
 Simulating RIGHT$
 KEY$
 CHR$

 MICROWORLD BASIC has very comprehensive string handling
capabilities which differ in some ways from other BASICS. STRING
VARIABLES are simply REAL VARIABLES with a ’$’ sign. For example:

 A0 REAL VARIABLE
 A0$ STRING VARIABLE
 B4(1,4) REAL NUMERIC ARRAY
 B4$(1,4) STRING ARRAY

 Note carefully that A0 and A0$ are NOT two - distinct
variables and if you attampt to use both in a program, one will
be ’lost’. In the case of an array, a given element may be either
a real number or a string depending on the presence of the ’$’
sign. You do not DIMension string arrays in MICROWORLD BASIC.
Instead, dimension a real array and use whatever elements you
require as strings. Strings may be of any length up to 180
characters. String storage is dynamically allocated within an
area of memory called ’string space’. After a NEW command the
string space is set to 255 characters. If more is needed, use the
STRS command to allocate more space.

 STRS(2000) will allocate 2000 bytes in memory for strings.

 We will now experiment with implicit string functions which
is really a more complex way of saying working with portions of
already defined strings.

MICROWORLD BASIC OR THE MICROBEE page 44

 This function takes the following forms:

 str-var produces full string
 str-var (int-expl, int-exp2,) produces the full array
 string
 str-var(;int-expA, int expB) produces a portion of
the string (see below)

 TYPE the following:

 10 A1$ = "ABCDEF"
 20 PRINT A1$(;3,6)

when RUN this will produce

 CDEF indicating that elements 3 to 6 were selected

 Try the following:

 10 A1$ = "ABCDEFGH"
 20 PRINT A1$(;LEN(A1$)/2,LEN(A1$))
 30 PRINT A1$(;LEN(A1$)/2)

will produce

 DEFGH selects elements from halfway to the end
 DEFGH selects the same as line 20

 SIMULATING LEFT$

 Several versions of BASIC incorporate a function LEFT$ which
can be easily be simulated with:

A0$(;1,n)

Note: if you copied a program from another BASIC which
incorporated LEFT$ functions you can use the GX command to
correct the program as follows:

 GX/LEFT$(A0$,4)/A0$ (;1,4/ <CR>

Its that easy!

 SIMULATING RIGHT$

 This function can be simulated with the following:

 A0$(;LEN(A0$)-n+1,LEN(A0$))

MICROWORLD BASIC OR THE MICROBEE page 45

 Try this program

 10 LET A0$ = "ABCDE"
 20 PRINT A0$ producesABCDE
 30 PRINT A0$(;2) produces BCDE
 40 PRINT A0$(;2,4) produces BCD

 KEY$

 MICROWORLD BASIC incorporates KEY$, a function which will
read one character at a time from keyboard input. This is
particularly useful with games and programs which only need a
single keystroke without having to use the <CR> to enter.

Try the following:

 10 A1$=" " one or more spaces
 20 M$=KEY$ defines A0$
 30 IF A0$="" THEN 20 tests for nul string (i.e no input)
 40 A1$=A1$+M$
 50 PRINT A1$
 60 GOTO 10

and see what happens. Note that line 40 concatenates the
characters you have typed in and it is best to preset A1$ to a
space or other character to avaoid problems with undefined
strings. The test in line 30 is critical as it continues to loop
back until a character is pressed. This sample program should
serve as a basis for all your KEY$ routines.

 CHR$

 The CHR$(int) function returns a character which has the
ASCII value specified by ’int’. It is the reverse of the ASC
function.

Try

 10 PRINT ASC(A) produces 65
 20 PRINT CHR$(65) produces A

 LEN (str-exp) , VAL (str-exp)

 For completeness we will examine two string related
functions.

 10 PRINT LEN("ABCDEFG") produces 7
 20 PRINT VAL("6.80") produces 6.80
 30 PRINT VAL("Apples") produces 0

 Line 10 calculates the LENgth of the string ABCDEFG and you
will recall that we have already used this function in an earlier

MICROWORLD BASIC OR THE MICROBEE page 46

exercise.

 Lines 20,30 illustrate the VAL function. Essentially VAL
returns the value or converts the string to a "real" number. Line
30 makes the point that alpha strings have no numeric value.

 3.9 ERROR TRAPPING

 CONCEPTS

 ON ERROR GOTO
 ERROR L
 ERROR C

 Microworld BASIC now contains a powerful command which is
only found in a few very advanced BASICS. As you will have no
doubt discovered for yourself, MICROWORLD BASIC error handling
means that when an error is discovered the program stops and the
line number and eror type are displayed. This is particularly
useful when debugging a program with errors which occur as soon
as the RUN command is typed. However some errors occur during the
execution of the program and it may not be very convenient to
have the program stop and display the error message. One example
of this is when the HIRES graphics are in use and you do not
realise that all the PCG characters have been used up.
Interruption of the program clears the screen (and all your
graphics as well!) and displays ’Graphics error in line xx ’

 To avoid the clear screen, error message reporting routine
the command ’ON ERROR GOTO line number ’ has been included.
Again we will use an example:

 10 ON ERROR GOTO 1000
 20 PRINT "Hello missing end quote!
 30

 1000 PRINT "ERROR": STOP

When run this program will print ’ERROR’ and STOP as directed in
line 1000. Now type CONT <CR> and watch what happens again. Next
change the program to the following:

 10 ON ERROR GOTO 1000
 20 PRINT "Hello
 30

 1000 PRINT "ERROR"
 1010 FOR T=l to 200: NEXT T (a time delay loop)
 1020 GOTO 20

and RUN.

Notice that the program ’falls through’ ,the ON ERROR GOTO
statement in line 10 and displays ’ERROR’. After the time delay
loop the program flow is directed to line 20 (ie AFTER the ON

MICROWORLD BASIC OR THE MICROBEE page 47

ERROR GOTO statement in line 10) and the conditional error
message routine is invoked again.

The point is that the command ON ERROR GOTO In is an automatic
error trap which is reset every time an error occurs. In reality
if ’In’ is 0 then conventional error reporting occurs otherwise a
jump to line number ’In’ will take place when an error is
detected.

 What about identifying an error? That is indeed possible and
MICROWORLD BASIC uses the following extensions:

 ERROR C for error code
 ERROR L to identify the line containing the error

try the above examples but change line 1000 to read:

 1000 PRINT "ERROR IN LINE "; ERROR L
 1010 PRINT "TYPE OF ERROR "; ERROR C

Actually we are now really performing the same routine as that
used by BASIC on detecting an error. Still the exercise may be
useful for identifying a special error and reacting accordingly.
the ERROR CODES are listed below.

 ERROR CODE ERROR TYPE

 1 LINE TOO LONG
 2 UNPAIRED BRACKETS
 3 MULTIPLE STATEMENT
 4 OUT OF DATA
 5 MISSING END QUOTE
 6 FN NAME
 7 VAR MISMATCH
 8 NOTHING TO EXEC
 9 ILLEGAL DIRECT
 10 UNDER/OVERFLOW
 11 KILL NON LINE
 12 NON EXISTENT LINE NUMBER
 13 MIXED MODE
 14 PARAMETER SIZE
 15 STACK OVERFLOW
 16 GRAPHICS
 17 OUTPUT OVERFLOW
 18 OUT OF MEMORY
 19 SYNTAX
 20 ZONE
 21 NEXT WITHOUT FOR
 22 ILLEGAL VARIABLE
 23 OUT OF STRING SPACE
 24 UNKNOWN FUNCTION
 25 ILLEGAL LINE
 26 DIVIDE BY ZERO
 27 INTEGER STRING
 28 ILLEGAL RUN MODE

MICROWORLD BASIC OR THE MICROBEE page 48

 28 DIM SIZE
 29 PROGRAM TOO LONG
 30 BAD LOAD
 31 ARGUMENT ERROR
 32 GOSUB STACK
 33 LINE NUMBER CLASH
 34 CAN’T CONTINUE
 35 OPTION NOT FITTED

 3.10 FORMATTING PRINTING

 Often it is necessary to format the output of a PRINT
statement. MICROWORLD BASIC has built-in formatting for the
following types of output:

 INTEGER [Iint int-exp]
 REAL [Fn1.n2 real-exp]
 EXPONENTIAL [Dn real-exp]
 ASCII [An int-exp]

 Effectively these are equivalent to the PRINT USING moulds
used in other forms of BASIC. Try some examples:

 10 REM this program prints integer values
 20 FOR A=l to 10
 30 READ N
 40 PRINT [I10,n]
 50 NEXT A
 1000 DATA 123,1,4567,12345,56,9,123,1,2,3

will produce

 123
 1
 4567
 12345
 56
 9
 123
 1
 2
 3
in other words [I10,D] has produced a ’MOULD’ and printed all
output in a field 10 characters wide. Note that if the field is
not wide enough to contain all characters ’**********’ will be
printed. Try this experiment with [I3,D] and find out for
yourself.

 10 REM this outputs real numders right justified
 20 FOR A=1 to 10
 30 READ D1
 40 PRINT [F8.2 D1] this means print D1 in a field 8

MICROWORLD BASIC OR THE MICROBEE page 49

 characters wide and include 2 for a decimal point

 50 NEXT A
 1000 DATA 1,2.3,4.56,789.0,1.234,2.345,0,2.3,4,7

will produce

 1.00
 2.30
 4.56
 789.00
 1.23
 2.34
 0.00
 2.30
 4.00
 7.00

This is useful to format business programs.

similarly the [Dn real-exp] will print the output in exponential
format in a file n+7 wide with n decimal places.

 10 C0 = 123456.00/99
 20 PRINT [D5 C0]

will produce

 1.24703E+03

Lastly the ASCII format is useful in outputting a known character
a number of times.

 10 PRINT [A5 10]
 20 PRINT [A60 42]

will produce 5 ’line feeds’ and then print ’*’ 60 times across
the screen.

 SUMMARY

 These 10 exercises should give you some greater insight into
the many ways you can use the power of MICROWORLD BASIC. Only
with experience can you master the various techniques involved.
Hopefully this tutorial has clarified issues that are almost
impossible to discuss effectively within a technical manual.

MICROWORLD BASIC OR THE MICROBEE page 50

+---+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Section 4. |
| |
| |
| |
| Programming |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

 SECTION 4: PROGRAMMING

 4.1 ASSIGNING VARIABLES

 We have discussed previously that VARIABLES are numbers or
strings stored in memory that change in value during the
execution of a program. To assign values or expressions to
VARIABLES, the instruction LET is used. LET causes a variable to
be replaced by the expression.

 10 LET A1=B2
 20 LET A1=6.543
 30 LET A2$=B5$
 40 LET X2$="HELLO THERE"

are all valid assignment statements. The LET statement is
optional and if not present at the beginning of a line it is
assumed to be ’implied’. Thus

 10 A1=B2
 20 A1=6.543
 30 A2$=B5$

will each be interpreted by BASIC in exactly the same way as
those in the previous list.

 4.2 VARIABLE TYPES

 We have already mentioned that MICROWORLD LEVEL II BASIC
supports INTEGER and REAL NUMERIC VARIABLES and STRING VARIABLES.
The type of variable is set by the NAME given to it. INTEGER
VARIABLES can be defined by single characters such as A, T, X, Y,
Z. REAL (floating point) VARIABLES are defined by a character (A-
Z) plus a number (0-7) such as AI, Tl, G4, B7. STRING VARIABLES,
on the other hand, must have the format: character (A-Z),
number (0-7) , followed by $. Examples of STRING VARIABLES are A1$,
B7$, X1$, V0$.

 Only variables of the same type may be assigned to each
other and you must avoid mixing REAL and INTEGER variables in the
same expression. So

 10 LET A1=B1$ INVALID
 20 LET A1="HELLO THERE" INVALID
 30 A1$=6.543 INVALID
 40 X=B1+2450 INVALID

are all INVALID because an attempt has been made to assign data
which is not the same type as the variable.

 MICROWORLD BASIC has a special function FLT which "makes" an
integer into a floating or REAL expression. Conversely the

MICROWORLD BASIC FOR THE MICROBEE page 54

function INT will convert real expressions to integers.

 Any attempt to mix ’integers’ and ’reals’ in an expression
will result in a MIXED MODE ERROR. The question arises as to how
the mode of the expression is actually set. The answer is that
the BASIC determines the mode. Consider the following examples:

 If an expression appears in an arithmetic assignment
statement (LET), the mode is determined by the assigned variable.

 LET I=3+J INTEGER because I is integer
 LET A0=3/16 REAL since A0 is REAL

 In some cases the mode is determined by the context; that is
the specific position of the expression within the statement
structure sets the mode.

 A1(I-J) Array subscripts must be integer
 SQR(2+3) Argument of square root is real

 There are specific cases where the mode can only be
determined by pretesting the expression. To avoid this time
consuming task a specific restriction is placed upon the program.
If in a particular expression neither of the cases above apply,
then the first character in the expression is checked. Should the
first character be INTEGER then the mode for the entire
expression will be set to INTEGER. Otherwise the REAL mode will
be set. Expressions appearing in PRINT and IF statements fall
into this category.

 PRINT I+2 INTEGER expression
 PRINT 2+1 MIXED MODE ERROR!
 PRINT INT(3.2) INTEGER expression
 IF 6<I THEN GOTO 30 MIXED MODE ERROR!
 IF I>6 THEN GOTO 30 INTEGER expression

 4.3 INPUT/OUTPUT STATEMENTS

 The next group of instructions we will discuss are those
which are used to enter data into the program and those which
output data from the program to the screen. AS a group these are
called I/O INSTRUCTIONS.

 READ and DATA

 The fundamental input statement in BASIC is READ. When BASIC
executes the first READ instruction in a program, it gets the
first piece of data in the first DATA statement. An example of a
read instruction is

 10 READ Al$,C4,D6

MICROWORLD BASIC FOR THE MICROBEE page 55

and the form of the corresponding DATA statement is

 20 DATA "FRED JONES", 1.04, 345

 The READ statement causes one piece of DATA to be READ from
the DATA statements and input into each of the variables listed
after it. Each of the variables listed in the READ statement must
be separated by a COMMA. Similarly each of the pieces listed in- a
single DATA statement must also be separated by a comma. A DATA
statement cannot be followed by another statement on the same
line, because the following statement including the comma will be
interpreted as data.

 The READ instruction in the example above will read the
string "FRED JONES" from the DATA statement and assign it to the
variable A1$, read 1.04 and assign it to the NUMERIC VARIABLE C4
and read 345 and assign it to the numeric variable D6.
 The DATA statement may be placed anywhere in the program,
but your programs will run much more quickly if they are all
placed together. This is because BASIC searches through the
program to find the next data item, and the further it has to
search, the longer it will take to find it. BASIC will step
through the data in the first data statement, move to the next
and so on. If a program instructs BASIC to read data when there
is no more data to be read then an OUT OF DATA error will be
generated.

 The READ and DATA statements above could have been replaced
by the following LET statements and would have produced exactly
the same result.

 10 LET Al$="FRED JONES"
 20 LET C4= 1. 134
 30 LET D6=345

 As is the case with the LET instruction, or any BASIC verb
which causes data to be assigned to a variable, the DATA in the
DATA statement must be of the same type as the variable to which
it has been assigned. The following READ and DATA statements will
cause a MIXED MODE ERROR because Bl is a numeric variable and
"FRED" is a string.

 10 READ B1
 20 DATA "FRED"

 Note that string data MUST be enclosed by double quotes.

 RESTORE

 Each time a READ instruction assigns a value to a variable
it moves an internal data pointer along to the next piece of DATA
in the DATA statement, or to the next DATA statement if the
current line of DATA is exhausted. This pointer can be set back
to the first piece of DATA by using the RESTORE instruction. The

MICROWORLD BASIC FOR THE MICROBEE page 56

following

 10 DATA "FRED",1.04,345
 20 READ A1$,C4
 30 RESTORE
 40 READ Z1$,F2,G6

will cause the following values to be assigned to the variables.

 Al$ will be "FRED" C4 will be 1.04
 21$ will be "FRED" F2 will be 1.04 G6 will be 345

 INPUT

 Because BASIC is an interactive language, programs can be
designed which require an immediate response from the user to
determine the subsequent execution of the program. It would be a
very dull game of STAR TREK indeed that required all the commands
to be written as DATA statements and included in the program. The
INPUT statement causes the execution of the program to pause. A
question mark is output to tell the user that BASIC is expecting
some data to be input, and then the DATA assigned to the
variables. The form of an INPUT statement is

 20 INPUT "WHAT IS THE NUMBER "; G1

 INPUTTING NULL STRING

 A NULL STRING is a string containing no characters.
Entering only a carriage return <cr>, in response to an input
statement will result in a null string being assigned to the
variable. A null string, signified as "", without a space between
the quotes, is analogous to including a numeric variable
containing zero.
 A null string may be tested and compared just like any other
string.
 When the RUN command is given, all variables of the form A1,
B7 are set up as reals with value 0., so all strings must be
assigned to before they are inspected, or an illegal variable
error will result; they are NOT initialised to null strings.

 10 INPUT A1$
 20 IF A1$="" THEN PRINT "A NULL STRING HAS BEEN ENTERED"

will print

 A NULL STRING HAS BEEN ENTERED

if only a <cr> is input from the keyboard.

MICROWORLD BASIC FOR THE MICROBEE page 57

 INPUTTING COMMAS

 BASIC interprets a comma as a delimiter between places of
data, so that if a line typed in response to an INPUT statement
contains a comma, BASIC will assume that what follows is part of
the next piece of data and will ignore it. Entering

 JONES, FRED

in response to the statement

 30 INPUT A1$
will result in Al$ containing "JONES" because everything after
the comma is presumed to be part of the next piece of data. But
if the data being input is enclosed in quotes, BASIC will treat
all the data between the quotes as valid data. Hence

entering "JONES, FRED" will cause Al$ to contain "JONES, FRED".
Another way to allow entry of any character is to use the "KEY$"
string function, and build the input string in the BASIC program.

 INPUTTING MORE THAN ONE VARIABLE AT TIME

 The INPUT statement is not restricted to inputting only one
variable at a time. The line

 50 INPUT A1$,B2,C3,D5 is also valid.

Here the user would type in the various pieces of data separated
by commas. If insufficient pieces of data are entered on one
line, then BASIC will keep prompting with a question mark until
sufficient data items have been entered.

 The types of data in an INPUT statement may be mixed, that
is both string and numeric (real and floating). However, the
correct type of data must match the variable specified.

 PRINTING MESSAGE IN AN INPUT STATEMENT

 To ensure the unambiguous inputting of data, more prompting
than a question mark is usually required. BASIC does allow
printing of a message within an INPUT statement. The statement

 20 INPUT "WHAT IS YOUR NAME ";N1$

will cause

 WHAT IS YOUR NAME
to be printed on the terminal before the input of Nl$ takes
place. If you entered the following program

 10 PRMT(#)
 20 INPUT "WHAT IS YOUR NAME "

MICROWORLD BASIC FOR THE MICROBEE page 58

the reply

 WHAT IS YOUR NAME #

will be produced. Hence we can alter the PROMPT after a literal
with a PRMT command previous to the INPUT statement.

ABORTING FROM AN INPUT STATEMENT

 A special case occurs when it is necessary to abort a
program while it is waiting for input. If you press break (BREAK)
or CONTROL C (^C) you will STOP the current program and reenter
the BASIC in the PROGRAM ENTRY mode so that you can make changes,
LIST etc.

 CONTROL C (^C) STOP in order to re-edit program

PAUSING EXECUTION

 If you press CONTROL S (^S) during normal program execution
(including graphics programs), the current BASIC program is
STOPPED temporarily and will resume when any other keyboard key
is pressed.

 CONTROL S (^S) PAUSE and RESUME program

OUTPUT INSTRUCTIONS: PRINT

 The general output statement in BASIC is PRINT. This
statement causes the data specified in the PRINT statement to be
output to the terminal. The statement LPRINT will cause the
output to go to the printer stream instead of the VDU terminal.
(See OUT# for details on data flow for each stream).

 An example of the PRINT statement is

 10 PRINT "HELLO";Al$,FN0(34.5)*C3
 20 LPRINT "CALCULATION COMPLETE"

where "HELLO" and "CALCULATION COMPLETE" are string
constants, while Al$ is a string variable and FN0(34.5)*C3 is a
user defined real function multiplied by a numeric variable.

 The use of the semicolon between "HELLO" and Al$ means that
these will be printed next to each other while the comma between
Al$ and FN0 means that a TAB is inserted after Al$. Consider the
following example.

 10 LET A1$="FRED"
 20 FN0=9.76*#
 30 C3=1.0

MICROWORLD BASIC FOR THE MICROBEE page 59

 40 PRINT "HELLO ";A1$,FN0(1)*C3

will produce the following on the VDU

 HELLO FRED 9.76

 FORMATTING OUTPUT

 Although the use of a comma to separate the items in a PRINT
statement will result in the items being printed in the next TAB
or PRINT ZONE each time, this simple formatting has two
shortcomings.

 1. It may be desirable to use columns spaced more or less
 than TAB stops apart, and

 2. When numbers are printed they are justified on the left
 hand side into the print zones and for integers the
 digits of equal significance may not line up.

For example 342 342
 1 1
 1000 rather than 1000
 15 15
(See also the later section for formatting print statements).

 TAB

 The first problem in setting up print columns different to
the print zones provided can be solved using the TAB function.
Thus

 10 PRINT TAB(20);"*"

will cause the print position to be advanced to the twentieth
position from the lefthand margin and ’*’ printed. If the print
position is already past the specified TAB position, possibly as
the result of a previous print statement, then no further tabbing
will take place.

 The TAB operand in the brackets can be a NUMERIC VARIABLE or
a NUMERIC EXPRESSION, however it must be an INTEGER. If for any
reason you are working with REAL VARIABLES then use the INT
function to produce the operand for the TAB. For example

 10 FOR A1=.5 to 9.9 STEP .3
 20 PRINT TAB(A1);"*"
 30 NEXT A1

will not work, and an error message will show for line 20. But a
slight change will produce the desired result

 10 FOR A1=.5 to 9.9 STEP .3

MICROWORLD BASIC FOR THE MICROBEE page 60

 20 PRINT TAB(INT(A1));"*"
 30 NEXT A1

 Note that the use of TAB(0) will advance to the 256th
column.

 ZONE

 MICROWORLD BASIC, in addition to the TAB features also lets
you vary the ZONE width in PRINT statements. This is especially
useful in formatting tabulated data which may require a different
presentation to the normal zones.

 The COMMAND is ZONE(int). The value of the ’int’ sets the
ZONE WIDTH used when commas are used in PRINT statements and the
value may be any integer from 1 to 16.

 4.4 MATHEMATICAL OPERATORS

 Five mathematical operators are supported by this BASIC.
They are:

 + ADDITION reals or integers
 - SUBTRACTION reals or integers
 * MULTIPLICATION reals or integers
 / DIVISION reals or integers
 ^ EXPONENTIATION (raising to a power, reals only)

 Addition and multiplication are straight forward operations
on the numbers involved. Subtraction will subtract the second
expression from the first in the same way as it reads. Thus

 10 LET A=5-4

will result in the integer variable A having a value of 1.
Division is performed similarly. The first expression is divided
by the second. Thus

 20 LET A1=200/20

will result in A1 having a value of 10.

 Integer division is quite different from REAL division in
that the answer will be truncated towards the nearest integer to
zero. Thus
 10 LET A=-7/4
will result in A being assigned the value -1.

 Exponentiation is simply a means of raising a number to a
power and is usable with REALS only. Thus

 30 LET Al=2^3

MICROWORLD BASIC FOR THE MICROBEE page 61

will result in Al having a value of 8. Note that greater speed
and accuracy can be obtained for x^n if n is a small positive
integer by successive multiplying e.g. 4^3=4*4*4.

 A mathematical expression may contain more than one
operator. Even a complicated expression like

 40 LET A1=B5-4*5/6+C0

will be resolved by BASIC provided B5 and C0 have previously been
assigned a value. If values had not been specifically assigned to
B5 and C0 by an assignment statement, then they will be at ZERO,
the value to which all numeric variables are set when BASIC is
initialised.

 PRIORITY OF ARITHMETIC OPERATIONS

 Expressions are evaluated from left to right with
parenthesis used to alter the order of evaluation. Standard
algebraic precedence is followed:

i.e. the order of operations is

 1 parenthesis
 2 ^, negation and arithmetic functions
 3 * and /
 4 + and -

This is best illustrated with examples:

 10 PRINT 2*3+1 * is done first
produces 7
 20 PRINT 2*(3+1) + first (parenthesis)
produces 8
 30 PRINT 2*4^1.6 ^ first
produces 18.3792

 As you can see BASIC does all arithmetic the way you would
do it normally. PARENTHESIS (brackets) can be used to group parts
of an expression if it is necessary to force BASIC to evaluate
the expression in a different order. BASIC will evaluate the
expressions in the innermost parentheses first and successively
work outward. If you are not sure which order BASIC will evaluate
a particular expression the general rule is:

 IF IN DOUBT, USE PARENTHESES

 They may not be needed, and although they will slow down the
execution of a program slightly, using parenthesis will make the
meaning of the expression much clearer.

MICROWORLD BASIC FOR THE MICROBEE page 62

 4.5 STRING OPERATOR

 MICROWORLD BASIC has the ability to enable you to "connect"
two strings together. This is called CONCATENATION. The operator
for the concatenation of two strings is the "+" sign. An example
best illustrates the point:

 10 LET A1$=" MILLS"
 20 LET B2$="PETER"
 30 LET C2$=B2$+A1$
 40 PRINT C2$
will produce
 PETER MILLS

Further information on string operations are detailed in section
3.11.

 4.6 BRANCHING

 One of the most powerful features available when using a
computer, is the ability to repeat operations over and over
again. A program ’loop’ in BASIC can be formed by using the GOTO
instruction which transfers the execution of the program from the
current line to the line specified in the GOTO statement.

 100 GOTO 50

will cause BASIC to continue executing the program at line number
50. The following program will INPUT a number from the keyboard,
calculate its square and square root and print out the values. At
line 30 the GOTO instruction will cause the program to leop back
to line 10 and repeat the whole process again.

 10 INPUT "NUMBER";A1
 20 PRINT A1^2,SQR(A1)
 30 GOTO 10

 In this program the loop will continue forever! It will
never terminate. You can stop it by pressing the Break key or ^C,
however the preferable way to exit from a loop such as this is to
include a conditional branch out from the loop. This is discussed
in the next section.

 Note GOTO must be typed as one word and the line number in
the GOTO statement must actually exist or an error message will
result.

 The GOTO instruction is not required if the line number
follows an IF-THEN statement.

 10 IF A=B THEN 1000
is the same as

MICROWORLD BASIC FOR THE MICROBEE page 63

 10 IF A=B THEN GOTO 1000

 CONDITIONAL BRANCHING

 with the IF...THEN statement we have our first conditional
branch instruction. This could easily be used to get out of the
endless loop above. To do this the program becomes:

 10 INPUT "NUMBER";A1
 15 IF A1=9999 THEN GOTO 100
 20 PRINT A1^2, SQR(A1)
 30 GOTO 10
 100 PRINT "END"
 110 END

 Another useful conditional branch instruction is the
ON...GOTO. This takes the form

 ON expr GOTO line_number_1, line_number_2, line_number_3

This is a conditional branch that depends on the expr in the
following way:

 expr.=1 Branch to line-no1
 expr.=2 Branch to line-no2
 expr.=3 Branch to line-no3

this is best illustrated with an example:

 5 INPUT A
 10 ON A GOTO 125, 230, 400, 650
 125 REM HERE IF A=1

 230 REM HERE IF A=2

 400 REM HERE IF A=3

 650 REM HERE IF A=4

 Note that this differs from the earlier versions of
MicroWorld Basic in order to bring it in line with more common
practice in other BASICs. In MicroWorld Basics up to 2.7, the
first line number would be branched to if the integer expression
was equal to zero.
 To run such programs, add a "+1" after the integer
expression as it would have been used in BASIC 2.7 .

MICROWORLD BASIC FOR THE MICROBEE page 64

 4.7 CONDITIONAL STATEMENTS _AN_D_ RELATIONAL OPERATORS

 BASIC allows statements to be executed dependent on whether
a specified condition is tested to be true using IF...THEN. The
form is

 IF<condition> THEN <line number> ELSE <line number>
 IF<condition> THEN <statements> ELSE <statements>

 The <condition> may involve "<A less than, ">" greater than,
"=" equal to or a combination of any two of these. The
statement/s to the right of the "THEN" are only executed if the
relational test is true. Otherwise, either the next numbered line
or statements to the right of "ELSE" are executed.
 If an assignment statement immediately follows either a THEN
or an ELSE, the keyword LET must not be omitted, or the BASIC
will think that you are trying to give it a line number to branch
to.
 Note that <condition> may also be an integer expression not
involving relational operators, in which case the test is
considered to be true if the expression is equal to -1 and false
if the expression is equal to zero. This allows the use of
BOOLEAN VARIABLES, or variables which indicate only true or
false. Such BOOLEAN VARIABLES must be integer variables only.

Examples for use of IF .. THEN .. ELSE:

 10 IF I<6 THEN 60
 20 PRINT "YES"

 60 PRINT "NO"

If I is less than 6 branching to line 60 will occur. If I is
equal to or greater than 6, the program continues at line 20.

 105 IF A0+6 >=B0 THEN LET I=0 ELSE LET I=I+1
 110

If the value of the expression A0+6 is greater than or equal to
B0 the statement to the right of "THEN" is executed, so I is set
equal to 0. Otherwise the statement proceeds to "ELSE" and I is
set to 1+1. Note if the "THEN" is executed the "ELSE" is bypassed
and program proceeds to line 110.

 The <condition> section generally tests the truth of a
relation between two expressions. The expression can be a
CONSTANT, a VARIABLE, or the solution of an expression involving
both CONSTANTS and VARIABLES.

MICROWORLD BASIC FOR THE MICROBEE page 65

 The relations which can be tested are:

= the expressions are equal
< expression 1 is LESS THAN expression 2
> expression 1 is GREATER THAN expression 2
<= expression 1 is LESS THAN OR EQUAL to expression 2
>= expression 1 is GREATER THAN OR EQUAL to expression 2
<> expression 1 is NOT EQUAL TO expression 2

 NOTE: =, <, and> may be in any order, so >= is also =>

 The expressions compared in a conditional state˜ent may be
either string EXPRESSIONS on NUMERIC expressions. However it does
not make sense to compare expressions of unlike type so a STRING
expression can only be compared with another STRING expression
and a NUMERIC expression can only be compared with another
NUMERIC expressions.

 Each of the following statements are valid

 10 IF A1$ = B1$ THEN 300
 20 IF B1 = 1.4 THEN 320
 30 IF SIN(2+B9) = COS(A2-4) THEN PRINT "REALLY?"

but

 40 IF B1 = A2$ THEN GOTO 230 INVALID

40 is not valid because variables of unlike type are being
compared, and this will cause a TYPE ERROR.

 WHAT HAPPENS IF THE TEST FAILS

 If the relation tested is NOT TRUE, the program will first
look for an ELSE statement on the same line.
 If such an ELSE is found, statements to the right of it are
executed, (or a linenumber is branched to).
 If an ELSE is not found on the same line, execution
continues at the next numbered BASIC line.
Statements following the THEN are never executed if the test
fails.

MICROWORLD BASIC FOR THE MICROBEE page 66

 4.8 FOR...TO...NEXT LOOPS

 As mentioned earlier, the ability of the computer to perform
repetitive tasks many times is one of its most useful features. A
program which a set of instructions is said to ’loop’. A ’loop’
can be made using an IF...THEN...GOTO statement. For example the
program

 10 LET A1=0
 20 PRINT "-";
 30 LET A1=A1+l
 40 IF A1<= 80 THEN GOTO 20
 9999 END

will print ’-’, increment the variable A1, and then if A1 is less
than or equal to 80, will loop to do the procedure again. This
will continue until Al is greater than 80. In effect this program
will print a line containing 80 hyphens.

 Because this type of loop structure where the number of
times the loop is to be executed is known in advance, is so
commonly used in programs, BASIC contains a specific instruction
to do the task. This is called a FOR...NEXT loop.

 10 FOR A1=1 to 80
 20 PRINT "-";
 30 NEXT A1
 9999 END

 This produces exactly the same result as the first example,
but is much simpler. The FOR...NEXT loop is the fastest way of
making a loop structure in this BASIC.
 Since the test is performed at the NEXT, the loop will
always be executed once, even if the test is initially false.

 STEP

 A FOR...NEXT loop does not necessarily have to increment by
1 each time around the loop. It can increment or decrement by any
number. This does not need to be an INTEGER (if the variables are
correctly named˜. The part of the instruction which defines the
size of the increment or decrement in STEP. For example

 10 FOR I1=80 to 40 STEP -1.5

 50 NEXT I1

will execute the loop beginning with I1 = 80 and then
DECREMENTING the value of I1 by 1.5 each time until I1 IS LESS
THAN OR EQUAL TO 40.

MICROWORLD BASIC FOR THE MICROBEE page 67

 EXITING FOR...NEXT LOOPS

 It is not advisable to prematurely exit from a FOR...NEXT
loop by using a GOTO statement. This is because BASIC pushes
internal details about the FOR...NEXT loop onto an internal stack
and if the loop is exited by a GOTO statement, sixteen bytes of
information are left pushed up onto the stack. If this practice
is repeated a number of times it will quickly fill up the
available stack space and a STACK OVERFLOW ERROR will result.
 See the NEXT* statement description in section 4 for one
possible solution to this problem. The best solution is not to
use FOR..NEXT loops for things that they are not suited to doing.

 4.9 SUBROUTINES

 Some more complicated programs have parts which are more
appropriately treated as separate sections and then lifted back
into the main program. This is especially the case if the section
of the program will be used a number of times in the main
program.

 This smaller program within a larger one is called a
SUBROUTINE.

 To call a SUBROUTINE from the main program, the instruction
GOSUB<line number> is used. The program continues at the
specified line number until a RETURN instruction is encountered.

 The RETURN instruction causes the program to resume at the
next statement after the original subroutine call. If the GOSUB
is part of a multiple statement line, then the statement executed
following a RETURN is the statement after the GOSUB on the
multiple statement line.

MICROWORLD BASIC FOR THE MICROBEE page 68

 4.10 GRAPHICS AND ATTRIBUTES

 The commands provided in the MICROBEE for controlling
graphics and the inverse/underline attributes all use an item of
hardware known as the PCG or programmable character generator.
Some understanding of the principles involved is important to
realize the limitations of the display system.
 For graphics, or characters with attributes, the MICROBEE
must create its own character in a 8*16 dot spacing and then
display it in one of the 1024 possible character positions.
 To generate the inverse and underline attributes, the CPU
has access to the character generator ROM from which it
constructs either inverse or underlined characters, but to be
able have the full inverted character set on hand, the PCG is
filled to capacity with inverted characters.
 Therefore, it is impossible to mix attributes with each
other or with graphics; an inverted line and an underlined line
could not appear at the same time. Both types of graphics are
also exclusive of the other display modes, because the use of the
PCG for graphics means there is no room for other new characters
to be created.
 Due to these restrictions, there are five "MODE" select
commands which select the relevant item exclusively ..

INVERSE ;all output after this will be inverted
UNDERLINE ;all output after this will be underlined
HIRES ;selects HIRES graphics mode
LORES ;select LORES graphics mode
PCG ;select USER defined characters
NORMAL ;all output will be reverted to normal

 Graphics:

 There are two different types of dot graphics:

 Lores graphics:

 Lores graphics are made up of chunky graphics rectangles
which are set up in the same way as graphics on the TRS-80, with
a resolution of 128 horizontal by 48 vertical, thus x=0 (left) to
127 and y=0 (bottom) to 47.
 Mixing of normal text and graphics is freely allowed. If a
dot is set on a character, that character space is cleared and
the dot is set, while characters can be freely written onto
existing LORES graphics, and LORES graphics may even be scrolled
(in which case the current pattern’s y ordinates will increase.

 Hires graphics:

 Hires graphics provide a much greater resolution of 512

MICROWORLD BASIC FOR THE MICROBEE page 69

horizontal by 256 vertical (x=0 at the left over to 511 and y=0
at the bottom up to 255), but it also has important limits which
cannot be ignored.
 Because HIRES graphics is so fine, it is impossible to store
enough characters to specify any desired configuration as is done
for LORES graphics. (otherwise 16k bytes of memory would be
required to achieve this density). Therefore, a complex program
is provided which takes care of deciding what new characters are
needed, which characters are no longer needed, ˜nd keeping track
of how many free characters are left. This results in a graphics
system with very high resolution but reasonable memory usage.
 The maximum number of PCG characters available is 128, and
if this limit is exceeded, an error will occur. This error can be
avoided through the use of a special integer function of no
arguments "USED" which returns the number of PCG characters used
in the HIRES mode so far. This function should be examined at
critical points in a HIRES graphics program, and steps taken to
avoid a pcg full situation (indicated by a GRAPHICS ERROR).
Another method is to use the ON ERROR GOTO instruction to trap
the overflow and try something smaller or simpler.
 The programmer must also be more careful with the use of
normal characters when the HIRES command has been given. The
program must not scroll the screen, or attempt to set HIRES dots
where characters have been written, although it is perfectly
alright to print characters over where graphics have been, and
this can be used to label graphs, name parts in diagrams and for
other mixed text/graphics applications.

 The restriction on the amount of complexity that the HIRES
graphics can have can be eased in se˜eral ways:
1) Use a smaller section of the screen for the graphics, as a
good resolution will still be obtained with many fewer PCG
characters used.
2) Draw (PLOT) horizontal and vertical lines rather than angled
lines whenever possible.
3) Make sure that the HIRES command is reissued when a particular
diagram is finished with, this will re-set up all the software,
and set the number of PCG characters used back to 1.

 Once the relevant command has been given to set HIRES or
LORES modes, all of the commands for setting dots etc. are the
same except of course for the different maximum values for the x
and y co-ordinates.
 On the MICROBEE, dot graphics are organized on the normal
first quadrant cartesian system which is more compatible with the
way people generally think about graphics coordinates than the
system used on some other computers.
 Therefore x=0 at the left hand side of the screen and
increases to the right, while y=0 at the bottom of the screen and
increases upwards.
 This system should be used for all new graphics works, but
to provide upwards compatibility with MicroWorld Basic 2.7 and
ease of conversion from other computers’ programs, it is possible
to specify an inverted Y-axis by appending an "H" to the basic

MICROWORLD BASIC FOR THE MICROBEE page 70

graphics keywords SET, RESET, INVERT (this precludes double
suffixes with PLOT such as PLOTIH, see Section 4 - PLOT) .

example:
 SETH A+2,Z*3 is equivalent to SET A+2,47-Z*3 if we are in
LORES graphic5 mode.

 Basic graphics keywords

 Set:

 SET x,y is the general form of the command to turn on one
dot in the relevant graphics mode. Note that x and yare integer
expressions, so if you have a real number, use the "INT" transfer
function to make it an integer. e.g.
 SET X+INT(R9*COS(T0)),Y+INT(Rl*SIN(T0)) can be used for
drawing circles, where T9 is run from 9 to 2*PI in a FOR loop,
and R0 and R1 are the scaled radii, and X,Y is the co-ordinate of
the centre of the circle.

 Reset:

 RESET x,y is the same but resets (turns off) the dot.

 Invert:

 INVERT x,y is similar but if the dot is on, it is turned
off; if the dot is off, it is turned on.

 PLOT:

 This command can join pairs of co-ordinates by a line, and
either set, reset, or invert all the points deemed to be on that
line.
 The basic form of the command is:
PLOT x1,y1 TO x2,y2
but may be expanded to do point to point graphics, e.g.
PLOT x1,y1 TO x2,y2 TO x3,y3 TO x4,y4 ...
 The addition of suffixes to the PLOT keyword allows
resetting and inverting of lines:
PLOTR x1,y1 TO x2,y2 ;will clear all points on the line
PLOTI xl,yl TO x2,y2 ;will invert all points on the line
 Note that although PLOTH x1,y1 to x2,y2 is supported, and
has the effect of inverting the Y axis, the subtractions must be
done by the program when it is desired to to invert or reset
points on a line (so as to avoid double prefixes, which are not
allowed). e.g.
PLOTI x1,255-y1 TO x2,255-y2. (assumed HIRES mode).

 Point(x,y):

 The point keyword gives an integer function which returns a
value depending on whether the dot is set or not.

If the co-ordinates are out of range for the relevant graphics

MICROWORLD BASIC FOR THE MICROBEE page 71

mode, the value returned is -1.
If the specified point is set, POINT returns -1.
If the co-ordinates are in range, and the dot is not set, POINT
returns 0.

 The values 0 and -1 were chosen to correspond to the two
boolean valup.s for an integer which can be used in an IF
statement directly, so
10 IF POINT(X,Y) THEN LET A=-A:B=-B ELSE SET X,Y
will negate A and B if the dot is set, and if it was not set,
this statement will set it.

 Direct PCG graphics

 Although the HIRES and LORES graphics modes were designed to
cater for most graphics’needs, it is often best to access the PCG
memory directly using the POKE command and manually create the
graphics qharacters. The direct PCG method is a good choice when
there is a lot of text to mix with the pictures, for example in
elementary arithmetic programs a sum of 2+3=5 could be
illustrated by drawing 2 cars, a plus symbol, then 3 cars.
Another reason for using the PCG directly is that of speed; since
whole characters are handled at one time, drawing a picture
becomes as fast as printing text.

 In total, 128 PCG characters are available for use by any
program at one time. Each of these characters may fill one or
MORE of the 1024 character positions available on the screen.
Just as the screen is broken up into 16 lines of 64 characters
each, each character is broken up into fine dots, 8 across by 16
down. These dots are the same size as the dots used in HIRES
graphics mode.
 Thus, the first step in creating a set of characters to make
up a picture is to decide how many characters wide and high it
will be. Of course the characters are not square, the best way to
see the actual ratio is to type INVERSE and experiment to see how
many characters are required. Given this shape, dissect each
character space up into 16 rows and 8 columns and draw in the
shape as a rough outline (on paper !). From this rough outline,
you must "digitize" the shape by deciding which dots will be on,
and which will be off (shade in the "on" dots).
As an example, a representation of a car could be
as follows using 3 characters across the screen

(5 blank rows)

 * **
 *** ****
* **
* *
***** ***** ******
 **** ****
(4 blank rows)
AAAAAAAABBBBBBBBCCCCCCCC
765432107654321076543210

MICROWORLD BASIC FOR THE MICROBEE page 72

 Armed with this picture, the "PCG data" must now be
determined character by character and entered in the program as
DATA statements. Using the car example, look at character A first
(the leftmost one). For each row of 8 dots in each character, one
data value (which will become one BYTE in the PCG memory) must be
calculated. This is done by adding a power of two for each dot
that is on. The power is obtained by starting with 2A0 at the
rightmost dot in the row to 2^7 at the leftmost dot in the row.
As an example, take the 8th row of character A in the car
example, which is ...

 - * * * - - - - * on, - off
 128 64 32 16 8 4 2 1 powers of 2

Since the 64, 32 and 16 valued dots are on, the data value for
this row of the A character becomes 64+32+16=112.
 Doing this operation for every row in character A, the data
statement becomes ...

1000 DATA 0,0,0,0,0,7,8,112,128,128,248,7,0,0,0,0

note that there are 16 values, one for each row in the character.
 Now assuming that there is a DATA statement for each
character to be defined, these values must be POKED into the PCG
memory to complete the definition process. The address of the
start of the PCG memory is at 63488 and each character takes up
16 bytes (one byte for each row), so the address to start poking
into is given by
 63488+char code*16 where char code is in the range 0-127.
For example, if-for the car graphics we want the first character
to correspond to the capital letter "A", we look up the ASCII
code for character "A" in the appendix and find that it is 65.
Thus we start POKING at address 63488+65*16, and by putting the
data statements for car characters Band C after the A data,
these characters will correspond to the ASCII characters Band C.
 To use the defined characters, use the PCG command and
simply print the character which corresponds to char_code,
e.g. PCG:PRINT "ABC":NORMAL will print one car.
 Note that the PCG character definitions are lost when any of
the other graphics or attribute modes are selected.
 A full program to implement the car example is given in
Section 5 : Applications Programs.

 4.11 DEBUGGING AIDS

 MICROWORLD BASIC has built in features to simplify
’debugging’ and modifying a program. The first is EDIT which
enables the programmer to EDIT program lines already in memory.

 To EDIT a line number in the current program in memory, type
EDIT line-number <cr>. The line-number specified will be printed
on the VDU and the cursor will be placed at the left-hand end of
the line.

MICROWORLD BASIC FOR THE MICROBEE page 73

The following keys have special meaning during an edit:

 ^S (CONTROL S) moves the cursor to the right
 ^A (CONTROL A) moves the cursor to the left
 DELETE Deletes the character under the cursor
 RETURN The line to be reentered into the program file.

 Most other keys will cause the corresponding character to be
entered into the line to the left of the cursor (for full control
key listing see section 4).

 If you have attempted to run a program and an error message
has been generated, you can edit the line at which the error
occurred by simply typing EDIT <CR>.

 Global eXchange

 The GX command makes repetitive program editing easy by
allowing the programmer to search for strings and either change
them or leave them as they were, e.g.
GX 100 /PRINT/LPRINT/ <cr>
will prompt with each line after line 100 containing ’PRINT’ and
change it to ’LPRINT’ if the ’period’ key is pressed. (See
section 4 : GX for more details).

 TRACE ON, TRACE OFF

 To study the sequence of a program you can type TRACE ON and
the line number actually executed by the program is listed on the
VDU between [] brackets. TRACE OFF removes the facility.

 4.12 STRING OPERATIONS IN MICROWORLD BASIC

 MICROWORLD BASIC has full string handling capabilities
although in some ways it differs from conventional BASICs. STRING
VARIABLES have the form of REAL VARIABLES with an attached ’$’
sign. For example

 A0 REAL VARIABLE
 A0$ STRING VARIABLE
 B4(1,4) REAL NUMERIC ARRAY
 B4$(1,4) STRING ARRAY

 It must be carefully noted that A0 and A0$ are NOT two
distinct variables and if you attempt to use both in a program
one wilf be’ ’lost’. In the case of an array, a given element may
be either a real number or a string depending on the presence of
the ’$’ sign. You do not DIMension a string array, instead
dimension a real array and use whatever elements you want as

MICROWORLD BASIC FOR THE MICROBEE page 74

strings.
 Strings may be any length up to 255 chatacters. string
storage is dynamically allocated within an area of memory called
"string space". After a NEW command, the string space is set to
255 characters. If more is needed use the STRS command described
later.

 String operations can be used with many of the MICROWORLD
BASIC commands. For example the LET command takes the form ...
 LET str-var=str-exp
The assignment statement may be used for creating or transferring
strings. String expressions consist of literals (strings within
quotation marks), string variables, and concatenations of these
using the ’+’ operator. portions of the already defined strings
can be selected by using the implicit string function.

Examples:

10 A3$="***rubbish"+" more "+" junk***"
20 PRINT A3$
will print
rubbish more junk

10 DIM A5(13) note that $ is never used in a DIM
20 A5(1)=13.35 this element will be REAL
30 A5$(2)="yahoo" this element will be a string
note that it is now illegal to reference A5(2) because it has
been assigned as a STRING VARIABLE.

 IMPLICIT STRING FUNCTION

 References to string variables may be in one of the
following forms:

str-var produces the full string
e.g. PRINT A1$

str-var(int-expl,int-exp2,..)
 produces the full string (array variable)
e.g. PRINT A5$(2) (assuming AS has been DIMensioned)

Various portions of non-array strings can be produced with the
following constructions:

str-var(;int-expA)
str-var(;int-expA,int-expB)

produces a portion of the string determined as follows:

int-expA only - from the character of the string whose number
is given by the value of the integer expression int-expA to the
end of the string.

MICROWORLP BASIC FOR THE MICROBEE page 75

 or

int-expA and int-expB - from the character whose number is
given by the integer expression int-expA to the character whose
number is given by the integer expression int-expB

Confused? Well there’s nothing like examples to make a point...

 l0 A1$="ABCDEF"
 20 PRINT Al$(;3,5)
will produce

 CDE selects the elements from 3 to 5

 l0 A1$="ABCDEFGH"
 20 PRINT A1$(;LEN(A1$)/2,LEN(Al$))
 30 PRINT A1$(;LEN(A1$)/2)

will produce

 DEFGH selects elements from about halfway to the end
 DEFGH note that lines 20 and 30 are equivalent

 10 LET A0$="ABCDE"
 20 PRINT A0$ produces....ABCDE
 30 PRINT A0$(;2) produces....BCDE
 40 PRINT A0$(;2,4) produces....BCD

 SIMULATING LEFT$(A0$,N)

 Several BASICS incorporate a function LEFT$ which we can now
easily simulate with:

 A0$(;1,n)

 SIMULATING RIGHT$(A0$,N)

 This function can be simulated with the following:

 A0$(;LEN(A0$)-n+l,LEN(A0$)) which can be simplified to
 A0$(;LEN(A0$)-n+l)

 SIMULATING MID$(A8$,n,m)

 The MID$ function can be directly translated using the
following construction, but it is often possible to simplify to
resulting expression:

MICROWORLD BASIC FOR THE MICROBEE page 76

 A0$(;n,n+m-l)

 SUBSTRING RESTRICTIONS

 An important point to note about using the implicit string
function for taking substrings is that you should not use other
string expressions as a part of the int-expA or int-expB
parameters. For example,

100 Bl$=A0$(;LEN(A0$)!2)
 is O.K. because the string expression inside is the same as
that which you are taking the substring of.

110 B1$=A0$(;1,LEN("HELLO"))
 should not be used, but should be replaced with the
following sequence of instructions
110 Z=LEN("HELLO") :Bl$=A0$ (;l,Z)

 STRING CAPABILITIES

 Strings can usually be treated in similar ways to numeric
variables and can be used with IF, INPUT, PRINT statements.
String expressions may appear as GOSUB and VAR arguments (See
Section 4 - VAR).

 10 GOSUB ("HELLO",6) 100
 20 END
 100 VAR (A0$,B)
 110 PRINT A0$,B
 120 RETURN

when executed, the program will produce the following output

 HELLO 6

 String expressions and variables can also appear in READ and
DATA statements. For example

 10 N0$="WORLD"
 20 READ A0$
 30 PRINT A0$
 40 DATA "HEL"+"LO "+N0$
 50 END

This program outputs as follows

 HELLO WORLD

 String expression can be compared using the normal
relational operators (<, <=, >, >=, =, <>). The ordering is
based on the ASCII code sequence (see appendix) which means that

MICROWORLD BASIC FOR THE MICROBEE page 77

dictionary order prevails. For example

 10 IF "FRED" < "JANE" THEN PRINT "this will always print"

Note that in string ordering, nothing always comes before
something, so
"ABCD" < "ABCDE".

 STRING RELATED FUNCTIONS

 Let us now introduce three functions that have string
arguments. These are ASC, LEN and VAL.

ASC(str-exp) An INTEGER function that returns the ASCII value
of the string argument. For example

10 PRINT ASC("A") produces 65 (look in the appendix and check!)

LEN(str-exp) An INTEGER function that gives the length of the
string expression. For example

 10 LET J = LEN("ABCD"): PRINT J

will produce 4

VAL(str-exp) A REAL valued function that converts a string into
a corresponding number. Examples

 10 PRINT VAL("6.8") produces 6.8

 10 PRINT VAL("VIC") produces 0

 20 J=INT(VAL(24.6)) puts J=24

 OTHER STRING RELATED FUNCTIONS AND COMMANDS

FRE($) A REAL function which gives the amount of string space
still available. Example (if straight after a NEW)

 PRINT FRE($) produces 256.

STRS(int-exp) A STATEMENT used to set the string space. After
entering the command, the string space will be set to the value
of the integer expression. e.g.
 STRS(3000) reserves space for 3000 characters

STR(int-exp) or STR(real-exp)
 This function converts an integer or real expression into a
string. For example

MICROWORLD BASIC FOR THE MICROBEE page 78

 10 A=15: B0=13.57
 20 Zl$="APPLES ="+STR(A) + ": VALUE (EACH) =$"+STR(B0)
 30 PRINT Zl$

will produce

 APPLES = 15: VALUE (EACH) = $ 13.57

KEY$
 This function is a powerful one which enables the operator
to input information via the keyboard without having to use the
<CR> key. Essentially it returns a 1 character string when a key
is pressed and a null string otherwise. For example

 10 CLS
 20 A1$=KEY$
 30 IF A1$="" THEN 20
 40 IF A1$="W" THEN l00
 50 GOTO 20
 l00 PRINT "YOU HIT THE LETTER ’W’"

 Note carefully the loop 3˜ to 2˜ testing for a null string
as this will occur most of the time.

CHR$(int-exp)
 This function produces an ASCII character specified by the
code number (int-exp). It is an ideal method of producting ASCII
characters from their code, particularly the non-print or control
characters (see appendix for all codes).

 10 PRINT CHR$(65)
will produce

 A

when run

 4.13 SPECIAL INSTRUCTIONS

 MICROWORLD BASIC supports a number of rather special
instructions. These refinements facilitate such things as
clearing the screen, positioning the cursor and also gaining
access to the computer memory directly.

 The best way is to briefly discuss each instruction however
it is a good idea if you check out the operation of each on your
own computer.

CLS This instruction clears the screen. It can be used in the
IMMEDIATE MODE or under a line number and Is used to "rub out"
the entire screen, positioning the cursor at the top left hand

MICROWORLD BASIC FOR THE MICROBEE page 79

side of the screen, and then actually turning it off until the
next print statement.

CURS The CURS command allows the positioning of the cursor
(which controls where the next character is printed). There are
two forms of CURS. CURS x,y where x=1..64 (across the screen) and
y=1..16 (down the screen) for most applications, and CURS p,
where p=0..1023 which is useful in running programs designed for
other computers with "PRINT AT" statements.
example:
10 CURS 1,16
 puts the cursor at the left of the bottom line.

SPEED This useful instruction can be used to control the speed
of BASIC writing to the vdu screen. It is especially useful prior
to LISTing a long program because you can slow down the display
to read the listing in more detail. The format is SPEED n where
n is any number between 0 and 255. SPEED 0 is fastest and SPEED
255 is slowest. The "default" setting of speed after a COLD START
is 0, or fastest.
example:
>SPEED 20 : LIST :SPEED 0<CR>
 will list the’current program slowly, and then change back
to normal speed when it has finished.

POKE int-exprl,int-expr2 writes a byte of data specified
by int-exp2 into RAM memory specified by int-exprl. For example

 POKE 100,255 will set RAM location 100 (in decimal) to 255
decimal (FF in hexadecimal).

Some useful locations to POKE
220 cursor control - poke 111 (normal), 1 (steady block) ,
 97 (flashing block), 15 (steady underline)
140 BREAK disable byte - poke 1 to disable the BREAK key,
 poke 0 to restore break action
162,163 RESET jump address - controls what happens after a
 RESET or power on - POKE 162,30:POKE 163,128 to
 automatically RUN the current BASIC program, POKE
 162,33:POKE 163,128 to restore normal RESET action.
61440.. screen memory starts here
63488.. PCG memory starts here

Warning: be very careful POKEing round in memory because it is
very easy to write over a critical scratch pad (the BASIC’s
private memory) and cause erratic operation of the current BASIC
program.

PEEK (int-expr) An integer "function", PEEK reads the data
byte stored in the memory location specified by int-expr. For
example

 10 POKE 100,255
 20 PRINT PEEK (100)

MICROWORLD BASIC FOR THE MICROBEE page 80

will cause the contents of location 100 to be printed on ths VDU
255

EXEC When a machine language program has been loaded using
the LOAD command, this command is used to jump to the start
address of that tape. Although an error message is given when no
machine language program has ever been loaded, it is unwise to
use EXEC unless you are sure that a program is still intact, and
that its program space has not been corrupted by the BASIC.

 4.16 INPUT AND OUTPUT REDIRECTION

 MicroWorld BASIC has an extremely flexible method of
controlling the flow of data to and from the keyboard, vdu,
cassette port, RS232 port and parallel port. The idea involved is
call "redirection" and simply means in the case of output that
the data which would normally be going to the screen is siphoned
off to some other device. In the case of input, it means that
input characters that would normally have come from the keyboard
can be accepted from other devices instead.
 Redirection ensures that all the familiar commands (PRINT,
INPUT, LIST etc) can be used to control such operations as saving
and loading data with the cassette recorder, merging programs and
controlling a printer.

 Two commands control the selection of input and output
devices, which are identified by an integer in the range 0..7.
 For output, there can be any combination of devices selected
at one time, including the case of no devices selected. The
statement which controls device selection and deselection is
 OUT# int-exp {ON}{OFF}
The form "OUT# int-exp" will select device number int-exp as the
only output device.
The "OUT# int-exp ON" form selects device int-exp but leaves the
status of all other devices unchanged.
The "OUT# int-exp OFF" form deselects device int-exp but leaves
the status of all other devices unchanged.

 The selection of input is similar, but selecting two devices
at once will only work in the case of devices 0 and 1 (Scanned
keyboard and parallel port input).
 IN# int-exp {ON}{OFF}
The form "IN# int-exp" will select device number int-exp as the
only input device.
The "IN# int-exp ON" form selects device int-exp but leaves the
status of all other devices unchanged.
The "IN# int-exp OFF" form deselects device int-exp but leaves
the status of all other devices unchanged.

 Each device number 0..5 corresponds to one device (devices 6
and 7 are not used in ROM BASIC) .

MICROWORLD BASIC FOR THE MICROBEE page 81

 DEVICE 0

 Normal MicroBee scanned keyboard in and VDU output device.
Device 0 is automatically selected for input and output when the
MicroBee is RESET (or turned on) .
 The VDU output driver responds to the following control
codes:
 HEX DECIMAL FUNCTION
 07 7 beep
 08 8 backspace (move backwards one character)
 0A 10 linefeed (move down one line)
 0C 12 home (and clear screen)
 0D 13 carriage return (cursor to hard left)
 0E 14 forward cursor
 0F 15 up cursor

 DEVICE 1

 Parallel port device. This device allows the use of the
parallel PIO port available on the back of the MicroBee through a
DB15 connector. This port is normally set up as an input device,
but is changed to output when the OUT#1 (or OUTL#1) command is
given.
 Note that after a RESET/power on with BASIC 5.00 OR 5.10,
the OUTL#1 (or OUT#1) command must be reissued or the MicroBee
will "hang" when an LPRINT is executed. Full details of the
parallel port hardware interface and pin assignments is available
in the technical literature.

 DEVICE 2 Cassette at 300 baud.
 DEVICE 3 Cassette at 1200 baud.

 Devices 2 and 3 provide a means of saving characters onto a
cassette recorder by buffering groups of characters together and
sending them as checksummed blocks.

 The block nature of the cassette dumping can often be
ignored, because the BASIC interface with devices 2 and 3 is
always on a byte-by-byte basis. In some situations though, extra
time delays might be required to be inserted by the dumping
program to allow sufficient processing time when the data is
input. The blocks of data are terminated when either a CARRIAGE
RETURN character is given or when the block length so far exceeds
255 bytes. The carriage return character is part of the sequence
which creates a NEW LINE and is therefore given after a PRINT
command has finished executing. The LINE FEED character is never
transmitted to the tape recorder.
 What this means to a BASIC program is that the output of one
PRINT statement (or several if the semicolon is used to inhibit
the NEW LINE) will be sent to the tape recorder as one block of
data provided the line is shorter than 255 characters. If more
than 255 characters are present on one line, then the line will
be broken up into several blocks.

MICROWORLD BASIC FOR THE MICROBEE page 82

 To provide adequate input processing time between blocks, a
number of nulls (rubbish characters) proportional to the length
of the block just sent are added after each block. In most cases
(including that of MERGING programs) this time delay will be
sufficient, but if loss of data is occurring, then extra
FOR..NEXT delay loops can be added between PRINTing each line.
 When device 2 or 3 is used as the input device, the MicroBee
waits for blocks of checksummed characters from the tape
recorder, but only accepts those which have no errors. Blocks
with detected errors are discarded, the corrupt data is not
"seen" by the BASIC (see later for suggested data format).
 If there appears to be trouble with the first block on the
tape, then it is probably due to an "automatic level control" in
the tape recorder interfering with the recording level. To get
over this problem, try sending some "dud" first lines before
sending any data lines. Of course, if you do this then you must
be prepared to throwaway the duds lines on input.
For example:

on output ...
110 OUT #3
120 PRINT "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!":REM dud line
130 PRINT "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
140 PRINT "*": REM start block
and so on dumping the real data

on input ...
110 IN #3 : OUT #0 : OUT #0 OFF
120 INPUT Z7$: IF Z7$<>"*" THEN 120 : REM throwaway dud blocks
and so on .. read input data

 If the control character with code 26 is sent to the tape
device, then an "IN#0":OUT#0" will be automatically executed when
that character is received later on. This feature is called
"control Z release" and is used to turn the keyboard/ VDU
combination back on after an automatic data transfer (e.g.
MERGE).

 Note that the room for the buffer used to "block" and
"deblock" the tape data is borrowed from the HIRES graphics
scratchpads, so the HIRES graphics mode is ALWAYS cleared when
device 2 and 3 are used. (The memory used is from 300H to 3FFH,
and to "force" HIRES mode back on if the above memory is saved in
an array put a 4 into location E5H).

DEVICE 4 RS232 at 300 baud.
DEVICE 5 RS232 at 1200 baud.
 Devices 4 and 5 control the standard RS232 port available at
the DB25 connector on the back of all MicroBees. In both cases,
the format used is 1 start bit, 8 data bits, 2 stop bits (no
parity is generated or expected).
 RS232 output is allowed whenever the CTS input line is at a
high voltage level. If this line if low, then the MicroBee will
wait until it goes high before starting to send a character. When

MICROWORLD BASIC FOR THE MICROBEE page 83

no connection is made to the CTS input, an internal pullup
resistor allows RS232 output to proceed.

 In BASIC 5.00, no input synchronization output is provided
by the software. In BASIC 5.10 .., the line labelled as CLOCK and
available on pin 24 of the DB25 (RS232) connector is used to
indicate when the MicroBee is "looking for a character". This
line goes to +5v (active) after the RS232 input routine is
entered and the serial input line has gone to the MARK condition
(i.e. when pin 3 of connector is at <= 0 volts). When a start bit
is detected, the CLOCK line returns to 0v (non-active).
Therefore, the CLOCK line may be used to indicate to the
sending device when it is permissible to send. When connecting
two MicroBees together via RS232, the CLOCK line output (pin 24)
of one MicroBee can be connected to the CTS input (pin 5) of the
other MicroBee (these lines will therefore cross like the data
pins 2 and 3).
 If this input synchronization is not possible then the
sending device must be sure to allow enough delay for the
MicroBee to complete its processing of the last line INPUT.

 When the RS232 device (#4 or #5) is selected as an input
device, the break function is not performed by the break key on
the keyboard, but by the MicroBee looking to see if the line is
"SPACING" (i.e. if RXD, pin 3 is at a voltage level >= 5 volts.
While this is convenient when running the MicroBee remotely by a
terminal, it can be a real nuisance in debugging programs which
accept data from the RS232 line using device #4 or #5.
To disable the BREAK function use the following statement:
POKE 140,1
To re-enable the BREAK after IN#0 has been reselected, use:
POKE 140,0

practical examples of the use of I/O redirection

Merging programs:
 Merging of two programs is possible using redirection to the
cassette device. Firstly, set up the file to go at the end of the
final program so that the linenumbers do not clash (use RENUM),
and then save it at 300bd using the following line:
OUT#2:LIST:PRINT CHR$(26):OUT#0 <cr>
 ... then load in the file which goes at the beginning of the
final program and RENUMber it to avoid conflicts with the second
part. To then merge in the second part, type
IN#2
 ... and watch the lines being entered one by one as if you
were typing them in (but without the finger-wear).
 If lines are being missed, instead of typing "IN#2", type
"IN#2:OUT#0:OUT#0 OFF" in which case time will be saved by not
echoing the input lines onto the screen.
 Normal keyboard input is restored when the CHR$(26)
character is received back off the tape, but if the MicroBee
appears to "hang" for some reason, just use the RESET button.
If the tape recorder is good enough to handle 1200bd, then

MICROWORLD BASIC FOR THE MICROBEE page 84

substitute device 3 for device 2 in the IN#/OUT# commands (but
ensure that no lines are being missed due to the shorter time
available to enter the line).

Printer selection:
 In addition to the OUT# command, there is another command
called "OUTL#" which has the same syntax as OUT#, but operates on
the printer output stream, i.e. that data which comes from LPRINT
or LLIST commands. This means that various types of printers can
be accommodated using the same LPRINT/LLIST commands. The default
printer stream is device 5, i.e. RS232 at 1200 baud. If you have
a serial printer, this is the best device to use. Set up the
printer for 1200bd, 8 data bits, no parity and 2 stop bits.
 For parallel printers, use device 1 and the interface
circuit (available on request), so type OUTL#l before using the
LLIST or LPRINT commands (this command must be re-issued after a
RESET with the parallel port device) .

 For testing programs which use the printer, the "OUTL#0"
command can be used to direct LLIST/LPRINT output to the screen.
 Of course, the normal output stream (PRINT/LIST) may
redirect its output to the printer by using "OUT#5 ON" or "OUT#1
ON" depending upon whether you are using a serial or parallel
printer. Use "OUT#0" to turn the printer device off.

Saving data to the tape and a recommended format to use:
 An important requirement in any computer is the ability to
save results for later use, even though this will be done a lot
less often on a cassette based system than on a disk based
system. MicroWorld Basic provides for this, again through input
and output redirection. All that is required to be done is to
PRINT the data in some format, and then INPUT the data later on
in the same way.

Consider the following SIMPLE example which saves and retrieves
an array of 100 integers, (DIM D(100)) :

saving ...
00100 OUT#3 : REM select 1200 baud cassette output only
00110 FOR I=1 TO 100 STEP 5 : REM send 20 blocks of data
00115 REM now print 5 per line, separated by commas
00120 PRINT D(I);",";D(I+1);",";D(I+2);",";D(I+3);",";D(I+4)
00130 NEXT I
00140 OUT#0 : REM restore VDU output

loading ...
01000 IN#3:0UT#0:0UT#0 OFF: REM select no o/p devices, 1200 bd in
01010 FOR I=1 TO 100 STEP 5
01020 INPUT D(I) ,D(I+1) ,D(I+2) ,D(I+3) ,D(I+4)
01030 NEXT I
01040 IN#0 : OUT#0 : REM restore KB in / VDU out

MICROWORLD BASIC FOR THE MICROBEE page 85

notice the line 1000 when loading. The "OUT#0:0UT#0 OFF" command
ensures that the question marks normally produced by the INPUT
statement are redirected to nowhere.

 The above example will work well most of the time, but it
lacks error checking and file naming facilities. The following
block format is therefore suggested (each partition is ONE
character) ...

DUD BLOCKS (send about 3 to allow ALC’s time to operate)
|! |! |! |! |! |! |! |! |! |! |! |! |! |! |! |! |! |! |!

BLOCK 1 (header block)
|$ |$ |$ |$ |$ |c1|c2|c3|c4|c5|n1|n2|n3|n4|n5...
 where $ is the actual dollar sign used to identify the
header block, n1... hold the name of the file, c1..c5 hold the
number of record blocks to follow.

BLOCK 2 ... (data blocks)
|r1|r2|r3|r4|r5| data in this record
 where r1..r5 is the number of this record (to check that no
blocks have been missed) .

LAST BLOCK (end of file block)
|? |? |? |? |? |
 where the ? are the actual question mark characters (used so
that the MicroBee does not lock up if a block is missed - this
block flags the error).

 This format relies on the fact that if an error occurs when
INPUTting data from device 2 or 3, the block in error is ignored.
Since the blocks are numbered, it is immediately obvious if an
error has been detected.

To send the DUD blocks is simple, just use
FOR I=1 TO 3:PRINT "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!":NEXT I

The way of sending the header block would be something like this
PRINT "$$$$$"; [I5 C] ;N1$
where C has the number of records to send, Nl$ is the filename.

To send the DATA blocks, use the following
PRINT [I5 R]; ...data to send...
where R is the number of this block

To retrieve the total number of records and the filename from
tape, use the following
00100 INPUT H1$: REM get header as a string
00110 IF H1$(;1,5) <> "$$$$$" THEN 100 : REM wait for header
00120 C=INT(VAL(H1$(;6,10))) : REM get total # records
00130 N1$=H1$(;11) : REM get filename

To extract the data from each line, use
01000 INPUT D1$: REM get string with data in it

MICROWORLD BASIC FOR THE MICROBEE page 86

01010 IF INT(VAL(D1$(;1,5)))=R THEN D1$=D1$(;5) ELSE GOTO PANIC
where R is the number that the current record SHOULD be.

Connecting two MicroBees by their RS232 interface:
 It it hard enough to make computers talk to dumb
peripherals. To make two computers talk to each other is almost
impossible!
 In the MicroBee with 5.10 BASIC, however, things are a
little easier because the majority of the interfacing software
and hardware has already been provided in the form of the RS232
interface.

 The connections which should be made via an RS232 cable are:
PIN 2 MBEE a ---) PIN 3 MBEE b these connect the data
PIN 2 MBEE b ---) PIN 3 MBEE a
PIN 24 MBEE a ---) PIN 5 MBEE b these synchronize
PIN 24 MBEE b ---) PIN 5 MBEE a
PIN 7 MBEE a ---) PIN 7 MBEE b the signal ground

 Given these connections, a program may be transferred as
follows:
destination MBEE >IN #5
source MBEE >OUT# 5: LIST: OUT#0
destination MBEE > PRESS RESET KEY TO REGAIN CONTROL

 Data transfer is very similar to the case of talking to the
cassette recorder via devices #2 and #3, but some additional
techniques can be used to advantage in some situations (when
communicating without synchronization as in a MODEM link, these
can become very neccessary).
 The first thing to note is that if the RS232 input routine
is entered while the RxD line is SPACING, then the input routine
will wait for the MARK (normal) condition to be re-established
before trying to receive a new character.
 The other thing to note is that it is possible, using direct
IN and OUT commands, to manhandle the serial lines and use them
as REQUEST TO SEND and/or ACKNOWLEDGE lines. The use of such a
facility is up to the advanced programmer, but the basic
operations are as follows:

Setting the output line to SPACE (clear bit 5 of port 2)
Z=(IN(2) AND (255-32)) : OUT 2,Z

Setting the output line back to MARK (set b5 of port 2)
Z=(IN(2) OR (32)) : OUT 2,Z

Testing the input RxD line (b4,port 2) to see if it is SPACING
Z=(IN(2) AND (16)) : IF Z<>0 THEN it is spacing

Testing the CTS input (b3,port 2) to see if ready to send
Z=(IN(2) AND (8)) : IF Z <> 0 THEN we are allowed to send

MICROWORLD BASIC FOR THE MICROBEE page 87

 4.15 ERROR MESSAGES IN MICROWORLD BASIC

 As we have discussed earlier, one of the most useful
features of MICROWORLD BASIC is the comprehensive error reporting
system. In all 36 error messages are generated in the BASIC.
Generally, after you have typed in a program, you will type RUN.
At this point the BASIC ’tests’ each line before it is executed
to check for potential problems.
 Once an error is detected, BASIC stops and displays an error
message together with a listing of the faulty line with either an
inverse or underlined character showing where the error was
detected.
 If the MICROBEE was in a graphics mode when the error
occurred, the screen will be cleared first so that the "error
position" highlight can take place with inverse characters.
 Note, although these error messages are quite comprehensive,
certain types of errors can ’fool’ the BASIC to reporting
incorrectly. You should always think carefully about each mistake
and treat the error messages as a good guide.

 It is possible to trap errors and stop them from aborting
execution of the current program by using the ON ERROR GOTO
command together with the ERRORL and ERRORC functions. (See
Section 4: ON ERROR GOTO, ERRORL, ERRORC.)

ERROR MESSAGE LISTING

 The numbers specified before each error are the code numbers
which are returned by the "last error type" integer function,
ERRORC.

1) LINE TOO LONG
 Either the RENUMber or Global exchange (GX) command found
that if the desired operation were to proceed, the line length
would exceed 184 characters. The requested change is NOT
performed.

2) UNPAIRED BRACKETS
 Look for’ (’ without ’)’ and vice-versa, or else brackets
were expected but not found (as in the STRS command).

3) MULTIPLE STATEMENT
 Look for a ’:’ on a line where it should not be, or you have
put two statements on the one line without a ’:’. In particular,
DATA statements must be on a line by themselves.

4) OUT OF DATA
 A READ statement has asked for more DATA than there is.

5) MISSING END QUOTE
 Pretty obvious this one.

6) FN NAME
 Function number out of range. Only FN0 to FN7 are allowed.

MICROWORLD BASIC FOR THE MICROBEE page 88

7) VAR MISMATCH
 The data being passed between GOSUB and VAR statements does
not match in number or type.

8) NOTHING TO EXEC
 You have no machine language program at the auto start
address.

9) ILLEGAL DIRECT
 The command/statement you are using is illegal in the DIRECT
(IMMEDIATE) mode.

10) UNDER/OVERFLOW
i) The REAL number BASIC just calculated is too large
(>9.999..E+62) or too small (<1.0000..E-64).
ii) an integer greater than 65535 was entered.

11) KILL NON LINE
 The line you just tried to delete doesn’t exist !

12) NONEXISTENT LINE NUMBER
 A GOTO or similar command refers to a line number which
does not exist.

13) MIXED MODE
 The line being interpreted has a mixture of integer and real
numbers in it. The method of fixing the problem is often to use
either an INT or a FLT function to correct the mode.

14) PARAMETER SIZE
 One of the parameters (arguments) supplied to a command or
function is outside the allowed range.

15) STACK OVERFLOW
 This can be caused by a FOR...NEXT loop exiting before
completion (see Section 4: NEXT*) . Another cause could be too
many nested FOR...NEXT loops or expressions that are too
complicated. Note that this fault may not be reported
immediately; the error may for example occur when the expression
evaluator tries to use the stack, but it is too full.

16) GRAPHICS
 One of the graphics commands has detected some sort of
error such as co-ordinate out of range, or PCG full of HIRES
graphics (See HIRES).

17) OUTPUT OVERFLOW
 Usually occurs when too much is printed on one line, or
when strings are concatenated, and the resultant string is longer
than 255 characters.

18) OUT OF MEMORY
 Yes when you use up all of the available space this message
appears. Check DIM sizes on multidimensional arrays as this can

MICROWORLD BASIC FOR THE MICROBEE page 89

soak up lots of memory. For example DIM A1(50,50) reserves
13,000 bytes!

19) SYNTAX
 Recheck the correct syntax for the line showing the error.

20) ZONE
 The TAB ZONE specified is too large (>16) or negative.

21) NEXT WITHOUT FOR
 This error occurs when the variable used in the NEXT
statement does not agree with the variable specified in the
matching FOR statement (or there was no previous FOR statement) .

22) ILLEGAL VARIABLE
 Produced when an attempt has been made to access an array
variable as a normal variable or vice-versa (note that all arrays
MUST be dimensioned).
 Also, if a REAL variable of the form A0,C7 etc is referenced
as a string (A0$, C7$) or such a variable which has previously
been assigned as a string is referenced as A0,C7 etc then this
error will be given.

23) OUT OF STRING SPACE
 Not enough memory reserved for strings. Try assigning more
using the STRS(num) command.

24) UNKNOWN FUNCTION
 The word highlighted could not be identified as a valid
variable, constant or function for the current mode. This can be
caused by using REAL functions in integer expressions or vice
versa and is fixed by using the INT or FLT transfer functions.

25) ILLEGAL LINE
 The numbers 0 and 65535 are not allowable as line numbers.

26) DIVIDE BY ZERO
 Check earlier FOR...NEXT loops and variables because
whatever happened in the offending line was a division by zero or
some very small number.

27) INTEGER STRING
 In MicroWorld BASIC, all strings names must use the form
A1$, C7$ etc. String names of the form A$ are not allowed.

28) ILLEGAL RUN MODE
 This statement cannot be used in RUN mode.

29) DIM SIZE
 Attempting to produce an array in RAM which requires more
than the available memory space. (Multidimensional real mode
arrays need LOTS of memory.)

30) PROGRAM TOO LONG
 Either the program you just tried to load into memory was

MICROWORLD BASIC FOR THE MICROBEE page 90

too big, or else the RENUMber command found that if the program
were to be renumbered in the manner desired, it wouldn’t fit in
the available RAM space. (The program is then left totally
unchanged).

31) BAD LOAD
 The program which MICROBEE just tried to read off tape had
a checksum error, so loading could not proceed. Try LOADing the
tape again with a different volume or tone setting on the tape
recorder.

32) ARGUMENT ERROR
 Check the argument of the expression. Have you used a real
where an integer is required? Or have you tried to find the
square root of a negative number?

33) GOSUB STACK
 Stack overflow due to GOSUB without a RETURN or too many
nested GOSUB routines.

34) LINE NUMBER CLASH
 The renumber program has determined that if the renumber was
to go ahead, a line number would be produced corresponding to one
already existing in memory. The program is left unchanged.

35) CAN’T CONTINUE
 It is not possible to CONTinue after editing the program,
clearing variables etc.

36) OPTION NOT FITTED
 The desired command could not be performed because the
required hardware was not connected to the MICROBEE.

MICROWORLD BASIC FOR THE MICROBEE page 91

+---+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Section 5. |
| |
| |
| |
| Statement and Command Descriptions |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

 SECTION 5: STATEMENT AND COMMAND DESCRIPTIONS

 In MICROWORLD BASIC, statements and commands preceded by a
number are entered into memory and become part of the current
program. Line numbers may range from I to 65534. If a statement
or command is entered without a line number, it is executed
directly. Multiple statement lines are created by using the colon
as a separator.

 The following statements and commands are listed for
reference in alphabetical order. Refer to the list detailed below
for a definition of abbreviations used.

 ABBREVIATIONS USED IN THIS SECTION:

 char ASCII character
 int-var integer variable
 real-var real variable
 var general variable
 line-no line number
 int integer number
 rel-op relational operator
 str-exp string expression
 int-exp integer expression
 real-exp real expression
 exp general expression
 [] ASCII space character
 { } optional specification
 <CR> carriage return
 ^C CONTROL KEY and C pressed together
 ^Q,^W,^A,^S,^Z etc CONTROL KEY with the appropriate letter

 AUTO {(} {int1 {,int2}} {)}

 This command causes the BASIC to automatically prompt with
line numbers as each line of code is entered, allowing entry of
programs without having to type line numbers.
 The user MAY provide one or two parameters after the word
AUTO. If one parameter is given it will be the first line number
inserted and the default step between successive line numbers
will be used. If two parameters are given, the second will be
used as the step between line numbers and this step size also
becomes the default for later invocations of AUTO.
 If no parameters are given, the program defaults to the line
AFTER the last line entered with AUTO, and the default step size
is used.
 When the MicroBee is cold started, or the NEW command is
given, AUTO defaults are set to a starting line of 100 with a

MICROWORLD BASIC STATEMENTS AND COMMANDS page 93

step of 10.
 Brackets MAY be placed around the parameters if they are
given.

 To exit from the AUTO mode, simply type a null line <cr>
only). If called again with no parameters, AUTO will restart at
the number that it finished with the last time.
 AUTO mode will automatically EDIT lines which already exist,
so when an occupied line is reached, the EDIT mode is invoked. To
exit this AUTO-editing feature, use the break key. (See EDIT
command)

Examples of AUTO:

>AUTO <cr> (after a NEW) produces automatically inserted
lines starting at 100 and incrementing in steps of 10 after each
line of BASIC code is entered.

>AUTO 300,5 <cr> produces automatically inserted lines
starting at 300 and incrementing in steps of 5 after each line of
BASIC code is entered.

 CLEAR

 This command erases all values of all variables and strings
and also erases any data structures such as array DIMensions,
allowing arrays to be reDIMensioned. It can be used either in
immediate mode or in a program.

Example:
00100 DIM A(200)
00110 CLEAR: DIM A(9)

 CLS

 This command clears the VDU screen and places the cursor at
the top left hand corner.
 CLS also has the effect of turning off the flashing
underline at the cursor position, which means that graphics
programs should use CLS before the relevant graphics mode keyword
(HIRES or LORES) to keep the screen free of all but graphics.

Example:
00100 CLS : HIRES : REM cursor off, and prepare for graphics

 CONT

 This command continues execution from where it was stopped
by a STOP command or by a BREAK, and in some cases when an error
has occurred. As such it is very useful during program debugging.
 The use of CONT is illegal, and the "Can’t continue" error
will be given if the program is modified in anyway after the
BREAK or STOP is encountered.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 94

 CONT is allowed after an error has stopped execution, but
since the arithmetic stack is reset by an error, the CONTinued
program may not execute properly (often a NEXT without FOR error
will occur).
See also TRACE and STOP.

Example:
>list
00100 INPUT A0 : B0=A0*2
00110 STOP
00120 GOTO 100
>run
? 24
Stop at 00120
>print b0
48.
>cont
? ... and so on

 CURS int-exp

 CURS int-expl, int-exp2

 The first form of this command places the cursor at the
position specified by the integer expression. position 9 is at
the top left hand corner of the screen, and numbering continues
along the lines so that 63 is the top right hand corner of the
screen, the second character line then beginning with 64. 1"’23 is
at the bottom right hand corner. The expression cannot exceed
1923 without causing an error.

 The second form of this command allows x-y cursor
addressing, where int-expl specifies the column number from left
(1) to right (64), and int-exp2 specifies the vdu line number
from the top of the screen (1) to the bottom line (16).

 In both forms of this command, the flashing underline at the
cursor position is turned off after the cursor position has been
moved.

Examples:
CURS 544 : PRINT "*";
prints an asterisk in the middle of the screen.

CURS 1,16 : INPUT "Press return for next frame"; A1$
puts a prompt on the bottom line and waits for a <CR>.

 DATA exprl,expr2, ...

 Provides data for a READ statement. Data must agree in mode
(real, integer, or string) to the corresponding READ variable.
Note that data values may be expressions as well as constants
(including variable names). DATA statements must appear singly on

MICROWORLD BASIC STATEMENTS AND COMMANDS page 95

a line (you cannot put statements, including REM statements,
before or after DATA statements) .
 Note that string data MUST be enclosed by quotes.

Examples:

 10 READ A,B0,A0$
 20 DATA 10, 2*6.4, "Eat at JOES"

after execution integer variable A will have the value 10, and
real variable B0 will be 12.8, and string A0$ will be "Eat at
JOES".

 100 A0=3
 110 READ B0
 120 PRINT B0
 999 DATA A0+A0

after execution, A0 will have the value 3 and B0 will have the
value 6.

 DELETE I1 {,I2}

 This command deletes ranges of multiple lines, for
situations where large amounts of program are to be removed.
 The first parameter, I1, is the line number of the first
number of the block to be deleted. The second parameter, I2 is
optional and specifies the last line number of the block of lines
to be removed.
 Any specified line numbers MUST exist to avoid accidental
deletion of large blocks of program.
 When used in a RUNning program, DELETE will delete the
specified lines and then stop the program.

Examples:

DELETE 20,60 will delete lines 20 through 60 inclusive.

DELETE 40 will delete line 40 only.

 DIM dim_list (see example)

 DIM is used to set up storage for arrays of integers or real
numbers/ strings. Arrays may have one or more dimensions, but the
practical limit on the number of dimensions arises only in the
amount of memory needed.
 Note that in MICROWORLD BASIC, all array subscript (index)
references begin at 0. programs whose subscripts start at 1 will
work perfectly, but will waste one variable space.
 The dimension arguments MUST be integer values but may be
expressions.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 96

 The method used to set up string arrays in MicroWorld BASIC
is slightly different to some other BASICS in that the dollar
sign should not appear in the DIM statement. The individual
elements are then assumed to be REAL numbers, but just as with
normal variables, if a string assignment is made to an array
element, that element becomes a string at that time. Therefore,
it is often a good idea to include a FOR..NEXT loop which sets
each of the array elements to a null string as in the second
example.

Examples:

 10 LET I=10
 20 DIM A0(5) ,B1(10,10*I)

for a string array

 10 DIM S0(20)
 20 FOR A=1 TO 20 : S0$(A)="" : NEXT A

 EDIT {line_number}

 This command allows alteration of an already existing line
number in the current user’s program without retyping the whole
line.
 If no line number is specified, then the line edited is the
last line which was either inserted, edited or in which an error
had occurred. EDIT mode is also entered when the AUTO line-
numbering routine detects a line which already exists (see AUTO).
 EDIT mode is intentionally different from normal text entry
because it is designed to make line correction easy, but within
itself, it is "MODELESS", i.e. all keystrokes are independent and
there are no "commands" or "insert modes".
 When EDIT mode is entered, the specified line is printed
onto the VDU and the cursor is placed at the left hand end of the
line just after the line number. The user can then insert
characters merely by typing them and some special control
functions then control cursor movement and text deletion.

The following keys have special meaning during EDIT:

 CONTROL S (^S) Moves the cursor to the right
 (or LINE FEED)

 CONTROL A (^A) Moves the cursor to the left
 (or BACK SPACE)

 DELETE This key deletes the character under
 the cursor.

 CONTROL L (^L) Moves the cursor to the right, but
 changes upper case to lower case in the
 process.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 97

 CONTROL W (^W) Moves the cursor to the start of the
 next "word", which is defined as the
 first non-space character after the next
 space.

 BREAK Abort the edit and leave the line
 unchanged (In case you change your
 mind) .

 <cr> (CARRIAGE RETURN) Terminates the EDIT and the altered
 line is entered into the program file,
 just as if it were a new line. If you
 should alter the line number then the
 old line will remain as it was before
 the EDIT and a new line will be added.

 any other key pressing any other key will cause that
 character to be entered into the line to
 the left of the cursor. Control (non-
 printable) characters are shown as
 underlines.

Example:
EDIT 100 (enter edit mode for line 100)
EDIT (edit last line which was accessed)

 END

 The END statement is used to terminate program execution. No
message is printed. Return is made to the command mode where the
prompt ">" is given. It is illegal to CONTinue after an END
statement has been executed, so the STOP statement must be used
if it desired to CONTinue after the program halts.

Examples:

 00999 END

 00100 INPUT "Finished (yes/no)"; A1$
 00110 IF A1$="yes" OR A1$="YES" THEN END

 EXEC

 This command will jump to the "auto-start" address of the
machine language tape which was last loaded into the machine. If
no tape has been loaded since the last cold start, an appropriate
error message is issued.
 This command should only be used when the machine language
program is still intact (BASIC can destroy machine language
programs if the "top of memory" is not set by the machine

MICROWORLD BASIC STATEMENTS AND COMMANDS page 98

language program.)
(The EXEC address is stored in byte 166/7.)
Example:
>LOAD "TARGET"
>EXEC

 FOR var=expl TO exp2 { STEP exp3}

 FOR...TO statements are used to control looping. Their
action is to bracket a group of statements which are to be
repeated for a number of iterations which is known BEFORE the
loop is entered. The NEXT* var construction provides a method of
exiting such a loop before its "due time", but any way of exiting
a "FOR..NEXT" loop is bound not to work in some BASIC, so such a
technique is therefore not encouraged.

Example:
00010 FOR A=1 TO 10
00020 PRINT A
00040 CURS A*10
00040 NEXT A

 In the above example, the statements on lines 20 and 30 are
"bracketed" by the FOR on line 10 and the NEXT on line 40. Thus,
the statements on lines 20 and 30 are repeated ten times, once
for each value of the integer variable "A".

 The syntax of the FOR statement is as follows. The FOR
statement is followed by a variable name. This can be either a
REAL (A0,B7 etc) or an INTEGER (A,Z etc), and the type of this
variable determines the type that the "expl" start value, the
"exp2" end value, and the "exp3" step value (if the variable must
be increased in steps different to one) must be. Therefore, mixed
mode is not permitted, and the INT or FLT functions would be
needed if the types had be mixed.

 After the variable name, an "=" character is specified
followed by the start value, exp2. This specifies with what value
the variable is assigned the FIRST time through the loop.
 The "TO" separator is then followed by the termination
value, exp3. This value is not necessarily the final value that
the variable will take in the loop, but is rather the value which
the variable will never exceed. This distinction has no
significance when the STEP value is one, but consider the
following example:
 FOR A0=0 TO 1 STEP 0.3 ... NEXT A0
 In this example, A0 will take values 0, 0.3, 0.6, 0.9, and
the value 1 will not be given to the loop because 1.2 is greater
than 1.

 The STEP value is optional, and if it is not specified, the
default value is 1. (REAL FOR...NEXT loops allow the use of
fractional steps as in the above example.)

MICROWORLD BASIC STATEMENTS AND COMMANDS page 99

 Integer indexed loops are substantially faster than real
indexed loops.

 Note that FOR..NEXT loops may be nested as far as stack
limitations will allow (up to 24 for INTEGER loops, and 32 for
REAL loops). In the following example, nesting goes only 2 levels
deep (see how arrays and FOR..NEXT loops go hand in hand).

00010 REM Set up the array so all element have value 3
00020 DIM D(10,10)
00030 FOR I=1 TO 10 : REM OUTER loop
00040 FOR J=1 TO 10 : REM INNER loop
00050 D(I,J)=3
00060 NEXT J : REM If this was NEXT I, an error would occur
00070 NEXT I : REM This is the OUTER loop, so use I here

 In this example, the use of "pretty-printing" is shown. This
technique of adding an extra space shows the structure of a
program, and the same concept may be used even in other types of
loops which use the GOTO statement.

 Some (in)compatibility problems to look out "FOR" ...
The differences in the actual mechanism which various
BASIC’s use to control the FOR..NEXT loop mean that some
incompatibilities exist.
 The value that the loop control variable has during
execution is important to some BASIC’s. In MICROWORLD BASIC,
alteration of the control variable will not cause any change in
the number of iterations executed because MICROWORLD BASIC uses a
"tripcount" which is calculated before the loop is entered and
decremented each time through the loop (this increases speed by
avoiding a comparison each time through the loop).
 Thus, programs which set the control variable to its final
value and GOTO the NEXT statement to exit a loop prematurely must
be changed to use the NEXT* construction.

 Finally, although it is generally agreed that the value of
the control variable AFTER the loop has terminated is undefined,
some badly written programs use the fact that in the BASIC for
which the program was written, the value after the loop is the
stepped total after it has been compared to the TERMINATION value
and found to be greater.
 In MicroWorld BASIC, the value after the loop is the stepped
up value less than or equal to the TERMINATION value.

 GOSUB {[exp1,exp2,...]} int-exp

 Transfers execution to a "subroutine" with a label equal to
the value of the integer expression, ’int-exp’. This
subroutine is a group of statements which is terminated by a
RETURN statement which makes the BASIC continue execution from
the point after the original GOSUB. (See RETURN). GOSUB/RETURN is
used to remove duplication of functions throughout a program
(saving space), and also to modularise programs - breaking a

MICROWORLD BASIC STATEMENTS AND COMMANDS page 100

large task up into smaller sections.
 The optional expression list may be used in conjunction with
a VAR statement to pass values to the subroutine. The number of
expressions of arguments or arguments must not exceed the number
of variables in the VAR statement. (See VAR below). Also,
arguments must agree in mode to the VAR list. The effect is
similar to performing a number of LETs before the GOSUB.
Subroutine nesting is permitted. Exiting a subroutine with other
than a RETURN will cause random data to remain on the stack,
which takes up room on the stack as well as possibly causing
"NEXT without FOR" errors.

Example:
 10 GOSUB 100
 20 PRINT "END"
 30 END
 100 PRINT "HERE IS THE "
 110 RETURN

 This short program immediately transfers to the subroutine
at 100 and prints the message "HERE IS THE ". On encountering
the RETURN, execution transfers back to line 20, the statement
following the original GOSUB. Here the word "END" is printed and
the program terminates at line 30.

 See VAR examples for parameter passing with [] square
brackets.

 GOTO int-exp

 Transfers program execution to the line number given by the
evaluation of the integer expression, int-exp. If the value of
the int-exp is not a valid line number, an error condition
results.

Example:

 10 PRINT "TESTING..."

 60 GOTO 10

When line 60 is executed, unconditional branching to line 10
occurs.

 Care should be exercised in creating such loops to provide some
means of exit. Otherwise, you will have created what programmers
refer to as an "infinite loop". Escape from such a loop can be
accomplished by using BREAK, or CONTROL C (^C).

 Since the line number expression can contain variables, the
GOTO may be used for conditional branching. The MICROWORLD BASIC
GOTO instruction is thus referred to as a "computed GOTO".

 Another example shows a computed goto:

MICROWORLD BASIC STATEMENTS AND COMMANDS page 101

 10 INPUT I
 20 GOTO I*100

 100 PRINT "GAME 1"

 200 PRINT "GAME 2"

 300 PRINT "GAME 3"

 If in line 10, the user entered 2 for I, then the integer
expression in line 20 would produce a value of 200. The program
would proceed to line 200 and continue execution. other values of
I would cause branching to different points in the program.
 Computed GOTOs should be avoided wherever possible and the
ON..GOTO construction used instead, because computed GOTOs cannot
be renumbered, won’t work with some other BASICs, and the code
produced is generally non-robust (try entering 0 in above
example). Convinced?

 GX /search_string/replace string/

 GX lnum /search_string/replace_string/

 The GX command gives the user a global search and replace
facility usually only available in large line editors. GX is an
interactive command in that every time an instance of the string
to be replaced is found, the BASIC waits for the user to enter
either a period to effect the replacement, or any other key
to step to the next occurrence. Therefore, things such as
variable name changes are easy to effect.

 In the first form, the command is entered, the GX keyword is
followed by a slash, then the string to search for in the case as
it would appear in a LIST. This means that program keywords such
as PRINT, INPUT etc. MUST be capitalised. After the search
string, another slash is used to indicate the start of the
replacement string. The replacement string is terminated by a
slash. In the first form, the starting line is the first line of
the program.
 In the second form where "lnum" is specified, GX will start
looking for the search_string at the beginning of line "lnum".

 Given the line to start searching from, the BASIC will
search for the first occurrence of the search string in the BASIC
text. If such a string is found, the line in which the string
occurred is listed with a highlight at the point of substitution,
and the BASIC waits for a key to be pressed.
 If the period key is pressed the change is effected.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 102

otherwise, the BREAK key will abort the command, and any other
key will cause the BASIC to skip the listed instance and then
continue looking through the BASIC for another occurrence of
search_string.

Example: change some PRINT statements to LPRINT statements.
>GX/PRINT/LPRINT/

 Note that the "tilda" character "˜" appearing in the
search string will match any character in the program file. This
allows-the alteration of expressions involving the "slash"
division operator.
 Furthermore, if a string of tilda characters extend past the
end of an otherwise matching BASIC line, then a replacement is
stilL possible and the matching string up to the end of the line
is replaced. This makes possible some very clever manipulations.

Example: (who needs special programs ?)
DeREMming a program (keep an original with the REMark’s please!):
 For each of the following commands, hold down the period key
to change all occurrences (or use it interactively).
GX/: REM˜˜//
GX/:REM˜˜˜//
GX/ REM˜˜˜//
... where the string of tildas is as longer than the longest
comment is likely to be. Note that some comments which are GOTOed
will have to be replaced - try RENUMbering the program and
reinserting REM lines till it RENUMbers successfully.

 The inclusion of a tilda character in the replacement string
causes a "slash" to be inserted at that point instead of the
tilda, allowing replacement of strings involving the division
operator.

 The tilda and starting linenumber features are not available
in BASIC 5.00.

 HIRES

 This command initialises the scratch RAM used for PCG
HIRESolution graphics and sets up the screen so that no HIRES
pixels (dots) are set.
 HIRES must be used in the program before any SET, PLOT etc.
commands are used. HIRES will wipe the screen, but will not
affect the actual cursor position.
 If HIRES is preceded by a CLS statement, the flashing cursor
will be switched off before any graphics work is done.
Example:
00100 CLS : HIRES : REM set up to draw a Snoopy
... (add the rest as an exercise)

 IF expr rel-op expr THEN statements { ELSE statements}
or more generally,

MICROWORLD BASIC STATEMENTS AND COMMANDS page 103

IF relational-expression THEN statements { ELSE statements}

 IF...THEN is used to cause conditional execution of the
statement or statements following the "THEN" or optional "ELSE".
The relational operator, rel-op, may be < (less than), > (greater
than), = (equal to) or a combination of any two of these, <= (less
than or equal to), >= (greater than or equal to.)
 The statement/s to the right of the "THEN" are executed only
if the relational test is true. Otherwise, either the next
numbered line or the statements to the right of the "ELSE" are
executed. Examples make this clearer.

 10 IF I<6 THEN 60
 20 PRINT "YES"

 60 PRINT "NO"

If I is less than 6, branching to line 60 will occur. If I is
equal to or greater than 6, the program continues at line 20.

105 IF A0+6 >= B0 THEN LET I=0 ELSE LET I=I+1
110

If the value of the expression A0+6 is greater than or equal to
B0, the statement to the right of "THEN" is executed; that is I
is set equal to 0. Otherwise, execution proceeds to the statement
beyond the "ELSE"; I is set to I+1. Note that, if the "THEN"
statement is executed, the "ELSE" clause is skipped and execution
continues at line 110.

 If an assignment is required after a THEN or ELSE, then the
LET keyword must be used to distinguish the variable name from an
implied computed goto.

 In the more general case, the relational-expression can be
made up from simple relations joined by "AND" and "OR" keywords
and modified by the "NOT" keyword.
 Relations negated by "NOT" which are part of a larger
relational expression must be enclosed by brackets.

Examples:
00100 INPUT "Do you like IF statements ? " ; A1$
00110 IF A1$="YES" OR A1$="yes" THEN PRINT "That’s good" ELSE
PRINT "I know when I’m not wanted !!!":NEW

00100 IF NOT (1=2 AND 2=3) THEN PRINT "peano rules"

 Alternatively, an integer expression can be used as a
relation. If the integer expression evaluates to -1, then the
test is. taken to be true. If the expression evaluates to 0 then
the test is taken to be false. This allows the use of BOOLEAN (or
logical) variables.
 Relational expressions with a value of 0 or -1 can be
assigned to integer variables if the expression is enclosed by

MICROWORLD BASIC STATEMENTS AND COMMANDS page 104

brackets.

Example:

00100 A=(-1 OR 0) : REM true
00110 B=(-l AND 0) : REM false
00120 GOSUB 1000 : REM this one will print the message
00130 END
01000 IF A AND (NOT B) THEN PRINT "Condition satisfied"

 IN# int-exp {on}{off}

 This statement controls the source which the BASIC uses for
all command line, INPUT and KEY$ entries. All input which would
normally have come from the keyboard can be selected from 6
possible input streams. For a full description of the
REDIRECTABLE I/O system and details of each device, see Section
3.14 .
 The redirectable input scheme allows more than one input
device to be selected at one time, but there is a restriction.
Since devices such as the cassette recorder and the RS232 port
cannot be "scanned" to see if a character is available, if one of
these devices (2,3,4 or 5) is selected, then the device with the
highest device number has the highest priority and all input will
come from this source.
 The input device to be selected is given as int-exp in the
command precis, and specifies which device is to be either
selected alone, turned on or turned off:

IN #x will select device x as the only device for the BASIC
to take input from.
IN #x on will select device x and leave the status of all
other devices unchanged.
IN #x off will deselect device x and leave the status of the
other devices unchanged.

INPUT DEVICE NUMBERS:
0 Normal MicroBee keyboard input
1 External keyboard on PORT A of PIO (parallel port)
2 300 baud cassette
3 1200 baud cassette
4 300 baud RS232
5 1200 baud RS232

 Pressing RESET will select device 0 (normal keyboard) as the
sole input device.

Example: Dumping/ Loading array D(100) of integers simply.
 ...
00100 OUT #3 : REM 1200 baud cassette
00110 FOR I=1 TO 100 STEP 5
00120 PRINT D(I);",";D(I+1);",";D(I+2);",";D(I+3);",";D(I+4)
00130 NEXT I

MICROWORLP BASIC STATEMENTS AND COMMANDS page 105

00140 OUT #0 : REM restore vdu output
 ...
01000 IN #3: OUT #0: OUT #0 OFF: REM null out, 1200bd in
01010 FOR I=1 TO 100 STEP 5
01020 INPUT D(I),D(I+1),D(I+2),D(I+3),D(I+4)
01030 NEXT I
01040 IN #0 : OUT #0: REM restore kb in/ vdu out

 INPUT { literal {;} {,} } var {,var}.....{;}

 The INPUT statement is used to input data from the keyboard
(or other input device) and to assign this to program variables.
The optional literal can be used to print a message just before
the inputting is to begin. The literal, if used MAY be followed
by a comma, or a semicoion.
 Without the literal option, the prompt character is always
’?’. With the option, the prompt character is controlled by the
user with the PRMT command. In the this case, the default prompt
is a space. A semicolon placed after the last input variable will
inhibit the <cr> and <If> that normally occurs after an INPUT
statement.
Examples:

 10 INPUT A, B, A0
 20 PRINT A+6, A0*A0
 30 END

 The program immediately outputs a ’?’ and waits for the user
to enter the appropriate data separated by commas.
 If the user enters a <cr> before supplying all the required
data, BASIC will print ’??’ indicating that more data is
required.
 If part of the user data is illegal (when inputting numeric
variables), MICROWORLD BASIC will print ’R?’ indicating that data
should be reentered from the start of the input statement (i;e.
start again with the data for variable "A" in the example).

 10 INPUT "ENTER VALUE"; A;
 20 PRINT A
 30 END

 In this program, the literal in line 10 is printed as a
message followe9 by the space prompt (or whatever prompt
character has been specified). The user then enters the value of
A, and a <cr> to specify that he has finished.
 Because of the presence of the ending semicolon, no <cr> and
<If> will occur and the value of A will be printed beside the
inputted value.

 The inputting of strings is fairly straightforward except
for the caSe where the user enters a comma as part of the data.
The comma is used to separate the data to go to each variable in
the input list, so if it is necessary for commas to be input,
quotes can be used to surround the desired string, or else

MICROWORLD BASIC STATEMENTS AND COMMANDS page 106

(preferably), some arrangement using KEY$ could be set up to
input in any format desired.

NOTE* MICROWORLD BASIC also distinguishes strings as integer and
real. To avoid problems, the integer form (INPUT A$) has been
disallowed and the ’REAL’ form (INPUT Al$) must be used. An
appropriate error message is generated at run time if an integer
string variable is used.

 INVERSE

 When this command is executed, all VDU output will be
changed to black on white format. If the last display mode was
HIRES, LORES, or PCG, the screen will be cleared first.
Note that it is impossible to "mix" INVERSE characters with
UNDERLINEd characters or graphics because the PCG has been
filled. Use NORMAL to revert back to white on black characters.

Example:
00100 PRINT "I like";:INVERSE:PRINT"inverse";:NORMAL:
PRINT"writing !!!"

 INVERT{H}{[]} int-exp1, int-exp2

 The INVERT statement toggles the state of a graphics point
on the screen in either HIRES or LORES graphics mode. This means
that if the dot was turned on, then it is turned off and vice-
versa.

 For LORES mode, int-exp1 must be in the range 0 to 127 and
specifies a position across the screen, int-exp2 is in the range
o to 47 and specifies a position UP the screen.
 For HIRES mode int-expl must be 0 to 511 across and int-exp2
in the range 0 to 255 up the screen.

 If the "H" option is specified, then the Y axis will be
inverted. If the "H" option is not used, then a space MUST follow
the keyword INVERT.

Example:
 INVERT 511,255
in HIRES mode will toggle the top rightmost dot on the screen.

 LET var=expr

 Statement used to assign the computed value of an expression
to the variable to the left of the equal sign. The entire
expression must agree in mode, either integer real qr string,
with the assigned variable. LET is optional and can be deleted
except for immediately after a THEN, or ELSE keyword. Examples:

 10 LET I=2*6+3 After execution, I has the value of 15.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 107

 10 A0=U0+2.5 Assuming B0 has the value of 8.4 at the time
of execution, A0 will be 10.9 after execution.

 10 LET I=A0/2 ERROR...MIXED MODE

 10 A0$="fred" After execution, variable A0$ will have
"fred" as its contents.

 LIST {l1} {, {l2} }

 Lists on the VDU the current program in whole or in part,
depending on the optional specification. Below are the 5
variations of the LIST command:

 LIST LISTS entire program
 LIST l1 LISTS only line numbered l1
 LIST l1, LISTS from line l1 to end of program
 LIST ,l1 LISTS from start to line l1
 LIST l1,l2 LISTS from line l1 to l2 inclusive

 Listing can be aborted at any time by striking the BREAK key
(or ^C) and may be paused by CONTROL S (^S), hitting any other
key will then continue the listing.

Example:
>LIST 100,190 Will list part of a program.

 See also SPEED

 LLIST

 Same as LIST but output goes to the printer output stream
which is controlled using the "OUTL #" command and can thus drive
a printer if one is fitted.
 The default printer output stream (set after a cold start)
is 1200 baud RS232 out so as to suit a majority of serial
printers.
 An alternative to using LLIST/LPRINT commands is to select
the printer device as "standard output" using the "OUT in command
and then just using normal LIST/PRINT commands.

Example:
>OUTL #4: LLIST Select 300bd printer then LIST program.

 LOAD {U}{?} {"filename"}

 Loads a file from cassette tape. If LOAD is used without a
filename, then the BASIC will load the first BASIC or MACHINE
LANGUAGE file found on the tape.
 If a filename is specified, BASIC will look for the first
file on the tape which matches the specified filename. The files

MICROWORLD BASIC STATEMENTS AND COMMANDS page 108

which do not match will be displayed, but will not be loaded.
 The filename can be up to six characters enclosed by "
double quotes as for the SAVE command.

 If the "?" character is appended to the word LOAD, the BASIC
will not load the program but merely verify that the checksums on
the tape are O.K. (to verify a SAVE).

example:
>SAVE "MYPROG"
>LOAD?
will save the current BASIC program and then verify it.

 If the "U" or "u" character is appended to LOAD, the BASIC
will ignore checksums when it tries to load the tape, allowing
the user to recover programs where the error on the tape is
small. This method will not always work, and if bytes are missed,
some very strange things will happen when the program is listed
and edited. (May need COLD start to recover.)
 This option should only be used as a desperation measure
when you have been foolish enough not to dump two copies when
SAVEing and then verify the first one.

BASIC files:
 MICROWORLD BASIC will load files with a ’B’ file type (any
file created with the BASIC SAVE command) into the BASIC program
space, erasing the previous program at the same time, and prepare
to edit or run the program just as if it had been typed in.

MACHINE LANGUAGE files:
 MICROWORLD BASIC accepts files of filetype ’M’ as machine
language files which are loaded into memory at the address
specified on the tape, and optionally auto-executed (program
starts automatically when loaded). Otherwise, the user may use
EXEC to start up the program.

 LOGICAL OPERATORS

 NOT, OR and AND can be used with relational operators in IF
statements to perform logical operations with integer arithmetic.
(See IF)
 The INTEGER representation of true is -1 and for false, it
is 0.

Example:

 10 IF A<2 AND B>6 OR C<10 THEN 80
 ...

Note the operation precedence is
 (1) NOT
 (2) AND
 (3) OR
 parenthesis may be used to alter precedence.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 109

 The logical operation must appear with parenthesis when
assigning to integers. Also, when sub-conditions are negated
using NOT, that sub-condition should be bracketed as in (NOT Q)
below.

Example:
 10 I=(2<A AND 3>B AND (NOT Q))
 20 IF I THEN PRINT "Condition satisfied if A=3,B=4,Q=0"

 LORES

 LORES will initialize the programmable character generator
graphics ram and prepare to receive set, reset, plot etc.
commands for low resolution graphics mode (128*48). Note that the
screen is not cleared by this command, and inverse or underlined
characters on the screen when this command is executed will
change to random graphics characters. The screen is not cleared
by this command, and if INVERSE or UNDERLINE characters were left
on the screen, rubbish graphics will appear.
 Once the LORES command has been issued, graphics characters
may be produced by printing characters with codes greater than
128. The character corresponding to code 128 can not be printed
because it is the internal code for "end of string", so a command
PRINT CHR$(128) will not print anything. In LORES mode, this
character would have been equivalent to a space, so substitute 32
(space) or 192 (graphics blank) for 128.

Example:
00100 LORES
00110 FOR C=129 TO 192: REM run over all graphics codes
00120 PRINT CHR$(C);: REM print char with code c
00130 NEXT C

 LPRINT

 Same as PRINT but output goes to the printer output stream
which can be assigned to one of 6 actual output devices including
RS232 (300bd/1200bd) for connection to serial printers, normal
vdu output or even cassette out (see OUTL# and PRINT).

Example:
00100 OUTL#0 : REM when testing, print output goes to screen
00110 LPRINT "Calendar for year ";INT(Y0)

 NEW

 NEW erases the current program and all variables, resetting
AUTO defaults to a start of 100 with a step of 10, resetting the
number of REAL significant digits to 8 and other "housekeeping"
tasks.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 110

Example:
>NEW
>AUTO ...

 NEXT var and NEXT*var line no

 The NEXT var statement, companion to the FOR statement,
tells the BASIC where the end of a group of statements to be
repeated is located. (See FOR)
 Note that the loop will NOT be terminated by setting the
control variable to its final value and jumping to the NEXT
statement as in some other BASICs. The NEXT* statement must be
used to exit FOR...NEXT loops early.
 GOTOing out of a FOR...NEXT loop can leave random data on
the stack. The NEXT* command substituted at the point of exit
will remove the unwanted values from the stack. Above, var is the
index variable of the FOR...NEXT loop and line-no is the line
number where execution should continue.
Example:

 5 INPUT B
 10 K=0
 20 FOR I=1 TO 250
 30 B>1 THEN NEXT* I 80
 40 K=K+1
 50 NEXT I
 60 GOTO 5
 80 PRINT "SUM=";K
 90 GOTO 5

 NORMAL

 The NORMAL command clears INVERSE, UNDERLINE and PCG modes
and thus returns PRINT output to normal format (white on black,
non-underlined.)
Example:
00100 UNDERLINE
00110 PRINT "This will be underlined"
00120 NORMAL

 ON ERROR GOTO int-exp

 The ON ERROR GOTO statement provides a way of trapping
errors that would normally cause execution to be aborted and an
error message to be printed.

 When int-exp is a line number, the statement will make the
BASIC "remember" that when an error occurs, it is toM-7 try and GOTO
the specified line number. If the line number does not exist when
the error occurs, the program DOES abort with an error message.
If int-exp evaluates to zero, then normal error messages are

MICROWORLD BASIC STATEMENTS AND COMMANDS page 111

re-enabled and any previous ON ERROR GOTO’s are cancelled.

 When an error does occur and is trapped to some line number,
then the ON ERROR GOTO status is automatically cancelled and must
be reset to provide further protection from errors. Also, the
arithmetic stack is reset by an error, so execution CANNOT be
made to resume from within a subroutine or a FOR loop.

 See ERRORL and ERRORC under the INTEGER functions section
for information on how to find out where and of what type the
error was.

Example: Random lines with "out of chars" detection
 10 ON ERROR GOTO 10
 20 CLS : HIRES
 30 PLOT 0,0 TO INT(RND*512) ,INT(RND*255)
 40 GOTO 30

 ON...GOSUB

 ON int_exp GOSUB {[expr,...]} l1 {, {[expr,...]} l2 ... }

 The ON...GOSUB construction is like a simple GOSUB
statement, except that the subroutine called depends on the value
of the integer expression int-exp and the list of line numbers.
The line number to be used is the int-exp’th in the list, e.g. if
int-exp equals 4, then the fourth line number in the list gives
the address of the subroutine which will be called.
 If int-exp does not correspond to a line number, no
subroutine is called.

Example: Menu handling ...

00100 PRINT "Enter desired function
00110 PRINT "l:Enter invoice 2:List bad debts"
00120 PRINT "3:Fold 4:Spindle"
00130 PRINT "5:Mutilate"
00140 INPUT "-> ";J
00150 ON J GOSUB 1000,2000,3000,4000,5000
00160 GOTO 100
...

 As in a normal GOSUB, the line numbers may be preceded by
parameters to be passed to a subroutine using the VAR statement
at the beginning of the subroutine.
Example:

00100 FOR I=1 TO 3
00110 ON I GOSUB ["boy","twistie"] 200,["girl","bread"] 200,
["MicroBee","Apple"] 200
00120 NEXT I
00130 END
00200 VAR (A0$,A1$)
00210 PRINT "The ";A0$;" ate the ";A1$

MICROWORLD BASIC STATEMENTS AND COMMANDS page 112

00220 RETURN

 ON...GOTO

 ON int_exp GOTO line-no1, line-no2, {line-no3},

 The ON...GOTO construction provides a conditional branch
that depends on int_exp in the following way:

 int-exp=1 Branch to line-no1
 int-exp=2 Branch to line-no2
 int-exp=3 Branch to line-no3 etc

 The ON-GOTO differs from the computed GOTO in that the line
numbers line-no1, line-no2, etc do not have to be calculated from
the value of the int-exp.
 If the int-exp is zero or greater than the number of line
numbers given, then execution will continue with the next
statement.
 Note that this form is different from that used by earlier
MICROWORLD BASICs which branch to the first line number when int-
exp=0.

EXAMPLE 1: With computed GOTO

 5 INPUT A
 10 GOTO A*100 : REM this cannot be RENUMbered

 100 REM HERE IF A=1
 ...
 200 REM HERE IF A=2

 1000 REM HERE IF A=10

EXAMPLE 2: With ON-GOTO

 5 INPUT A
 10 ON A GOTO 125,230,400,650 : REM this will RENUMber
 20 REM here if A<1 OR A>4

 125 REM HERE IF A=1
 ...
 230 REM HERE IF A=2
 ...
 400 REM HERE IF A=3
 ...
 650 REM HERE IF A=4

MICROWORLD BASIC STATEMENTS AND COMMANDS page 113

 OUT int1,int2

 Outputs the value of the integer expression, int2 as a data
byte to a PORT with the address given by integer expression,
int1. Of course, int1 and int2 must have values between 0 and 255
decimal. The most use for this command would be found when
additions are made to the MicroBee which are not already
supported by the BASIC software.

Example:
00100 OUT 0,1 : REM turn on the garden sprinklers
(hopefully connected to bit zero of the MicroBee parallel I/O
port after doing OUT#1 to set port to output.)

 OUT# int-exp {on}{off}
 and
 OUTL# int-exp {on}{off}

 The first form of this output redirection command controls
the destination of all normal output which would normally go to
the VDU (including all PRINT output, LIST output, error messages,
prompts but NOT output from LLIST and LPRINT commands).
 The second form controls the output which comes from LLIST
and LPRINT commands, and the following comments apply equally to
this form, except that "OUTL #" is used instead of "OUT #".
 The normal output device and the LPRINT/LLIST output streams
are totally independent.

 The relevant output can go to none, some, or all of the 6
output devices (vdu output, parallel output, RS232 output at
300/1200 Bd and cassette output at 300/1200Bd.) For more details
on the individual devices see Section 3.14 .

There are three forms of the command:
 OUT{L} #x this selects device x as the only device to
 receive output.
 OUT{L} #x on this command selects device x to receive
 output, but doesn’t affect the state of the
 other devices.
 OUT{L} #x off this deselects device x leaving all other
 devices alone.

 Null output can be obtained by deselecting all devices using
an "OUT{L} #0:0UT{L} #0 OFF" sequence. When this is done, output
goes nowhere which can sometimes be useful when testing programs
or when INPUTting data from the cassette recorder using IN#.

OUTPUT DEVICE NUMBERS:
 0 Vdu output device (normal)
 1 MicroBee Parallel port output
 2 300 Bd cassette output
 3 1200 Bd cassette output
 4 RS232 at 300 bd
 5 RS232 at 1200 bd

MICROWORLD BASIC STATEMENTS AND COMMANDS page 114

 For the normal (OUT #) stream, a RESET will select device 0
(vdu) as the only output device and device 0 (normal keyboard) as
the only input device.

 The default for the LPRINT/LLIST stream , set only at a COLD
start, is 1200bd RS232 output so as to suit most serial printers.

Example 1: Output a file to tape for merging with AZ release
)OUT #3:LIST:PRINT CHR$(26) :OUT #0
 ...
Then when another program is in memory, use
)IN #3
 to merge in the previously recorded file.

Example 2: Set up LLIST stream for a 300bd serial printer.
)OUTL #4
)LLIST .,.

 PCG

 All print output after this will use the PROGRAMMABLE
CHARACTER GENERATOR. Note that the characters generated will have
the PCG select bit set, so the PCG must be set up first. (See
GRAPHICS in Section 3.10 and example program).

Example:
00100 LORES : REM set up PCG with lores graphics chars
00110 PCG:PRINT "This will come out garbled":NORMAL

 PLAY n1 {,m1} {; n2 {,m2} ...}

 This command will sound one or more notes from the speaker
for multiples of 1/8 second.

 The note "n" is the first number specified, and selects one
tone from the 25 possible (see table). If 0 is used as the tone
number, a tone is not generated, but a rest of equivalent time is
allowed instead.

Example:
00100 PLAY 5 : REM sound C# for 1/8th second

 The second number, "m" is optional and specifies the number
of multiples of the basic time unit, 1/8th second to play the
note for.

Example:
00100 PLAY 1,8 : REM sound A for 1 second

 To avoid repetition of the PLAY keyword, it is possible to
play more than one note by using the semicolon ";" to separate
the note/length units.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 115

Example:
00100 PLAY 2,3; 3,2; 0; 2,2; 3; 5,2 : REM rubbish tune

 The 25 notes provided are the musical notes taken from the
section of a piano starting at the A below middle C and then up
for two octaves. The frequencies are reasonably precise and allow
simple monophonic melodies to be played:

 Number Note Frequency
 0 rest
 1 A 220
 2 A# 233
 3 B 247
 4 C 262
 5 C# 277
 6 D 294
 7 D# 311
 8 E 330
 9 F 349
 10 F# 370
 11 G 392
 12 G# 415
 13 A 440
 14 A# 466
 15 B 494
 16 C 523
 17 C# 554
 18 D 587
 19 D# 622
 20 E 659
 21 F 698
 22 F# 740
 23 G 784
 24 G# 831

 PLOT{I}{R}{H}{[]} x1,y1 TO x2,y2 { TO x3,y3 {.... TO xn,yn} }

 The PLOT command allows graphics commands to be performed
automatically along straight lines joining two points. plot can
be used in either LORES or HIRES graphics mode.
 Plot will normally be used in the set dot mode which is the
default for a PLOT keyword without suffixes.
 Lines can also be inverted or reset by the addition of the
letters "I" and "R" respectively after the PLOT keyword.
 The usage PLOTH will plot a line with the Y-axis inverted,
but note that it is impossible to have "PLOTIH" for example.
 Note that if PLOT is used without any suffixes, then a space
MUST follow the keyword or an error will occur.
 If more than two x,y co-ordinates are specified as in the
command precis, the desired graphics operation is performed on a
point-to-point basis, making one continuous zig-zagging line.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 116

Examples:
00100 HIRES
00110 PLOT 10,10 TO 100,100
00120 PLOT 0,0 TO INT(RND*512) ,INT(RND*256) TO 511,0 TO 0,0
00130 PLOTI 0,0 TO 511,255 : REM invert this line

 POKE int-exp1,int-exp2

 This command writes a byte of data defined by int-exp2 into
RAM memory at the address specified by int-expl. Note that both
integer expressions are of course in decimal. Some useful
locations to poke, and the results are given in the appendix at
the end of this manual and in Section 3.13.

Example: Change the cursor (use 111 to change it back).
>POKE 220,1

 PRINT list

 Statements used to output information and data to the
console device (or other selected output device). The "list"
consists of variables, constants, expressions, quoted literal and
special printing functions separated optionally by commas, semi-
colons or back slashes(\). A comma produces zone spacing with the
size of the ZONE determined by the ZONE command.
 If a PRINT is terminated by a semicolon, the final CR and LF
<cr>,<lf> is suppressed. Backward slashes, or sloshes (\) may be
used within the "list" to produce additional CRs and LFs.
 The special print functions are TAB(int-exp) and SPC(int-
exp). TAB moves the cursor to the position equal to the value of
the integer expression. SPC produces the number of spaces
determined by the value of the integer expression. These two
print functions will produce the same result only when the cursor
is "hard left".
 Numeric values may be output in one of two ways: formatted
and unformatted. Consider the latter first. Unformatted printing
is that used in standard BASIC. If the value is between 0.01 and
999999, it will be printed in ordinary decimal notation. For
smaller values and larger than these, exponential notation is
used. Best we resort to examples:

 PRINT 65+3 Produces 68.

 PRINT 500000*2 Produces 1.0 E+6

 10 PRINT I,J;A0*2
 20 PRINT "OK"; TAB(8);
 30 PRINT "DONE"
 40 END

This program would produce the following output for the values,
I=2, J=6, A0=12.4 and ZONE set at 14

MICROWORLD BASIC STATEMENTS AND COMMANDS page 117

 2 6 25.8
 OK DONE

 The formatted printing of numerical values is useful in
business programming where specific fields must be set up to
accommodate the printed values. The format specification may
appear at any point in the PRINT "list". It takes one of four
forms:

[Iint int-exp] Integer format:
 The value of the integer expression is printed RIGHT
justified in a field of width ’int’. ’int’ must of course be
greater than the number of digits in the value to be printed plus
one (to take care of the sign). If this is not the case, plus
signs will be printed in the field.

Example:
00100 A=123
00110 PRINT [15 A]
 will print ’ 123’, i.e. two spaces plus three digits makes
up the fieldwidth of five.

[Fn1.n2 real-exp] Real format:
 The value of the real expression is printed in a field n1
wide and a decimal point n2 digits from the right of the field.
The field width must be TWO characters greater than the number of
digits printed. The number of digits printed should not exceed
the number of significant digits. Again, plus signs will be
printed in the field if the specification is incorrect.

Example:
00100 A0=45.23
00110 PRINT [F8.4 A0]
 will print ’ 45.2300’, i.e. one space, two digits, a decimal
point and four more digits making up a fieldwidth of eight. Note
that the trailing 0’s are printed because four digits after the
decimal point were specified.

[Dn real-exp] Exponential format:
 The value of the real expression is printed with exponential
format in a field n+7 wide with n digits after the decimal point.

Example:
00100 PRINT [D4 45.23]
 will print ’ 4.5230E+01’. Note that the extra 7 characters
which make up the fieldwidth are constant for this fieldwidth.

[An int-exp] ASCII format:
 Equivalent to the PRINT CHR$(int-exp)
 The value of the integer expression is output as its
equivalent ASCII character a total of n times. This format is
useful for sending special control characters to the output
device, since the CHR$ function cannot for example print the
character with code 128 since that is the "end of string" code.
It also permits printing long strings of the same character.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 118

Example:

>PRINT [A120 7]
 will ring the bell 120 times (the code of ^G is 7).

The format specifications may of course be linked with semicolons
as below:

 10 PRINT [A6 66]; [F8.2 A0]
 20 END

For A0=42.6, this program would produce the output
BBBBBB 42.60

(See also LPRINT)

 PRMT (char)

 If a literal appears at the beginning of an input statement,
the prompt character following the literal is determined by the
character ’char’. The default character is a space. (See input).
Example:

 10 PRMT(@)
 20 INPUT "GIMME A NUMBER" A0

will produce the output

 GIMME A NUMUER@

 READ {(line-no)} var1 {, var2, var3, ...}

 This command is used to store values from DATA statements
into the specified variables. The optional line number is used to
reset the data pointer to a specific DATA statement. The RESTORE
command is the more normal method of resetting the data pointer
to a specified line, however.
Example:

 10 INPUT I
 20 READ (I*10+30) A0$: REM this can’t be renumbered
 30 PRINT A0$: GOTO 10
 40 DATA "MESSAGE NUMBER 1......."
 50 DATA "MESSAGE NUMBER 2......."
 60 DATA "MESSAGE NUMBER 3......."
 RUN

 ? 2 <cr>
 MESSAGE NUMBER 1......
 ? etc.

MICROWORLD 8ASIC STATEMENTS AND COMMANDS page 119

 5 A1=0
 10 FOR X=1 TO 10
 20 READ A0
 30 A1=A1+A0
 40 NEXT X
 50 PRINT "SUM OF DATA IS ";A1
 100 DATA 1,2,3,4,5,6,7,8,9,1.2

 RUN
 SUM OF DATA IS 46.2

 An attempt to read more data than available will result in
an error. (See RESTORE.)

 REM

 Used as the last or only statement of a line to insert user
comments in the program. All text between REM and the end of the
line is ignored during execution.
 Note that after a REM, a comment will stay in lower case
automatically, making it much easier to read.
 Do NOT try to put comments after DATA statements!
Example:
05000 REM This subroutine does exactly nothing
05010 RETURN

 RENUM { new_start {,increment {,start {,finish} } }

 The renumber command is a complex program which will
regularize the line numbering of a Basic program, changing all
references to line numbers in the process. There are five forms
of renum:

RENUM
This form will renumber the entire program so that when
renumbered, the first line number will be 100 and the rest will
increment by 10 from there on.

RENUM n
This form renumbers the entire program so that when renumbered,
the first line number will be n and the rest will increment by
10.

RENUM n,i
This form renumbers the entire program so that when renumbered,
the first line number will be n and the rest will increment by i.

RENUM n,i,s
This form renumbers the section of the program from the original
line number s through to the end of the program, so that the line
which was s will have line number n, incrementing by i.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 120

RENUM n,i,s,f
This form renumbers the section of program between original line
numbers sand f so that the line which was s will have line
number n, incrementing by i.

 Having given such a command, there are several reasons why
it could fail. If the renumber program does detect an error
condition, it will exit without having made any changes.
 If the new linenumbers would either start before currently
existing lines which are not being renumbered, or finish after
current lines which are not being renumbered, a line number clash
error will be given.
 If the linenumbers exceed 65534, an illegal line error will
be given.
 If a renumbered line would turn out to be too long (>184
characters), a line too long error is given.
 If the renumber program finds a label reference which refers
to a non-existent line, the renumbering cannot proceed until this
reference is fixed up.

 This renumber command will fix all non-computed GOTO, GOSUB,
ON...GOTO, ON...GOSUB, RESTORE, READ(lnum), THEN, ELSE and NEXT*
references. Other commands such as LIST, DELETE, RENUM must be
renumbered by hand if they are ever used.

Example:

BEFORE ...

00002 PRINT "this is a demo program"
00011 INPUT Q7
65023 PRINT [F8.4 Q7] :GOTO 2

AFTER a "RENUM 1,1" .. .

00001 PRINT "this is a demo program"
00002 INPUT Q7
00003 PRINT [F8.4 Q7] :GOTO 1

 RESET{H}{[]} int-exp1,int-exp2

 This command "turns off" a graphics point on the VDU screen.
The command is the same for both HIRES, and LORES graphics modes,
however the maximum co-ordinate values differ. (This command has
nothing to do with the RESET key).

 For LORES graphics, the int-exp1 must be in the range 0 to
127 and specifies a position across the screen, int-exp2 is in
the range 0 to 47 and specifies a position down the screen.
For HIRES graphics, int-exp1 must be in the range 0 to 511
across the screen to the right, and int-exp2 must be in the range
0 to 255 up the screen.

 If an "H" is appended to the keyword RESET, then the Y axis

MICROWORLD BASIC STATEMENTS AND COMMANDS page 121

will be inverted automatically. If the "H" option is not used
then a space MUST follow the RESET keyword.

Examples:
 RESET 0,0 resets a point at the bottom left hand corner
of the screen whereas RESET 63,24 resets a point near the centre
of the screen (assumed LORES mode) .

 RESTORE {int-exp}

 The RESTORE command resets or repositions the position of
the DATA pointer which controls the place in the program from
where the next DATA item will be read. If the optional int-exp is
added after the word RESTORE, the BASIC will set the DATA pointer
to that line, otherwise the data pointer is set to the first
piece of data in the program. (See also READ.)

Example:
00100 RESTORE 120
00110 DATA "skip this one"
00120 DATA "get this one instead"

 RETURN

 The RETURN statement is used to indicate the end of a
subroutine to which a GOSUB call has been made. It causes
execution to continue after the last GOSUB to be executed. If no
GOSUB has been already executed when a RETURN is found, an error
will occur. (See GOSUB.)

Example:
00100 GOSUB 200
00110 GOSUB 200
00120 END: REM If this is not here, an error will occur
00200 PRINT "***"
00210 RETURN

 RUN

 This command causes execution of the current BASIC program
in memory to start at the lowest line number in the file. Before
execution begins, all variables are cleared, all DIMensions are
erased, the DATA pointer is reset to the beginning of the
program, and the arithmetic stack is initialised.

 SAVE{F} "file_name"

 The SAVE command, a companion to LOAD, is the means whereby
BASIC programs can be saved on cassette tape.
The default speed for cassette saving is 300 baud (bits per
second). If the letter "f" (or "F") is added after the SAVE

MICROWORLD BASIC STATEMENTS AND COMMANDS page 122

keyword, the saving speed will be 1200bd. 1200bd is nearly four
times faster than 300bd but generally requires a good tape
recorder to achieve reliable results.
 The filename is mandatory, and must be six or less
alphanumeric (upper case, lower case and number) characters
enclosed by double quotes.

Example:
>FOR A=1 TO 3 : SAVEF "TEST" : NEXT A

 SD int-exp

 Used to set the number of significant digits used in REAL
calculations for greater precision or speed. SD can be set to any
even number from 4 to 14 places. The default value is 8.
 SD should only be used at the start of a program BEFORE any
arrays are dimensioned or REAL variables used, and not changed
from then on.
 If you are using STRING ARRAYS in your program, then do not
set SD at 4, a minimum of 6 should be used to ensure correct
space allocation for the string array.

Example:
 For drawing a circle on the screen, you would need quick,
but not very accurate trigonometric functions, so use SD 4, but
for solving equations where there is a possibility of
cancellation errors, use SD 14.

 SET{H} int-exp1,int-exp2

 SET turns on a graphics dot in either HIRES or LORES
graphics mode.

 For LORES mode, int-exp1 must be in the range 0 to 127 and
specifies a position across the screen, int-exp2 is in the range
o to 47 and specifies a position UP the screen.
 For HIRES mode int-expl must be 0 to 511 across and int-exp2
in the range 0 to 255 up the screen.

 If an "H" character is put after the SET keyword, then the Y
axis will be inverted. If no "H" is used then a space MUST follow
the SET keyword.

Example: turn on every graphics dot the hard way

00100 LORES
00100 FOR X=0 to 127
00100 FOR Y=0 TO 47
00100 SET X,Y
00100 NEXT Y
00100 NEXT X

MICROWORLD BASIC STATEMENTS AND COMMANDS page 123

 SPC int-exp

 SPC(int-exp) is used to direct print to print int-exp spaces
before the next item in the list. SPC is different from TAB(int-
exp) because SPC(n) will always print n spaces no matter where
the cursor is when it is invoked.
 SPC must appear only in a print list.

Example:
00100 PRINT "LEFT";SPC(40);"RIGHT"

 SPEED int-exp

 Slows down the VDU output by introducing a delay between
characters.
FORMAT: SPEED n where n=0 to 255 (0 is the fastest and the
default set at a cold start.)

Example:
>SPEED 20:LIST:SPEED 0

 STOP

 Used in a program to terminate execution. The following
message is printed:
 STOP AT line-no

 ... where line-no is the line number where the STOP was
encountered. This command, although performing roughly the same
function as an END command , is normally used during program
fault-finding. Execution can be restarted by using the CONT
command.
For an example, see CONT.

 STRS (int-exp)

 STRS is used to set a limit on the MAXIMUM amount of memory
that strings are allowed to use during the course of the program.
Note that setting a too large string size may not allow enough
room for variables and arrays.
 The default value for STRS, set after a NEW, CLEAR or COLD
START is 256.
 Brackets MUST enclose the int-exp.
Example:
00100 STRS (5000) : REM A lot of strings are going to be used
00110 DIM A0(200)
00115 REM now set all elements to null strings
00120 FOR I=1 TO 200 : A0$(I)="" : NEXT I

MICROWORLD BASIC STATEMENTS AND COMMANDS page 124

 TAB (int-exp)

 TAB is used to direct PRINT to start at a particular point
on a line. The argument must be an integer and if the required
TAB has already been passed over, the program will ignore the
integer argument.
 TAB must be used in a print list.
 TAB(0) is equivalent to TAB(255).

Example:
00100 PRINT TAB(12);"Super dooper program !!!!"

 TRACE ON, TRACE OFF

 When TRACE is turned ON the line number of each line
executed is listed on the VDU between square [] brackets. TRACE
OFF removes the facility after troubleshooting is over.
 TRACE can be used in immediate mode or in a program.

Example:
00100 TRACE ON : REM trace execution of subroutine at 1000
00110 GOSUB 1000
00120 TRACE OFF

 UNDERLINE

 The underline commmand sets up the VDU to print underlined
characters in all print statements after this one. If the
previous display mode was a graphics one (PCG, HIRES or LORES),
the screen will also be cleared first.

Example:
00100 PRINT "not underlined"
00110 UNDERLINE:PRINT "underlined":NORMAL

 VAR (var1,var2,...)

 The first statement of a subroutine to which arguments are
passed. The variables in the VAR list receive their values from
the calling GOSUB. The variables MUST correspond in position and
mode to the expression in the GOSUB. These variables are common
to the main program and thus can be used to pass values back to
the main program.
 If there are more variables in the VAR list than expressions
in the calling GOSUB, the unused variables will retain their
previous values. If there are too few variables in the list, an
error condition will result.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 125

Examples:

 10 INPUT K,J
 20 GOSUB [K*K,K+J] 100

 100 VAR (A,B)
 110 PRINT A,B, A+B
 120 RETURN

Suppose K is input as 10 and J is 20. In the subroutine, A will
have the value 100 and B the value 30.

For advanced programs, it should be noted that the VAR statement
can be used to simulate the PRINT IMAGE type of command found in
other BASICs. Such statements permit the PRINT statement to be
used with several different sets of variables.

 10 INPUT P
 20 GOSUB [P,"CATS"] 100
 30 GOSUB [4*P, "CAT FEET"] 100
 40 GOSUB [4*P*5, "CAT CLAWS"] 100

 100 VAR (D,D0$) :PRINT "MY HOUSE HAS ";D;D0$:RETURN

For p=6 this program will produce the following output:

 MY HOUSE HAS 6 CATS
 MY HOUSE HAS 24 CAT FEET
 MY HOUSE HAS 120 CAT CLAWS

Note that this parameter passing mechanism does not create any
"special variables. All variables used are normal, global
(accessible everywhere) BASIC variables.

 ZONE int-exp

 This statement sets the ZONE width applied when commas are
used in PRINT statements to ’int-exp’ (See PRINT). The value of
’int-exp’ may range from 1 to 16.
 The default ZONE value, set by a ’NEW’ or COLD RESET is 8.

Example:
00100 ZONE 12
00110 PRINT A,B,C,D,E,F

MICROWORLD BASIC STATEMENTS AND COMMANDS page 126

 5.2 FUNCTIONS IN MICROWORLD LEVEL II BASIC

 MICROWORLD BASIC was developed as an interpreter for use in
business and game applications. The choice of functions reflects
this interest. Functions are either real or integral and produce
either real or integral results depending on the type. Integer
functions should only appear in integer expressions and real
functions only in real expressions.

Note: A function is different from a command in that it must
always appear on the right hand side of an equation.
Example:

N = PEEK (300) Gets the byte from location 300 and
 PUTS it into variable N.
A0 = RND * 500 Generate a random number and put it
 into variable A0.
PRINT PEEK (0) This is an apparent exception which still
 follows the rule (above): it means, get the
 byte from location 0 and store it in a
 temporary store, then PRINT the temporary
 store.

 REAL FUNCTIONS

 ABS (real-exp)

 Produces the absolute value of the real expression, if it
is positive, does nothing. If -ve then returns same value but
positive.

Example: PRINT ABS(9);ABS(-9)
Result: 9. 9.

 ATAN (real-exp)

 This function returns the trigonometric arc-tangent of the
real expression evaluated in RADIANS. (Accuracy is about
0.0001%.)
 To convert RADIANS to DEGREES simply multiply the result by
57.29577951 (to the correct number of significant digits) .

Example: PRINT ATAN (1)
Result: 0.7853981

 In BASIC 5.00 and 5.10, the magnitude of the argument to the
ATAN function must not be less than 0.1. If the magnitude of the
argument is less than 0.1, then simply use the value of the
argument itself, which is a good approximation to ATAN for such
small numbers .. to assign A0=ATAN(X0)
 IF X0 < 0.1 THEN LET A0=X0 ELSE LET A0=ATAN(X0)

MICROWORLD BASIC STATEMENTS AND COMMANDS page 127

 COS (real-exp)

 This function returns the trigonometric cosine of the real
expression, assumed to be expressed in RADIANS. Accuracy is about
0.00000001 %.

Example: PRINT COS(0)
Result: 1.

Example: X=INT(20*COS(T0))

 EXP (real-exp)

 This function returns the value of e (2.718281828) raised to
the ’real-exp’ power. Accuracy is about .0001% for normal range.
This is the equivalent to taking the NATURAL anti-logarithm of
the expression.

Example: PRINT EXP(2)
Result: 7.3890597

 FLT (int-exp)

 This function converts integer expressions into real numbers
and is used to avoid "mixed mode" conflicts.
Example: A0=FLT(A)

 FRACT (real-exp)

 This function returns the fractional part of the real
expression.

Example:
 PRINT FRACT(6.84) produces 0.84

 PRINT FRACT(120) produces 0.0

 In BASIC 5.00 and 5.10, the argument to FRACT must not have
a "zero" after the decimal point as in 2345.01653, or the
resulting value will be unusable in arithmetic operations.
 To avoid this problem, use the following construction to
replace FRACT ..
instead of A0=FRACT(X0), use
 A0=X0-FLT(INT(X0)) as long as -32767 < X0 < +32766

 FRE(0)

 This REAL function returns a number representing the total
memory available for program and variable storage. If you are
running with 48K of RAM this number will come out negative! Don’t

MICROWORLD BASIC STATEMENTS AND COMMANDS page 128

worry, this is only a restriction caused by the method used to
represent integer numbers. In the immediate mode use PRINT FRE(0)
to give an immediate indication of memory left at any particular
point in time.

Example: (16k MicroBee after a NEW)
 PRINT FRE(0) produces 13822.

 FRE($)

 Gives the maximum amount of "string space" still available
as a real number. Use STRS (int-exp) to allow more "string
space". The use of this function also "purges" the string space
removing old strings which are no longer used.

Example: (After a NEW)
 PRINT FRE($) produces 256.

 LOG (real-exp)

 This function returns the common logarithm of the real
expression. The natural logarithm (to base e) can be found by
using 2.30258*LOG (real-exp). (Accuracy is 0.0001%.)

 ANTILOGS can be calculated by l0^(real-exp).

Example:
 PRINT LOG(1000) produces 3.0000001

 RND

 The random number generator, returns a real number between 0
and 1. Note that there is NO argument allowed to RND.
 To get other sized random numbers see examples below:

 RND*150 Returns a number between 0 and 150

 RND*200-l00 Returns a number between -100 and +100

 INT(RND*6)+1 Returns an integer between 1 and 6

 SGN (real-exp)

 This function returns one of three values as follows:

 -1 if real-exp <0
 0 if real-exp =0
 +1 if real-exp >0

Example:
 PRINT SGN(-12);SGN(0);SGN(7)

MICROWORLD BASIC STATEMENTS AND COMMANDS page 129

 produces -1. 0 1.

 SIN (real-exp)

 This function returns the trigonometric sine of the real
expression considered to be in radians. (Accuracy is about
0.00000001%.)

Example:
 PRINT SIN(355/113) produces -3.0E-07 (close to 0).

 SQR (real-exp)

 Produces the positive square root of the value of the real
expression. Note in this particular case the real-exp must be a
positive number.

Example:
 PRINT SQR(9) produces 3.

 VAL (str-exp)

 Converts a string expression like "1234.45" which contains
the representation of a floating point number into the
corresponding REAL number. VAL is always a REAL function, so if
it is desired to convert a string which looks like an integer
into an integer, the INT(VAL(str-expM-; construction must be used.
 If the string expression cannot be converted into a REAL
number, the value 0 is returned.

Examples:
 A0=VAL("23.03") assigns A0 the value 23.03
 A0=VAL("Apple []") assigns A0 the value 0.

 INTEGER FUNCTIONS

 ASC (str-exp)

 ASC takes the first character of the string expression
given, and returns the ASCII code for it (See appendix for list
of ASCII codes).

Example:
 PRINT ASC("1234") produces 49, ASCII code for "0"

 ERRORC

 ERRORC, a function of no parameters, returns the code number
of the last error which occurred (see Section 3.15 for error

MICROWORLD BASIC STATEMENTS AND COMMANDS page 130

message list with code numbers).

 ERRORL

 ERRORL returns the line number at which the last error
occured. ERRORL requires no parameters.

 INT (real_exp)

 Converts the value of the real expression into an integer.

Example:
 SET INT(X0),INT(Y0) gets around "mixed mode" troubles.

 IN (int_exp)

 Inputs a data byte from the input port with the address
given by the value of the integer expression (in the range 0 to
255).

Example:
 PRINT IN(0) will print the data on parallel PORT A

 LEN (str_exp)

 Returns the length, or number of characters contained in the
specified string expression.

Example:
 PRINT LEN("fred"+"jane") produces 8
 PRINT LEN("") produces 0

 PEEK (int_exp)

 Reads the data byte stored in memory location addressed by
the value of the integer expression.

Example:
 PRINT PEEK(16*4096) produces the character code of the
first character on the screen.

 POINT{H}{[]} (int-exp1,int-exp2)

 POINT returns a value depending on whether the specified dot
is set or not.
 If the co-ordinates are out of range for the relevant
graphics mode, the value returned in -1.
 If the specified point is set, POINT returns -1.
 If the co-ordinates are in range, and the dot is not set,

MICROWORLD BASIC STATEMENTS AND COMMANDS page 131

POINT returns 0.
 The values of 0 and -1 were chosen to correspond to the two
boolean value for an integer which can be used in an IF
statement directly, so

10 IF POINT(X,Y) THEN LET A=-A:B=-B ELSE SET X,Y

 ... will negate A and B if the dot is set, and if it was not
set, this statement will set it.
 When an "H" is appended to the POINT keyword, the Y axis is
inverted. If no "H" is used, then a space must follow the
keyword.

 POS

 This integer function of no arguments returns an integer
representating (theoretically) the cursor position on either the
VDU or the line printer, it makes no allowance for the actual
length of lines.

Example:
PRINT 4,4,4,POS produces 4. 4. 4. 23

 SEARCH (str=exp1,str-exp2 {,int-exp})

 String str-exp1 is searched for <int-exp> th occurrence of
substring str-exp2. The integer value returned is the position of
the beginning of the substring, if found, or zero if not found.
The default value of int-exp is 1.
Examples always help to illustrate the point:

 A0$ = "HOW ARE YOU" define the string
 PRINT SEARCH(A0$,"ARE") find 1st occurrence of "are"
 5 it occurs from character 5 onwards.
 PRINT SEARCH(A0$,"O",2) find the second "O" in A0$
 10 it occurs in the 10th character

 USED

 This function of no arguments returns the number of PCG
characters used when in HIRES graphics mode.
 This information is very usedful because when the graphics
subroutines attempt to use more than 128 PCG programmable
characters to draw the HIRES graphics, an error is generated
which aborts the program.

Example:
00100 HIRES
00110 PLOT 0,0 TO INT(RND*512),INT(RND*256)
00120 IF USED <60 THEN 110 ELSE 100

MICROWORLD BASIC STATEMENTS AND COMMANDS page 132

NOTE: Integer functions may be used directly in print statements
as the type is implicit to the function.

 STRING FUNCTIONS

 CHR{$} (int-exp)

 CHR$ performs the inverse of the ASC function: it returns a
one character string whose character has the specified ASCII or
graphics code. The value of int-exp may be any number from 0 to
255 except 128. The dollar sign after the CHR is optional.
Example:
 PRINT CHR$(34) will print a double quote (which is not
normally obtainable because" is used to delimit strings.)

 CHR$ may also be used to display the LORES graphics
characters ... (See LORES for example.)

 CHR$ is also a good way of printing control characters which
cannot be entered from the keyboard.
Example:
PRINT CHR$(7) : REM rings the bell
PRINT CHR$(13): REM RETURNs cursor without linefeed

 KEY{$}

 KEY$ returns a string depending on whether or not a key on
the keyboard has been pressed.
 If no key has been pressed since the last KEY$ call (or line
input), the null string (length 0) is returned.
 If a key has been pressed, the one-character string
corresponding to that key is returned.
 The characters which are received using the KEY$ function
are NOT automatically displayed on the screen, allowing such
things as "TURTLE GRAPHICS" and real time games which do not
require the RETURN key to pressed and don’t stop when waiting for
a key.
 Because the time taken to look at the keyboard is very
short, the KEY$ function is usually examined in some sort of
loop.

Example:
00100 A0$="" : REM clear string to accumulate
00110 A1$=KEY$: IF A1$="" THEN 110 : REM get key
00120 A0$=A0$+A1$: REM add this key to A0$
00130 IF ASC(A1$)<> 32 THEN 100 : REM wait for a space
00140 PRINT A0$: REM view captured string

 STR{$} (num-exp)

 STR$ converts an integer or real expression into a string -
the opposite of VAL (str-exp) .

MICROWORLD BASIC STATEMENTS AND COMMANDS page 133

 For example, suppose A0=1234.56, STR$(A0) gives the string
" 1234.56" just as if A0 had been printed.

 5.3 USER DEFINED FUNCTIONS

 MICROWORLD BASIC also has provision for the user to define
special functions for himself. The basis is the FN statement.

 FNn = expr

 The format is FNn where n is an integer between 1 and 7. If
when defining an expression a dummy variable is required, a ’#’
sign should be used to indicate where the dummy variable should
appear. Example:

 10 FN2 = 3.14159 * # + 1.8

When a reference is made to the defined expression in a program,
it appears as FNn(expr). The value of the argument would be
passed into each ’#’ symbol of the defining statement.
 It is important that the mode (real or integer) of the
argument be the same as that of the result type. Also, the result
type of a user defined function is assumed to be REAL unless it
is used in some construction which implies integer mode (such as
LET A=... or TAB(...).

Example:
 10 FN0 = #+#
 20 A=4
...
 40 PRINT FN0(6)
 50 B=FN0 (A)
This program will print the value 12. and assign 8 to the integer
variable B.
If we had line 60 as
 60 PRINT FN0(A) then a MIXED MODE error would occur.

Some special functions:

FNn = SIN(#)/COS(#) This real function calculates the
trigonometric tangent of an angle. the angle must be expressed in
RADIANS.

FNn = ATAN(#/SQR(l-#*#)) This real function calculates the
inverse trigonometric sine (ARC SINE).

MICROWORLD BASIC STATEMENTS AND COMMANDS page 134

 MACHINE LANGUAGE SUBROUTINES

 USR (int-exp1 {,int-exp2})

 This integer FUNCTION (NOT A COMMAND) produces a call to a
machine language routine given by the integer expression int-
exp1. The value of int-exp2 is passed in the BC register pair.
The int-exp2 is optional, in which case BC will contain zero.
 The machine language program may use all registers, but the
stack must be managed so that PUSH’s and POP’s (if that’s how you
say it) are equal in number. In this case a machine language
return instruction will produce reentry back to MICROWORLD BASIC.
To pass a value back it should be placed in the Band C registers
before return. This integer value becomes the "value" of the
function.
 USR must be the only expression on a line of BASIC otherwise
errors will occur.
 To communicate a large amount of data to a machine language
routine, use a POKE instruction to put the data into a known area
of memory (called a ’chat’ area) before the USR function is used.
Then use the PEEK instruction to get it back again.

Example:
 10 I = USR(0,55)
passes the value 55 (decimal of course) in the BC pair to the
subroutine assumed to have been previously poked into memory at
zero, then puts the returned value of the BC pair into integer
variable I after the subroutine has returned.

MICROWORLD BASIC STATEMENTS AND COMMANDS page 135

+---+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Section 6. |
| |
| |
| |
| Application Programs |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

 SECTION 6: APPLICATION PROGRAMS IN MICROWORLD BASIC

 Listed below are applications programs written in MICROWORLD
BASIC. They are included, not as examples of high quality
programming (they are certainly not!), but as illustrative
examples to further enhance your comprehensive understanding of
some of the more common techniques in BASIC.

 6.1 GUESSING GAME

 Illustrates the use of input statements, conditional
branching, random number generation, and indexed looping.
This should provide enough raw material for you to write your own
versions of this type of game.

 100 REM *** NUMBER GUESSING ***
 110 REM A SIMPLE PROGRAM IN MICROWORLD BASIC
 115 CLS: SPEED 50
 116 PRINT:PRINT:PRINT
 120 PRINT "PLAYER VS THE COMPUTER GUESSING GAME"
 125 T=0
 130 PRINT "I’M THINKING OF A INTEGER BETWEEN 0 AND 100"
 135 PRMT(?)
 140 N=INT(RND*100)
 141 PRINT N
 142 REM REMOVE LINES 141,142 BEFORE PLAYING THE GAME
 150 INPUT "WHAT IS YOUR GUESS " G
 155 T=T+l
 160 IF G=N : GOTO 1000
 170 IF G<N : GOTO 500
 180 PRINT "TOO BIG - TRY AGAIN"
 190 GOTO 150
 500 PRINT "TOO SMALL - TRY AGAIN"
 510 GOTO 150
 1000 PRINT "RIGHT ON - AFTER ";T;" TRIES."
 1010 GOTO 125
 1020 END

 6.2 A SORTING ROUTINE: RIPPLE SORTING

 This is a simplified example of the traditional ripple
sorting algorithm. It also provides a useful example of the READ
and DATA method of assigning values to variables and also
dimensioning a matrix.

 100 REM *** RIPPLE SORT: MAXIMUM 100 NUMBERS ***
 110 CLS
 200 DIM A1(100)
 210 DATA 5
 220 DATA 6.2, 15.8, 23.0, 12.9, 11.1

 230 REM CONTINUE DATA STATEMENTS AS REQUIRED
 1000 READ N :REM THIS READS DATA IN LINE 210
 1010 REM IN OUR CASE 5 ENTRIES TO SORT

MICROWORLD BASIC APPLICATION PROGRAMS page 137

 1020 FOR 1=1 TO N
 1030 READ A1(I)
 1040 NEXT I
 1050 REM
 1060 REM
 1070 FOR S=1 TO N-1
 1080 LET M=0
 1090 FOR I=1 TO N-S
 1100 IF A1(I) <= A1(I+1) THEN 1500
 1110 LET X1=A1(I)
 1120 LET A1(I) = A1(I+1)
 1130 LET A1(I+1) = X1
 1140 LET M=1
 1500 NEXT I
 1510 IF M=0 THEN NEXT*S 2000
 1520 NEXT S
 2000 FOR I=1 TO N
 2010 PRINT A1(I)
 2020 NEXT I
 2030 END

 6.3 ANNUITIES AND COMPOUND AMOUNTS

 BASIC has widespread uses in business applications and is
the major language used in many small business computer systems.
The simple programs below illustrate just how easy it is to apply
MICROWORLD BASIC to solving complex problems.

 100 REM ** THIS PROGRAM CALCULATES THE FUTURE VALUE **
 110 REM Y1=PRESENT VALUE, I1=INTEREST RATE
 120 REM N1=TIME PERIODS, X1=FUTURE VALUE
 130 INPUT "ENTER PRESENT VALUE " Y1
 140 INPUT "ENTER INTEREST RATE PER PERIOD " I1
 150 INPUT "ENTER NUMBER OF PERIODS " N1
 160 X1=Y1*(1+I1)^N1
 170 PRINT "AFTER ";N1; " PERIODS ";Y1;"IS WORTH "; X1
 180 INPUT "DO YOU WANT TO KNOW MORE, Y OR N ?" A1$
 190 IF A1$ = "y" THEN GOTO 130
 200 PRINT "BYE FOR NOW"
 210 END

 This program calculates the amount of money you would have
to invest to have a given sum at the end of a period of time.

 100 REM ** CALCULATES PRESENT VALUE BASED ON FUTURE SUM
 105 CLS:PRINT:PRINT:PRINT:PRINT
 110 INPUT "FUTURE VALUE " X1
 120 INPUT "INTEREST RATE PER PERIOD" I1
 130 INPUT "NUMBER OF YEARS " N1
 140 Y1=X1*(1+I1)^(-N1)

MICROWORLD BASIC APPLICATION PROGRAMS page 138

 150 PRINT"TO HAVE";X1;"IN";N1;" YEARS, YOU WILL NEED"
 160 PRINT "TO INVEST ";Y1;" NOW"
 170 INPUT "DO YOU WANT MORE? (ANSWER YES OR NO)" A1$
 180 IF A1$="YES" THEN 110
 190 PRINT "BYE FOR NOW"
 200 END

 6.4 DEGREES TO RADIANS

 MICROWORLD BASIC uses radians in all trigonometric
functions. Often you will want to convert values expressed in
DEGREES to RADIANS and this short subroutine (see the RETURN
statement?) will no doubt prove very useful.

 100 REM ** THIS PROGRAM CONVERTS DEGREES TO RADIANS **
 110 CLS:PRINT:PRINT:PRINT
 120 INPUT "ENTER DEGREES TO BE CONVERTED" D1
 130 LET R1=3.14159*D1/180
 140 PRINT D1; " DEGREES CONVERTS TO ";R1; "RADIANS"
 150 RETURN

 6.5 ELECTRONICS APPLICATIONS: OHMS LAW CALCULATOR

 By now you may have noticed how easy it is to actually apply
BASIC to problem solving. The key is to find a function that will
solve some equation, input the known variables and calculate the
unknowns. This program illustrates the well known "OHMS LAW" used
universally in electronics.

 100 REM ** THIS PROGRAM DEMONSTRATES OHMS LAW **
 110 CLS:PRINT:PRINT:PRINT
 120 PRMT(?)
 125 INPUT "DO YOU WANT TO CALCULATE ’V’, ’A’ OR ’R’" S1$
 130 IF S1$="V" THEN 200
 135 IP S1$="A" THEN 250
 140 INPUT "ENTER THE KNOWN VOLTAGE "V0
 150 INPUT "ENTER THE KNOWN CURRENT "A0
 160 R0=V0/A0
 165 PRINT "YOU WILL GET A VOLTAGE DROP OF ";V0;
 170 PRINT "WHEN ";A0;" AMPS PASSES THROUGH ";R0;" OHMS"
 175 GOTO 110
 200 INPUT " ENTER THE RESISTANCE "R0
 205 INPUT " ENTER THE CURRENT "A0
 210 V0=R0*A0
 215 PRINT V0;" VOLTS"
 220 GOTO 110
 250 INPUT "ENTER THE RESISTANCE "R0
 255 INPUT "ENTER THE VOLTAGE "V0

MICROWORLD BASIC APPLICATION PROGRAMS page 139

 260 I0=V0/R0
 265 PRINT "THE CURRENT IS ";I0;" AMPS"
 270 GOTO 110
 300 END

 6.6 GRAPHICS WITH MICROWORLD BASIC

 MICROWORLD BASIC enables you to "draw" on the VDU screen
using the SET x,y command, erase from the VDU using the RESET x,y
and to test if a particular point is actually set (POINT (x,yM-;.
High resolution is also possible. This simple program will
provide a useful basis for displays and games.

 90 REM ** THIS PROGRAM DEMONSTRATES GRAPHICS
 95 REM AND THE RANDOM FUNCTION **
 100 CLS:LORES
 115 FOR A=1 TO 123:SET A,31:NEXT A
 120 X=INT(RND*123)
 130 Y=INT(RND*47)
 140 SET X,Y
 150 IF X=60 OR X=120 THEN 245
 155 FOR A=1 TO 123 :RESET A,31:NEXT A
 160 GOTO 120
 245 FOR B=1 TO 47 :SET 62,B: NEXT B
 255 X=INT(RND*123)
 260 Y=INT(RND*47)
 270 RESET X,Y
 280 IF X=120 THEN 115
 290 FOR B=1 TO 47: RESET 62,B : NEXT B
 300 GOTO 255
 310 END

 6.7 MUSIC ON THE MICROBEE

 The MicroBee can be easily programmed to play music through
the internal loudspeaker. Although you are restricted to
monophonic reproduction the results can really be amazing. Try
typing in the following program and after you have run it answer
the question below.

 100 PLAY 4,2; 8,2; 9,2; 11,10; 4,2; 8,2; 9,2; 11,10
 110 PLAY 4,2; 8,2; 9,2; 11,4; 8,4; 4,2; 8,4; 6,10
 120 PLAY 8,2; 8,2; 6,2; 4,8; 8,4; 11,4; 11,2; 9,10
 130 PLAY 8,2; 9,2; 11,4; 8,4; 4,4; 6,4; 4,10

What is the tune?

MICROWORLD BASIC APPLICATION PROGRAMS page 140

 6.8 PCG CAR GRAPHICS

 This program is the final result of the development process
described in section 3.10 of defining and using programmable
characters to create a picture of a car.

 100 P=63488+65*16: REM pcg address of "A"
 110 FOR A=P TO P+16*3-1 : REM putting in 3 chars
 120 READ B : POKE A,B
 130 NEXT A
 140 PRINT "Look ...":GOSUB [2] 2000:PRINT " +";:GOSUB [3]
 2000: PRINT" =";: GOSUB [5] 2000
 150 END
 1000 DATA 0,0,0,0,0,7,8,112,128,128,248,7,0,0,0,0
 1010 DATA 0,0,0,0,0,254,1,0,0,0,124,131,0,0,0,0
 1020 DATA 0,0,0,0,0,0,128,120,6,1,63,192,0,0,0,0
 2000 VAR (R) : REM receive no. of cars to print
 2010 FOR I=1 TO R
 2020 PRINT" ";:PCG: PRINT "ABC";: NORMAL
 2030 NEXT I
 2040 RETURN

 CONVERTING FROM OTHER BASICS

 How many times have you seen a useful routine written in
another version of BASIC and wanted to use it on your own
computer? The MicroBee is equipped with a powerful editor, error
checking routines and the ’GX’ (Global Search and Replace). Let’s
see how easy it is to convert from another BASIC into MICROWORLD
BASIC.
 The first step is to type in the program or better still,
use the RS232 interface to read in the program text from the
other computer. Let’s assume the following program.

 100 REM A DEMO PROGRAM IN BANANA HARD BASIC
 110 HOME
 120 A$="BILL LIVES IN A BRICK HOME"
 130 B$=LEFT$(A$,4)
 140 PRINT "HELLO "+B$
 150 END

Type RUN<CR>
and the MicroBee will respond with
 Syntax error in line 00110
 00100 HOME (cursor indicated by underscore)

Well MICROWORLD BASIC uses CLS to clear the screen not HOME, so
let’s replace it as follows.

Type GX/HOME/CLS/<CR>
and the MICROBEE will respond with

 00110 HOME you press the period (full stop key) to
replace this line and then the MICROBEE will respond with
 00120 A$="BILL LIVES IN A BRICK HOME" you press the SPACE

MICROWORLD BASIC APPLICATION PROGRAMS page 141

bar because you do not want to replace HOME in this string.

Now type LIST<CR>
and the MICROBEE will respond with

 00110 REM etc
 00110 CLS
 00120 A$="BILL LIVES IN A BRICK HOME"
 00130 B$=LEFT$(A$,4)
 00140 PRINT "HELLO "+B$
 00150 END

and type RUN<CR>
and the MICROBEE will respond with
 Integer string error in line 120
 00120 A$="BILL LIVES IN A BRICK HOME"

well MICROWORLD BASIC requires that all strings be of form A1$,
M4$, J7$ etc so just type

 GX/A$/A1$/<CR>
and press the period key to replace A$ with A1$ as we did above.
While you are at it you should change line 130 to read B1$ as
well. Let’s type EDIT 130 and the MicroBee will respond with

 00130 B$=LEFT$(A1$,4)
hold one finger on the CONTROL key and press S until the cursor
is over the ’$’ then press 1 <CR> and the line should read
 00130 B1$=LEFT$(A1$,4) and also change B$ in line 140 to B1$
now press RUN<CR>

What another error??

 NEXT without FOR error in line 00130
 00130 B1$=LEFT$(A1$,4)

Oh well the error messages can sometimes be ’fooled’ by certain
words. In reality MICROWORLD BASIC will not recognize the LEFT$
construction so we will have to replace it. Refer to Section 3 of
this manual and you will note that we have to replace
 LEFT$(A1$,4) with A1$(;1,4)
so we use the following

 GX/LEFT$(A1$,4)/Al$(;1,4)/ <CR> and press ’.’.

Type run and there you have it. Given that you should by now be
familiar with the DOs and DON’Ts of MICROWORLD BASIC, this
approach will allow you to convert from any other BASIC by just
using the error messages to find out what MICROWORLD BASIC
doesn’t like, EDITing with the built in editor and replacing with
the GX command where it is convenient.

MICROWORLD BASIC APPLICATION PROGRAMS page 142

+---+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Section 7. |
| |
| |
| |
| Glossary |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

 SECTION 7:GLOSSARY

 7.1 A GLOSSARY OF PERSONAL COMPUTER TERMS.

This glossary will help you to understand frequently used
computer terms.

ADDRESS. A number which identifies the specific location where a
piece of information is stored in the memory of the computer.

ALPHANUMERIC. Characters consisting of letters and numerals, as
opposed to special characters.

ASCII. American Standard Code for Information Interchange.
Computers use binary numbers to represent letters, numerals, and
special characters.The ASCII code specifies which binary number
will stand for each character.

ASSEMBLY LANGUAGE. a means of communicating with a computer at a
low level. Assembly language lies between high level languages,
like MICROWORLD BASIC, and machine language, ones and zeros.
Programmers use assembly language to make efficient use of memory
space and to create a program which runs quickly.

BASIC. Beginners All-purpose Symbolic Instruction Code.The most
used high-level language for small computers.

BAUD. A measure of the speed at which computer information
travels. A baud is equal to one bit per second. MICROBEE users
300 or 1200 baud.

BINARY NUMBERS. A numbering system that uses only ones and
zeros.lt is an efficient way of storing information in a computer
because the hundreds of thousands of microscopic switches in a
computer can only be on (1) or off (0).

BIT. A binary digit (1 or 0) ,the smallest item of useful
information that a computer can handle.

BUG. An error. A hardware bug is a malfunction in the computer. A
software bug is a programming error.

BYTE. A sequence of bits that represent a single character. In
most small computers, a byte is eight bits.

CAI. Computer-Aided Instruction. Teaching by means of a
computer.The computer informs the student of right and wrong
answers as he or she makes them.

CHARACTER. A single letter, number, or other symbol.

CHIP. A generic term for an integrated circuit (IC), a single
package holding hundreds of thousands of microscopic components.
The term comes from the slices (chips) of silicon which they are

MICROWORLD BASIC FOR THE MICROBEE page 144

made of.

COMMAND. A word or character that causes a computer to do
something.

COMPUTER. Any device that can receive and then follow
instructions to manipulate information. In any computer, both the
information on which the instructions operate may be varied from
one moment to another. A device whose instructions cannot be
changed is not a computer.

COMPUTER NETWORK. Two or more connected computers that have the
ability to exchange information.

COMPUTER PROGRAM. A series of commands, instructions, or
statements put together in a way that tells a computer to do a
specific thing or series of things.

CONTROL CHARACTERS. Characters or commands obtained by holding
down the key marked "CTRL" while pressing another key.

CP/M. Control Program/Microcomputer.

CPU. Central processing unit, the heart of a computer. The CPU
controls all operations of all parts of the computer and does
actual calculations. In personal computers, CPU usually refers to
just one of the chips in the machine.

CURSOR. A position indicator on a VDU. On your MICROBEE it is >

DATA. A general term meaning any and all information, facts,
numbers, letters, and symbols which can be acted on or produced
by a computer.

DATA BASE. A collection of related data that can be retrieved by
a computer.

DEBUG. To go through a program to remove mistakes.

DISASSEMBLER. A program that translates a computer’s native
language into assembly language.

DISK. A round piece of magnetic-coated material,either rigid
metal or flexible (floppy) plastic, used to store data with
greater density, speed, and reliability than is available on
cassettes.

DISPLAY. A method of representing computer information in visual
form. Most common are VDU and printed paper.

DOCUMENTATION. (1) The instruction manual for a piece of hardware
or software.(2) The process of gathering information while
writing a computer program so that others using the program are
able to see what was done.

MICROWORLD BASIC FOR THE MICROBEE page 145

DOS. Disk Operating System.

FIRMWARE. A term refering to software that has been permanently
placed in memory, usually into ROM (Read Only Memory) .

FLOPPY DISK. A thin, flexible disk of plastic with a magnetic
coating used for data storage.

FLOWCHART. A common method of graphically planning what a piece
of software should do before the actual writing process begins,
or for describing what it does after it is written.

HARD COPY. A paper printout of information produced by the
computer.

HARDWARE. The physical part of the computer (VDU ,CPU) as opposed
to software.

HEXADECIMAL NUMBERS. A number system with the base of 16 commonly
used by programmers to indicate locations and contents of a
computer’s memory.

INITIALISE. To prepare a disk so that the computer can later
store data on it.

INPUT. The transfer of data into the computer.

INPUT/OUTPUT. Called I/O for short. A general term for 1)
external equipment connected to a computer. 2) Two-way exchange
of information that goes on between the computer and that
equipment.

INTEGRATED CIRCUIT (IC). Also known as a chip, this is a group of
interrelated circuits in a single package.

INTERFACE. A piece of hardware or software used to connect two
devices that cannot be directly hooked together.

LANGUAGE. A set of conventions (symbols and terms) specifying how
to tell a computer what to do.

LOAD. To put data and/or programs into a computer.

MACHINE LANGUAGE. The "native language" of a computer; those
fundamental instructions the machine is capable of recognising
and executing. .

MEMORY. Circuitry and devices that hold information in the form
of binary ones and zeros that the computer can access. Examples
are main memory (integrated circuits), floppy disks, and cassette
tape.

MENU. A list of commands that most ready-made programs will
display on request.

MICROWORLD BASIC FOR THE MICROBEE page 146

MICROCOMPUTER. A computer based on a microprocessor like
MICROBEE.

MICROPROCESSOR. The central processing unit of a computer
(usually in a single intergrated circuit) which holds all the
elements for manipulating data and performing arithmetic
calculations.

MODEM. MOdulator-DEModulator. This device allows a computer to
communicate over phone lines.

MONITOR. A television set, often one that is specially
manufactured to be connected to a computer.

NETWORK. An interconnected system of computers and/or terminals,
often connected by telephone lines.

OPERATING SYSTEM. Software that oversees the overall operation of
a computer system. This group of programs acts as an intermediary
between the hardware and the applications software.

PERIPHERAL. A piece of equipment (usually hardware) that is
external to the computer itself. i.e. Disk drives and printers.

PERSONAL COMPUTER. A general purpose inexpensive computer owned
by an individual.

PRINTER. An output device that produces a printed ("hard") copy
of the information generated by the computer. A line printer
prints a whole line of text at a time. A serial printer prints
one character at a time.

PRINTOUT. A printed copy of the information produced by the
computer.

PROGRAM. 1) A set of instructions that tell the computer to do
something. 2) To prepare the set of instructions.

RAM. Random Access Memory. The main type of memory used in a
small computer. Also known as read/write memory because data in
RAM can be easily changed.

RF MODULATOR. A device that lets a personal computer use any
ordinary television set for output.

ROM. Read Only Memory. Memory where information is permanently
stored and cannot be altered. This form of memory is also random
access.

SAVE. To store a program on a disk or cassette.

SIMULATION. A computerised representation of something in action.

SOFTWARE. Programs or segments of programs. The term was coined
to contrast with hardware.

MICROWORLD BASIC FOR THE MICROBEE page 147

SYSTEM. An organised collection of hardware and software which
works together.

SYSTEM SOFTWARE. General purpose programs that allow programmers
to modify applications programs. BASIC may be considered part of
the system software.

TERMINAL. A piece of equipment with a keyboard for input and an
output device such as a VDU or printer. A terminal is used to
communicate with the computer.

USERS’ GROUP. An association of people who exchange information
about a particular computer. There is a MICROBEE Users’ Group and
there is a Newsletter that circulates monthly named "Micro World
News".

VDU. Visual Display Unit. A TV monitor which displays output.

WORD PROCESSING. The entry, manipulation, editing, and storage of
text using a computer.

MICROWORLD BASIC FOR THE MICROBEE page 148

+---+
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| Section 8. |
| |
| |
| |
| Index |
| Appendix |
| Updates |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

 INDEX

ABS 127
ALPHA LOCK 13
ANNUITIES 138
ANSI STANDARD BASIC 8
APPLICATION PROGRAMS 137
ARRAY VARIABLES 14,23
ARRAYS 74
ASC 130,78
ATAN 127
AUTO 30,93
AUTO LINE NUMBERING 19
AUTO-REPEAT 10
BACKSPACE 13
BAD LOAD 37
BOOLEAN 15
BRACKETS 62
BRANCHING 63
BREAK 10
CHR 46,79,133
CLEAR 94
CLS 79,94
CONCATENATION 44
CONDITIONAL STATEMENTS 65
CONDITIONAL BRANCHING 64
CONSTANTS 14
CONT 94
CONTROL C 11
CONTROL CHARACTERS 12
CONTROL S 11
CONVERTING FROM OTHER BASICS 141
COS 128
CURS 80,95
DATA 55,20,95
DATA POINTER 56
DEBUGGING AIDS 73
DEL 13
DELETE 13,32,95
DIM 23,96
DIMENSIONING ARRAYS 23
EDIT 18,38,97
ELSE 66
END 19,98
ERROR MESSAGES 88
ERROR C 47,130
ERROR L 47,130
ESC 11
ESCAPE CODES 11
EXEC 81,98
EXCITING FOR ... NEXT LOOPS 99
EXP 128
EXPRESSIONS 15

MICROWORLD BASIC FOR THE MICROBEE INDEX page 150

FLT 128
FN 134
FOR ... TO 67,99
FORMAT 60
FORMATTING OUTPUT 49,60
FRACT 128
FRE 21
FRE($) 78,129
FRE(0) 128
FUNCTIONS 7
GOSUB 100
GOTO 18,100
GRAPHICS 41
GRAPHICS AND ATTRIBUTES 69
GRAPHICS ERROR 48
GX 40,102
HIRES 69,103
IF ... THEN 103
IGNORE CHECKSUMS 38
IMMEDIATE MODE 20,28
IN# 81,105
INPUT 20,55,57
INPUT AND OUTPUT REDIRECTION 81,84
INPUT BUFFER 105
INPUTTING COMMAS 105
INT 93,131
INTEGER FUNCTIONS 9
INV"ERSE 107
INVERT 71
KEY$ 46,79
LEN 46,78,131
LET 56,107
LINE FEED 13
LINE NUMBERS 18,30
LIST 16
LLIST 108
LOAD 21,36,108
LOAD U, LOAD? 38
LOG 129
LOGICAL OPERATORS 109
LORES 69,109
LOWER CASE 10
LPRINT 110
MACHINE LANGUAGE 38
MACHINE LANGUAGE ROUTINES 38
MATHEMATICAL OPERATORS 61
MEMORY LOCATIONS 161
MESSAGE IN AN INPUT STATEMENT 58
MIXED MODE 55
MIXED MODE ERROR 55
MULTIPLE STATEMENT LINES 18
MUSIC ON THE MICROBEE 43
NEW 16,110
NEXT* 111
NORMAL 110

MICROWORLD BASIC FOR THE MICROBEE INDEX page 151

NULL STRING 57
OHMS LAW 139
ON ERROR GOTO 47,111
ON ... GOSUB 112
ON ... GOTO 112
OUT 114
OUTi 81,114
OUTLi 114
PARENTHESIS 62
PCG 115
PCG CAR GRAPHICS 141
PEEK 80,131
PLAY 115
PLOT 41,71,116
POINT 71,131
POKE 80,117
POS 132
PRMT 119
PRIORITY OF ARITHMETIC OPERATIONS 62
PRMT 119
READ 119
REAL NUMBERS 9,54
REM 20,119
RENUM 30,120
RESET 10,71,121
RESISTORS IN PARALLEL 139
RESTORE 56,122
RETURN 20,122
RIPPLE SORT 137
RND 129
RUN 17,122
SAVE 36,121
SAVEF 122
SCREEN POSITIONING 11
SD 123
SEARCH 132
SET 71
SGN 129
SHIFT KEY 12
SIMULATING LEFT$ 76
SIMULATING MID$ 76
SIMULATING RIGHT$ 76
SIN 130
SPC 124
SPEED 24
SQR 130
STATEMENT AND COMMAND DESCRIPTIONS 93
STEP 67
STOP 20,124
STR 44,78
STRING ARRAYS 44
STRING CAPABILITIES 44
STRING FUNCTIONS 44
STRING OPERATOR 63
STRING OPERATIONS 74

MICROWORLD BASIC FOR THE MICROBEE INDEX page 152

STRS 124
SUBROUTINES 68
TAB 13,60,125
TRACE 74,125
TYPES OF VARIABLE 14,22
UNDERLINE 125
USED 132
USER DEFINED FUNCTIONS 134
USR 135
VAL 46,78,130
VAR 125
VARIABLE NAMES 22
VARIABLES 14
ZONE 61,126

MICROWORLD BASIC FOR THE MICROBEE INDEX page 153

 APPENDIX

 8.2 ASCII - HEXADECIMAL - DECIMAL TABLE

ASCII HEX DECIMAL ASCII HEX DECIMAL ASCII HEX DECIMAL
NUL 00 0 + 2B 43 V 56 86
SOH 01 1 , 2C 44 W 57 87
STX 02 2 - 2D 45 X 58 88
ETX 03 3 . 2E 46 Y 59 89
EOT 04 4 / 2F 47 Z SA 90
END 05 5 0 30 48 [5B 91
ACK 06 6 1 31 49 \ 5C 92
BEL 07 7 2 32 50] 5D 93
BS 08 8 3 33 51 ^ 5E 94
HT 09 9 4 34 52 - SF 95
LF 0A 10 5 35 53 60 96
VT 0B 11 6 36 54 a 61 97
FF 0C 12 7 37 55 b 62 98
CR 0D 13 8 38 56 c 63 99
SO 0E 14 9 39 57 d 64 100
SI 0F 15 : 3A 58 e 65 101
DLE 10 16 ; 3B 59 f 66 102
DCl 11 17 < 3C 60 g 67 103
DC2 12 18 = 3D 61 h 68 104
DC3 13 19 > 3E 62 i 69 105
DC4 14 20 ? 3F 63 j 6A 106
NAK 15 21 @ 40 64 k 6B 107
SYN 16 22 A 41 65 l 6C 108
ETB 17 23 B 42 66 m 6D 109
CAN 18 24 C 43 67 n 6E 110
EM 19 25 D 44 68 o 6F 111
SUB lA 26 E 45 69 p 70 112
ESC IB 27 F 46 70 q 71 113
FS lC 28 G 47 71 r 72 114
GS ID 29 H 48 72 s 73 115
RS lE 30 I 49 73 t 74 116
US IF 31 J 4A 74 u 75 117
SP 20 32 K 4B 75 v 76 118
! 21 33 L 4C 76 w 77 119
" 22 34 M 4D 77 x 78 120
23 35 N 4E 78 y 79 121
$ 24 36 O 4F 79 z 7A 122
% 25 37 P 50 80 { 7B 123
& 26 38 Q 51 81 ‘ 7C 124
’ 27 39 R 52 82 } 7D 125
(28 40 S 53 83 ˜ 7E 126
) 29 41 T 54 84 DEL 7F 127
* 2A 42 U 55 85

MICROWORLD BASIC APPENDIX page 154

8.3 Important Memory Locations in MicroBee BASIC

 Note that all 16 bit numbers stored have the Least
Significant Byte stored first, followed by the Most significant
Byte.

Decimal address Hex address Function

 0 0 HIRES scratch
 128 80 INT vectors
 136 88 PIO INT vectors
 160 A0 Top of memory pointer
 162 A2 Warm start jump address
 164 A4 Init. check bytes
 166 A6 Mach. lang. EXEC address
 168 A8 10 reserved bytes
 178 B2 Output device vector table
 194 C2 Input device vector table
 210 D2 Start of 6545 reg. table
 212 D4 6545 Horizontal
 217 D9 6545 Vertical
 220 DC 6545 Cursor start/control
 226 E2 Output device byte
 227 E3 List output device byte
 228 E4 Input device byte
 229 E5 Video mode byte
 230 E6 Output speed byte
 231 E7 PCG chars USED
 232 E8 plot type I/R/S
 233 E9 Tape speed 1(1200)/4(300)
 234 EA RS232 baud 0(300)/1(1200)
 235 EB PLOT/ tape buffer
 512 200 Low ML start if auto-exec
 2240 8C0 No. sig. digits (must be <62)
 2256 8D0 Prog. begin pointer
 2258 8D2 prog. end ptr (for recovery)
 2304 900 Start of BASIC program/ML
 ? ? End program, start variables
 16128 3F00 Stack/top of strings for 16k
 16383 3FFF End of RAM in 16K system
 32512 7F00 Stack/top of strings for 32k
 32767 7FFF End of RAM in 32K system

 32768 8000 BASIC, warm,cold start
 32771 8003 Cold,warm start
 32774 8006 DGOS wait keyboard in A
 32777 8009 DGOS key if available -> NZ
 32780 800C DGOS vdu out in B
 32783 800F DGOS give PIO an arm
 32783 8012 DGOS cass byte in A
 32789 8015 DGOS cass block in
 32792 8018 DGOS cass byte out A
 32795 801B DGOS cass block out
 32798 801E RUN0 for power on execute
 32801 8021 Warm for restoring ROJ

MICROWORLD BASIC APPENDIX page 155

 32804 8024 HIRES init
 32807 8027 LORES init
 32810 802A INVERSE init
 32813 802D UNDERLINE init
 32816 8030 SET dot X=HL, Y=DE ..
 32819 8033 RESET dot returns Z if O.K.
 32822 8036 INVERT dot
 32825 8039 TEST for dot-NZ if set/error
 32828 803C PLOT a line
 32831 803F Redirected input A
 32834 8042 Redirected out A
 32837 8045 Redirected print out A
 49151 BFFF End of BASIC roms

 49152 C000 EDASM if fit ted
 49155 C003 EDASM monitor entry point
 57344 E000 NET/MEM ROM if fitted
 61440 F000 Start of screen memory
 63488 F800 Start of PCG ram

 For more details, ask about the availability of the BASIC
SCRATCH and JUMP TABLE sheets.

 8.4 Full MicroBee PORT MAP

Some of these PORTS are for DISK/ S100 expansion users’ reference
only.

 PORT FUNCTION
 00 PIO port A data port
 01 PIO port A control port
 02 PIO port B data port
 03 PIO port B control port
 08 Colour selection port (colour only)
 09 2651 USART port (colour only)
 0A S100 Extended addressing port, Mem selection
 0B ROMREAD latch on bit 0 (to read char gen)
 0C 6545 CRTC address/status port
 0D 6545 CRTC data port
 44 FDC command/status
 45 FDC track register
 46 FDC sector register
 47 FDC data register
 48 Controller select/side/double density latch

PORT B data port bit assignment:

 bit 0 cassette data in
 bit 1 cassette data out
 bit 2 RS232 CLOCK or DTR line
 bit 3 RS232 CTS line
 bit 4 RS232 input
 bit 5 RS232 output

MICROWORLD BASIC APPENDIX page 156

 bit 6 speaker bit
 bit 7 network interrupt bit

 8.5 MICROWORLD BASIC TOKEN CODES

 In MicroWorld BASIC, all the reserved words are compressed
into one byte to save memory spaceo The codes used are as
follows.

129 LET 162 PRMT 195 ERROR
130 LPRINT 163 ZONE 196 POS
131 PRINT 164 SD 197 ASC
132 IF 165 CLEAR 198 USED
133 NEW 166 EDIT 199 NET
134 LLIST 167 SET 200 MEM
135 LIST 168 RESET 201 EDASM
136 ELSE 169 SPEED 202 GX
137 THEN 170 NORMAL 203 ABS
138 FOR 171 UNDERLINE 204 RND
139 NEXT 172 SAVE 205 FLT
140 DIM 173 LOAD 206 FRE
141 GOTO 174 STRS 207 VAL
142 OFF 175 INVERSE 208 FRACT
143 ON 176 PCG 209 SGN
144 STOP 177 CURS 210 SQR
145 END 178 NOT 211 SIN
146 GOSUB 179 AND 212 COS
147 READ 180 OR 213 ATAN
148 DATA 181 TRACE 214 LOG
149 RETURN 182 CONT 215 EXP
150 INPUT 183 CLS 216 PLOT
151 RUN 184 HIRES 217 DELETE
152 RESTORE 185 AUTO 218 RENUM
153 TO 186 INVERT 219 PLAY
154 STEP 187 LORES 220 EXEC
155 TAB 188 INT 221 STR
156 SPC 189 IN 222 KEY
157 FN 190 PEEK 223 CHR
158 VAR 191 USR
159 POKE 192 LEN
160 OUT 193 SEARCH
161 REM 194 POINT

MICROWORLD BASIC APPENDIX page 157

