
+---+
| |
| |
| |
| |
| |
| MicroWorld Z80 |
| |
| |
| Editor/Assembler |
| |
| |
| Instruction Manual |
| |
| |
| |
| |
| |
| Machine Code Programming For Your Microbee. |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
+---+

 CONTENTS/INDEX

 Introduction......................................1

 Getting it running................................2

 Brief description of Editor.......................4

 Editor instructions...............................5

 Sub Edit instructions (editor)....................9

 Brief description of assembler...................10

 Switches! What they are (descriptions)...........11

 Edit Error messages..............................12

 Assembler Error messages.........................15

 The MicroBee Environment.........................16

 Output Device numbers............................18

 Programmable Graphics Characters.................18

 Creating a PCG Character.........................19

 Some Helpful Hints...............................21

 Glossary of terms................................22

 What is an "Editor"..............................26

 What is an "Assembler"...........................28

 Some "Hands On" Experience.......................30

 Test source listing..............................34

 Command Index....................................35

 MicroBee Monitor and Commands....................36

 Layout of a File.................................40

 Editor scratch locations.........................41

 Basic scratch area...............................42

 Zilog Mnemonics..................................45

 INTRODUCTION

 This package consists of a "line oriented" text editor with
automatic line numbering and an assembler which will generate Z80
machine code from standard Zilog Mnemonics as specified in the
"Zilog Z80-Assembly Language Programming Manual". Macro operators
and certain arithmetic operators are not supported.

 The Editor files may be saved to, or loaded from, cassette
using the Save and Get commands.

 Multiple files may be present in memory at the same time.
Lines from the primary file may be copied and appended to the
specified secondary file, or the entire contents of a specified
secondary file may be merged back into the primary file with
automatic renumbering of the primary file if required.

 Specific lines in the currently "open" file may be accessed
by their line number of by cursor control. Once accessed the
lines may be altered, appended to, replaced, or deleted. Lines
may be inserted into the file by simply assigning a line number
appropriate to the location you wish it to take up in the file.
Likewise a line, or block of lines, may be manipulated or killed
by specifying the block of lines involved.

 Global search and replace functions are supported by the
editor, each occurrence in the run is reported as it is found.

 Up to 14 lines on either side of the "current line" may be
inspected, without moving the line pointer, by using the "View"
feature.

 Files may be typed to a printer with the line numbers
stripped off, allowing the Editor to be used for letter writing.

 The assembler produces its object code directly into memory
ready for immediate execution. An offset feature allows the
object to be located in a location other than where it would
normally reside, to prevent overlaying important memory areas
during assembly. Since a three pass technique is used the object
code may even overlay the source file if desired.

 Assembler labels may be up to 6 characters in length and
provided that they start with an ascii character may have almost
any other character imbedded within them. Source listings
generated during assembly may be suppressed or directed to either
VDU or printer.

 Full error reporting is provided even when source listing is
suppressed, a "wait on error" function is allowed, with
conditional return to the Editor automatically set up on the line
containing the error.

 1

 Print directives are provided to allow the listing to
printer to be turned on or off under software control, this
allows the printing of partial source listings. Listing of the
object code for long strings or data statements is automatically
suppressed to conserve paper, a "switch" is provided to allow
listing in full if desired.

 GETTING IT RUNNING

 There are three resident software packages supplied with the
Microbee. If you have battery backup, any one of the three may be
running when you turn your Microbee on. Microbees without battery
backup will always enter BASIC when they are turned on.

 These three software facilities are described briefly here.

EDITOR/ASSEMBLER The editor and Z-80 assembler described
 in this manual. When the
 Editor/Assembler is operating, the user
 is prompted with ‘*’ and an underline
 cursor ‘_’.

BASIC Microworld 16K Basic. A superhuman basic
 interpreter, often considered by most
 Microbee owners to be more powerful than
 a locomotive (until they discover the
 joys of programming in machine language
 with the Editor/Assembler). The user can
 tell when the Basic interpreter is
 running by noting that the prompt is ‘>’
 and the cursor in an underline ‘_’.

MONITOR This is the software facility to use
 when you want to know all about the
 nitty-gritty details of the stuff inside
 the computer’s memory. The main details
 of the monitor are laid out in Appendix-
 E. The monitor gives the same prompt as
 Basic ‘>’ but with a white blob cursor
 (so you can tell them apart).

 Getting into the Editor/Assembler is a simple matter. From
basic, typing EDASM will get things started for you. (Note that
in reading this manula,if you are instructed to type anything,
you are expected to terminate the line by hitting <return> unless
you are specifically told not to). If you haven’t used the
Editor/Assembler recently, it will have forgotten how much memory
your Microbee has. If so, you will be asked the question ‘Memory
Size?’. If you have a 16K Microbee, reply by typing 4000. This is
the memory size of your machine expressed in hexadecimal (4000-
hex = 16384-dec = 16K). 32K Microbee owners can reply with 8000.

 2

 If you wish to enter the Editor/Assembler from the monitor,
simply type X . This command means ‘exchange’ and can also be
used to get from Editor/Assembler back into the monitor.The
name of the command comes from the fact that many users spend a
lot of time ‘swapping’ between the Editor/Assembler and the
monitor.

 There are many ways to get into the monitor. As already
noted, X gets into the monitor from the Editor/Assembler. Typing
<reset>M will get into the monitor from anywhere. To do this,
just hold down <reset> for a second and then hold down the M key
and release <reset> while keeping the M key held down. This is
not a command, so it is not necessary to hit <return>. You can
do a <reset>M absolutely anytime (even in the middle of a
program).

 Getting into basic is a bit more complicated. Typing
<reset><esc> (in the same ways as <reset>M) will do a ‘cold
start’ in basic, which will remove any basic programs or
Editor/Assembler files. <reset><esc> is a last resort to start
from scratch when everything goes wrong. Like <reset>M , this
does not require a <return> and can be done anytime. Appendix-G
contains a bit of imformation about file and program retrieval if
you wish to restore files or programs after an accidental or
unavoidable cold start.

 A more dignified way of ‘cold start’ing basic is the B
command (from the monitor or Editor/Assembler). This still wipes
all files and programs, being identical to <reset><esc>, but is
more often used out of choice rather than desperation. If you
wish to get into basic without losing your programs and files
simply type G 8021 (from the monitor) or X 8021 (from the Editor/
Assembler). Either of these commands will run the machine code
program at 8021-hex which happens to be the basic ‘warm start’
vector.

 Hitting <reset> (on its own, held down for at least a
second) will return the user to the most recently used system.
For example, if <reset> is hit in the middle of a program
executing (called from the monitor), control will be returned to
the monitor. If the program had been run from the
Editor/Assembler, then <reset> would have returned us to the
Editor/Assembler. The Microbee remembers which system was running
by updating the relevant ‘where am I’-information every time one
of the commands mentioned above is used to change from one system
to another. This includes using <reset>M and <reset><esc> but
does not work with G 8021 or X 8021, because a warm start in
basic does not update this ‘where am I’-information. This means
that if basic is entered by a warm start (by G 8021 or X 8021),
then any subsequent <reset> will cause the system to revert back
to the monitor or Editor/Assembler, depending on which one basic
was called from.

 3

 The way to fix this problem is by manually changing the
warm-start jump vector in the scratch locations at 00A2-hex. Do
this by getting into the monitor and typing E A2 which will
display data in and around location 00A2. Hit M (without
<return>) to modify the memory and then type 2180 (without
<return>). This enters the Basic-warm-start vector into the
locations 00A2 and 00A3 so hitting <reset> now will enter Basic
and cause Basic to be warm-started every time <reset> is hit from
now on (until an entry into the Monitor or Editor/Assembler
changes the vector).

 BRIEF DESCRIPTION OF EDITOR

 As you read this manual, you will notice that whenever a new
term is introduced into the text it is shown in CAPITAL LETTERS.
If after reading the paragraph, you are still not sure of the
meaning of the word, try looking it up in the glossary of term
towards the end of this manual. Readers who have never met an
editor are advised to read Appendix-A "What is and Editor" before
proceeding further into this section. Anything that is
inadequately explained will probably be covered in more detail in
the Appendix.

 This editor is a line editor, enabling users to create files
in a manner similar to basic programs. Each line has a number and
the lines reside in the file in numerical order. The editor can
operate on two files, designated PRIMARY FILE and SECONDARY FILE.
This facility enables the user to use bits and pieces of old
files to create new files by moving text from one file to
another. In practice, many files may reside in memory
simultaneously, with only two of them being active at any one
time. To make a file active (thus deactivating a currently active
file), you only need to open a file (primary or secondary) at the
place in memory where the file to be activated resides. This
means that the user is responsible for keeping track of the
location of of all the inactive file since the editor is ignorant
of their existance (until they are made active).

 The editor commands allow you to insert, delete or replace
lines. The full dictionary of editor commands is detailed in the
next section. One special command is E (edit), which enables the
user to work on one line of a file in a more detailed way,
inserting, deleting and replacing characters in the line. A whole
new set of commands (subedit instructions) become available when
the E command is excecuted. The subedit commands are listed in
Section 5.

 4

 EDITOR INSTRUCTIONS

 We will now deal with the editor commands in detail. Anyone
who is unsure of exactly what is going on is advised to look at
Appendix-C for a tutorial example of the use of the editor (and
the assembler). The commands described here are listed in some
sort of order of maximum comprehensibility, so anyone requiring
an alphabetical listing is requested to look in the command index
in Appendix-D.

 Note that in every command that can specify a line number as
a parameter, # can be used to refer to the first line of the
file, * can be used to reference the last line in the file and .
refers to the current line. These are known as WILD CARDS.

Z This command creates a new file, if an address is given
 (e.g. Z 3000) the file is to be created at the specified
 address. If no address is specified, the file will be
 created at 1000-hex, by default. The file is
 automatically opened as the primary file.

ZS This creates a file as above and makes it the current
 secondary file. If an address is given (e.g. ZS 3800)
 then the file will be created at that address. When no
 address is specififed, the file is created 1K above the
 end of the current primary file. Note that the editor
 does not do any checks to ensure that it does not destroy
 the secondary file by enlarging the primary file to wipe
 over it. You may have a number of secondary files in
 memory at one time but only one can be open (active) for
 use in operations with the primary file.

O Once we have created a few files here and there in
 memory, they are all the same format, so files that were
 created as secondary files will be no different to files
 created as primary files. So, we can deactiveate our
 current primary file and open any other inactive file by
 the O command. For example O 2000 will make the file at
 2000-hex the current primary file (if there is a file at
 2000-hex). Once again, "no address" defaults to 1000-hex.
 If no file is resident at that address, a ‘No File Here’
 error will occur because the Editor/Assembler is smart
 enough to know what a file looks like in most cases.
 However, it is always good practice to query the state of
 the file (with the Q command) since it is possible that
 some rubbish in memory may look like a file.

OS This attempts to open a secondary file at the address
 specified (e.g. OS 3800), thus deactivating the
 previously open secondary file.

 5

I The insert command allows you to add new lines to the
 primary file. For example I180,10 will cause everything
 subsequently typed to be inserted into the file at lines
 180,190,200,... as specified by the starting number (180)
 and the step size (10). If the step size is ommited, the
 editor will remember the step size used last time an
 insert was performed. So I180 will insert lines from line
 180 in the same size steps as used in the last Insert
 command. If the start line is ommited, the lines are
 inserted after he current line in the file (The current
 line is the line most recently looked at). However, if an
 I command is used before any other instructions have been
 done, then the default action is to insert at line 100 in
 step sizes of 10. If the linenumber steps over an
 existing line, the insert is completed and terminates
 with a ‘No Room Between Lines’ error message. For
 example, if a file already has lines numbered 230 and 250
 an I240,5 command will insert lines at 240 and 245 and
 then terminate because of lack of room between lines. The
 I instruction can also be aborted by typing <ctrl>C or
 <ctrl>A (neither of which require a <return>).

D The delete command has two formats, D245 or D240:250. In
 the first case, only line 245 is deleted. In the second
 case all lines between 240 and 250 (inclusive) are
 deleted. As with all commands that allow a line number to
 be specified, if no line number is given, the current
 line is assumed. It is not recommended to use WILD CARDS
 with the delete command, D#,* is not the best way to
 delete the entire file, use the Z command instead.

R Replace the specified line in the file and then go into
 insert mode. The command R240,10 is equivalent to D240
 followed by I240,10. Once again, if no parameters are
 given, default step size and line number are as for the
 insert command.

N This command will renumber the complete file. For example
 N300,10 will renumber the file so that the first lin is
 numbered 300 and subsequent lines are numbered in steps
 of 20 (320,340,360,...).

Q Query the status of the currently open primary file. Four
 addresses are printed out: START or file, address of
 CURRENT LINE in file, address of END of file and UPPER
 LIMIT of memory.

P Print lines onto the video display. So P200:450 will
 print all lines from 200 to 450 inclusive. The wildcards
 ‘#’, ’*’ and ’.’ can all be used with the print command.
 In all instances of the print command, the last line
 printed becomes the current line. If only one line number
 is specified (e.g. P300) then this line alone is printed
 and becomes the current line. A special version of the
 command is P with no parameters specified which prints

 6

 one screenful of lines starting at the current line. Thus
 a useful way to look through the entire file is to print
 the first line (P#) and then print the rest of the file
 one screenful at a time (P).

^ The circumfles causes the current line pointer to be
 moved backwards by one line (towards the start of the
 file). The new current line is printed. This command does
 not require a <return> which makes it fast for looking
 through the file backwards.

L/F The line feed is the same as ^ except that the current
 line pointer steps forward through the file. No <return>
 is required.

V View the 14 lines around the current line without
 changing the current line pointer. If the command
 contains a number (e.g. V9) then the current line will
 appear at this line on the screen (in this case the
 current line will be the ninth line in the fourteen
 printed on the screen).

L Same as P command but with output directed to the printer
 port instead of the video display.

T This is another version of the P command but with the
 output sent to the printer and the line numbers stripped
 from the file (useful for letter writing).

E Edit a line using the subedit command listed in Section
 5 of this manual. E100 will edit line 100. E will edit
 the current line.

F The Find command will search through the file looking for
 a given string, starting from the line AFTER the current
 line. The command F/elephant/ will look for the next
 occurence of the word elephant and print the line (making
 it the new current line). The command F will search using
 the string used for the last search (useful for searching
 for the same string in several places in the file). If a
 C command is executed, the last string used in an F
 command is forgotten (because the same storage is used
 for the C command).

C The command C/mouse/elephant/ will search for the next
 occurance of the string ‘mouse’ and change it to
 elephant. The command C/mouse/elephant/* will continue
 repeating the change until the end of the file is
 reached. This will only do the change to the first
 occurance of ‘mouse’ on each line, and will not do
 anything to the lines before the current line.

CO The copy command will take a block of lines from the
 current primary file and append them to the end of the
 currently open secondary file. The primary file is not

 7

 altered by this command. So the command CO100:300 will
 copy lines 100 to 300 (inclusive) onto the end of the
 secondary file. After each copy, the status of the
 secondary file is printed as a reminder to the user that
 the editor does not check or protect the secondary file.

M The merge command will copy the entire contents of the
 currently open secondary file into the primary file
 (insertine after the current line). The lines of the
 secondary file are inserted with line number steps of 2.
 The lines following the inserted text are also renumbered
 in steps of 2 for as many lines as necesary to put the
 line numbers back into increasing order. The command
 could be M300 to merge the secondary file in after line
 300 in the primary file or just M to do the merge after
 the current line.

S Saves the current primary file to cassette. The command
 must be in the form S "NAME" with the quotes and file
 name (up to six characters) being compulsory.

G This command will load a file from tape. The command must
 be in one of two forms: G* will load a file with any name
 and G:"NAME" will not load the file unless it was saved
 with the name label "NAME".

B The Bye command does a cold start of basic (quitting the
 Editor/ Assembler).

X This command will execute a machine code program. The
 command X with no parameters will execute the monitor
 (so this is the command to use to get into the monitor).
 The command X3500 will execute the machine code program
 starting at 350-hex.

A This is the Assemble command. Sections 6 and 7 of this
 manual are devoted to describing the workings of this
 facility of the Editor/ Assembler.

When inserting lines into a program, remember the following keys
have special meanings:

 <tab> leaves blanks up to the next character position
 which is a multiple of 8. Useful for putting
 stuff into columns (such as assembly language
 programs).

 ; recognised by the assembler, meaning that
 everything following the ‘;’ until the end of the
 line is to be ignored as comments.

 <B/S> backspaces over characters, deleting them from
 the input line buffer (but doesn’t delete them
 from the screen).

 8

 SUB EDIT INSTRUCTIONS

 Whilst in EDIT mode, the normal editor command set is not
available, and a separate set of commands are used. Note that
noe of these commands require a <return>, since the <return> key
has a special meaning of its own.

L This command lists the entire line to the video display
 so you can see what the line looks like so far. This is
 useful at the start of an edit to see what the line looks
 like and during an edit to see how the edited line looks
 so far. Note that the line as it appears when the L
 command is executed does not have to be included in the
 file since the q command will quit the edit without the
 changes being put into the file.

Q Quit the edit without changing the file. In other words
 pretend the line was never edited.

<space> The space key will move the cursor one position forward
 along the line and reveal the characters in the line as
 it passes over them. There is no equivalent key for
 moving backwards since the back-space is destructive.

<B/S> The backspace key is destructive as all characters
 backspaced over will be removed from the line.

A Ignore all changes made so far. Restart the edit with the
 original line unchanged.

I Insert all subsequent characters into the line. This
 sequence is terminated by a <return> to finish the edit.
 If further changes are required, you must re-edit the
 file.

X This is the append command. The pointer is moved to the
 end of the line and the insert command mode is entered.

nC Change the next ‘n’ characters in the line to whatever
 you type next. You must now type the specified number of
 characters. For example, if you are in the middle of an
 edit and you are at the start of the word ELEPHANT and
 you type 5CMOUSE, then the first five letters of the
 word will be changed so the word will now be MOUSEANT. If
 no value of n is given, it is assumed to be 1.

nD Delete the next ‘n’ characters in the edit line. If no
 value for ‘n’ is given it is assumed to be 1.

H Delete all characters after this point to the end of the
 line, and then go into insert mode to add more text to
 the end of the line. If you only want to delete the
 remainder of the line without adding more stuff to the
 end, just type H<return> (since the <return> will stop
 the insert and exit from the edit.

 9

nSx This command moves the pointer to the ‘n’th occurance of
 the character x. For example, 5Sq will move the pointer
 to the 5th occurance of the letter ‘q’ in the line.

nKx This will delete all characters from the current position
 to the ‘n’th occurance of the letter x. So, 5Kq will
 delete all characters from the current position to the
 5th occurance of the letter ‘q’.

<ret> End the edit and put the edited line into the file (so
 don’t throw the edited line away as for the Q command).
 Control is returned to the normal command mode.

E The same as <ret>, not usually used byt provided for
 compatibility with other editors. This does not work from
 inside the insert sub command which can only be
 terminated by <return>.

 DESCRIPTION OF ASSEMBLER

 Readers who have never met an assembler before are advised
to read Appendix-B, "What is an assembler", before proceeding
further into this section.

 The Assembler is a three PASS device, this means that your
source file is read from beginning to end three times by the
assembler during the assembly process. On the first pass the
LABELS are recorded in a special list, called a SYMBOL TABLE, and
addresses or values are assigned to them. This list starts at the
TOP OF MEMORY address, given on entry to the editor, and grows
down through memory as each new label and value are added. Checks
are made to ensure that the symbol table does not "crash" into
the end of your source file. If this is about to occur, an error
message "Symbol table OVF" is generated, and the assembly is
aborted. At the end of pass 1 the assembler knows the location
and value of every SYMBOLIC REFERENCE in your source file. Pass
two is used to interpret the NMEMONICS and assign the values to
all symbolic references in the argument field. It is during this
pass that most errors will be detected, the source listing and
printouts are also generated at this time. The third pass is
used, if required, to generate the OBJECT program into memory.

 To commence assembly you issue an A command from the editor.
The format of this command is fairly exacting as an OFFSET may be
specified, and a number of SWITCHES may be included to direct the
assembler to perform specific tasks during assembly. NOTE, if no
switches are specified, the command must be typed as A <ret> with
the space after the A being compulsory.

 The offset allows the assembler to locate the output program
code at a different address in memory to the address that it is
intended to operate at. This feature will not normally be
required by Microbee users since a special area at 400hex has
been allocated for them to generate and run their program in.

 10

The offset value is simply added to the adress that each byte
will be stored at. eg an offset of 1000 specified for a source
ORGed at location 400hex will cause the output code to be stored
starting at location 1400hex. Reverse offsets are possible due to
address wrap around at FFFFhex, this means that an offset of
0F000 will cause the code to be stored at 1000hex bytes lower in
memory. Note that the offset address is always in hex, no H is
required after the address, and any value commencing with an
alpha character must be preceded by a zero. After assembly, any
code generated with an offset must be moved to its correct
location before it may be run.

 There are up to six SWITCHES that may be specified in the
assembly command line. Each switch when used is identified by
typing a slash before it. The switches are:-

WE This switch directs the assembler to stop whenever an error
 is detected during pass 2 of the assembly. The error is
 displayed to the VDU, and the assembler waits for a
 direction from the keyboard. If Control C is pressed, the
 assembly is aborted, and command is passed back to the
 Editor with the error line set up as the current line so
 that you may examince or edit the line. If C is pressed (not
 control C) the WE switch will be cleared and assembly
 continues, however the assembler will not stop on further
 errors. If any other key is pressed the assembly continues
 with the WE switch still active.

NO This directs the assembler NOT to output any object code
 during assembly. The NO switch should always be used for
 trial assemblies until you are sure that no errors exist.

NL This suppresses listing to the VDU, errors if encountered
 will however still be displayed. The listing may
 alternatively be turned on and off by special print
 directives in the file. *L ON turns on the listing and *L
 OFF turns the listing off. These comands are useful for
 printing part listings from the assembler.

NS Do not list or print the symbol table at the end of the
 assembly.

LP Direct all listings to the line printer device instead of to
 the VDU.

PT When listing strings (DEFM pseudo) the object field only
 lists the first byte of the string. This is done to conserve
 paper when printing. If however you wish the object field
 for the string to be listed in full, use the PT switch.

The precise formats of the A instruction are shown in the command
index.

 11

 PSEUDO MNEMONICS and ARITHMETIC OPERATORS

 As stated earlier the assembler broadly complies with the
format as defined in the ZILOG assembler, several variables are
allowed to assist those familiar with 8080 assemblers. The PSEUDO
operators supported are:-

ORG nnnn Set or redefine object address counter.
DEFB n Define byte to be value n.
DB n Same as DEFB.
DEFL nnnn Temporarily equate label value, may be re defined
 later.
DEFM ’ssss’ Define contents of an ascii string.
DEFR n Set default radix value. 16-hex, 8=octal, 10=decimal
 (10 normal) if not defined, defaults to decimal
 values.
DEFS nn Reserve nn memory locations.
DEFW nnnn Define value of 16bit ’word’ to be nn.
DW nnnn Same as DEFW.
EQU nnnn Permanent equate label value, cannot be re defined.
END End of source listing. Stop assembly.

 As well as the pseudo operators certain arithmetic operators
are available for use in the operand field. These are:-

D Consider value decimal regardless of default radix.
H Consider value hex regardless of default radix.
O Consider value octal regardless of default radix.

 The 4 remaining operators may be used in conjunction with
 each other on a line, they have no assumed Heirarchy they
 are executed in strict left to right sequence.
+ Add the two values or labels.
- Has two functions. When used between two labels or values it
 produced the difference value. When used on its own before a
 label it negates the value (2’s complement).
& Produces the Logical AND value of two labels or values.
< This is the logical rotate left or right operator. The form
 <4 will shift the bits of the value or label left by 4 bits.
 The form <-5 will shift the value of the operand by 5 bits
 in a right direction.

 EDIT ERROR MESSAGES

The following messages may occur whilst using the editor.

"String not found"
 The Find or Change command could not locate the string
 requested. If you are sure that it should have been there,
 you may have started the search from after the line with the
 string in it, in which case go to the top of the file and
 try again. Or you may have spelled the word incorrectly or
 used the wrong alpha case.

 12

"Command format error"
 The arguments you have provided in the command line are
 incorrect. You may have used an illegal wild card, or
 forgotten to include a comma or colon etc. See the section
 on editor instructions for the command you wish to use.

"No such line"
 The line number you have requrested does not exist in the
 currently open file. You have probably done a file renumber
 and the line number no longer exists. If you know any
 reasonably unique words or labels that exist on the line,
 try to locate it with the Find command. If not you will just
 have to step through the file with the print command till
 you locate the area you require.

"File full"
 The end of the file has reached the upper limit of memory
 allocated by the answer to "Memory size?" when you entered
 the editor. If this is really the top of your available
 memory, you will have to buy more memory before you can
 continue, or delete some comments from the file to make it
 smaller. Since there is no way of re-defining the memory
 size from within the editor, reallocating extra memory (if
 available) is a little messy. You may either save the file
 to cassette, reboot the editor to get the "memory size?"
 message and reload the cassette, or exit back to a MONITOR
 level and adjust the memory size bute directly. A list of
 the location of the main scratch areas is provided in the
 appendices.

"Illegal command"
 The command letter used at the start of the line was not
 recognised by the editor, or the argument to the command was
 in an incorrect format. See the chapter on editor
 instructions for the command you wish to use.

"Line number too large"
 Line numbers greater than 65534 are not permitted.

"No text in file"
 You have issued a command that cannot be used on any empty
 file. eg tried to use Replace or Edit to start inserting
 into the empty file. In this instance use Insert mode.

"No room between lines"
 In INSERT or REPLACE modes if the next line to be inserted
 (after step size added) will not fit below the next existing
 line in the file the editor will abort with this message. To
 continue the insert you may either reduce the step size by
 I.,1<ret> or renumber the complete file by N100,10<ret>

"No file here"
 You have given an instruction to re-open an OLD file at a
 location where the editor can’t find a valid file. If you
 are sure that there should be a file here it is possible

 13

 that some location has been corrupted (possibly bad ram or a
 glitch on the mains etc). If you feel competent to try to
 find the bug, Read the section on the layout of a file and
 using your monitor try to find and fix the error. You can
 always reset to the file with an O command on re-entry.

"No Secondary file"
 You have attempted to use the COpy or Merge commands when
 the Editor does not have an "open" secondary file. You have
 either forgotten to declare a secondary file (use ZS
 command) or have done an interim assembly or rebooted into
 the editor, your old secondary file will probably still be
 intact and may be reopened with the OS command.

"No room for merge"
 When doing a merge from secondary to primary file, the
 Editor must first move the end of the primary file upwards
 in memory to provide a ’hole’ into which the secondary file
 would fit. If this error message is displayed, the ’gap’
 between the two files is smaller than the length of the
 secondary file, and it would have been damamaged during the
 merge. You must therefore move the secondary file higher in
 memory. There are several ways of doing this, which one you
 should use depends on the particular situation you have.
 We suggest the following technique be used. (for example
 primary file at 2000, sec file at 3000) Query and record the
 status of the primary file. eg
 Q<ret>
 2000 2000 2F80 3FFF

 Set up the secondary file, renumber and query its status. eg
 Q3000<ret>
 N100,10<ret>
 Q<ret>
 3000 3000 33FD 3FFF

 (In all cases you MUST ensure that the secondary file is
 ’normalised’ by renumbering it before proceeding after
 setting to a secondary file.) Notice that the gap between
 the file is only 80hex butes, and the secondary is nearly
 400hex in length However there is more than its own length
 above itself. In this case we can create a copy of the
 secondary file higher in memory. eg ZS3000<ret> CO#:*<ret>
 O2000<ret> OS3800<ret> We are now back in the original
 primary file with the secondary now at 3800 and plenty of
 room for the merge. In some cases the size of the
 secondary file (or its location) may not allow us enough
 room to make a copy above itself. If the length of the
 secondary file is more than twice the gap from the end of
 the primary file to the end of memory we cannot do the merge
 in one operation anyway, however all is not lost. Remember
 that what we used to consider the secondary file is now our
 primary file and may be saved to cassette. After saving a
 copy of this file, we may be able to open a new file (with
 the Z command) at a location where when the file is reloaded

 14

 we will be able to do our merge. If not we can proceed to
 delete some of the end of it till it is small enough for the
 merge, then reload the saved copy of the old secondary file
 (at a suitable location), delete what we previously merged
 and remerge the remainder. There will be a lot of swapping
 between files, this is messy, but in an emergency justified.

 ASSEMBLER ERROR MESSAGES

The following messages may occur whilst attempting to assemble a
file.

"Bad label"
 The "word" encoutered in the label field (extreme left)
 does not satisfy the requirements of a label. It must not be
 more than six characters long and must start with an upper
 case alpha character. No spaces or question marks may be
 imbedded within the label, and it must be separated from the
 mnemonic field by a space or tab.

"Branch out of range"
 You have used a "relative" instruction (eg JR or DJNZ) to
 branch to a location in your program that is more than 128
 bytes away. Either rearange your program to bring the
 destination closer, or use an "abolute" branch instruction
 (eg JP).

"Illegal format"
 Your line of source is not laid out out in accordance with,
 or contains characters not supported by, the standard ZILOG
 requirements. Refer to " Z80-Assembly Language Programming
 Manual."

"Missing information"
 The end of line was encountered beforee all information
 required had been read. You may have imbedded a semicolon in
 the line, or simply left out an argument.

"END missing"
 The assembler found an end of file marker before the END
 statement, you have probably forgotten to insert one, or may
 have put it in the label field by mistake. Not a fatal error
 but will inhibit the generation of object code.

"Duplicate label"
 This label has been previously defined, or may be one on the
 assemblers pre-defined list. eg use of HL or AF etc as
 labels will invoke this error message.

 15

"Field OVF"
 Whilst resolving arithmetic arguments in the operand field
 of a line, a value was produced that is greater than 65535
 decimal (FFFFhex).

"Ref duplicate label"
 This message will be invoked on all lines containing
 reference to duplicated labels.

"Symbol table OVF"
 The symbol table being produced in pass 1 of the assembly
 has grown down to the point where, if assembly continued,
 the source code would be damaged. This is a fatal error and
 assembly is immediately aborted.

"Label not known"
 You have attempted to reference a label which has not been
 defined in the label field. Usually invoked by spelling
 mistakes, or forgetting to assign scratch locations.

"Expression error"
 The operand (address or value) field could not be resolved.
 It may contain a value or character that is not supported in
 the current radix default (eg alpha character in decimal
 expression) or applying a 16 bit mask to an 8 bit value.

 THE MICROBEE ENVIRONMENT

 Perhaps the most difficult part of any machine code program
is the interface to outside world. This chapter will hopefully
give the user an idea of how the MicroBee input and output
facilities are used.

 Fortunately, due to the well planned structuring of most of
the software on the MicroBee, the input and output routines used
by Basic are also easily used by any other program. For example,
the program below is a simple demonstration of these routines.

 ORG 400H ;Start code generation at 400-hex
INPUT EQU 8006H ;Location of input routine
OUTPT EQU 800CH ;Location of output routine
START CALL INPUT ;Get one character from the keyboard
 LD B,A ;Transfer this character into B reg
 CALL OUTPT ;Send this character to the VDU
 JR START ;Go back and do it again
 END

 The routine at 8006 will wait for a key to be hit and return
the ASCII value of that key in the A register. For a full list of
the ASCII character set of the MicroBee, see AppendiX-I. The
routine at 800C will take a character in the B register and print
it onto the VOU screen.

 16

 This program can be assembled with the A command and then
excecuted by typing X 400. Anyone who has had previous
experience with assembly language programming will appreciate the
value of these general subroutines provided on the MicroBee, as
tools for taking some of the hard work out of the task of
interfacing their programs to the outside world. Some of the more
useful routines availiable on the MicroBee are described below.

 Note that some of these "routines" never return you to your
program because they jump to such places as Basic. These are
labeled with an *.

Decimal address Hex address Function

32768 8000 * Same effect as hitting reset
32774 8006 Wait for keyboard (in A)
32798 801E * Execute Basic program (RUN)
32801 8021 * Warm start into basic
32804 8024 Initialise Hires graphics
32807 8027 Initialise Lores graphics
32810 202A Initialise Inverse in PCG
32813 802D Initialise Underline in PCG
32816 8030 Set dot X=HL Y=DE
32819 8033 Reset dot X=HL Y=DE
32822 8036 Invert dot X=HL Y=DE
 All these graphics routines
 return with flag set to NZ
 if coordinates out of range.
32825 8039 Test a dot X=HL Y=DE
 Returns NZ if dot set or error
32828 803C plot a line
 X-start coordinate is in 80FD
 Y-start coordinate is in 80FF
 X-end coordinate is in 80F9
 Y-end coordinate is in 80FB
32831 803F Redirected Input (in A)
32834 8042 Redirected Output (from A)
32837 8045 Redirected print out (from A)

 The redirected inputs, outputs and printouts correspond to
the INPUT, PRINT and LPRINT basic commands respectively. The
devices can be selected (as with IN#, OUT# or OUTL# in basic) by
setting the bit maps in locations 00E4-hex (228-dec), 00E2-hex
(226-dec) or 00E3-hex (227-dec) respectively. For example, if
location E2-hex contains the number 21-hex (00100001-binary) then
devices 5 and 0 are selected so any calls to the routine at 8042-
hex will send output to the video screen (device 0) and also to
the RS-232 port at 1200 baud (device 5).

 The addresses of the routines selected by the bit map are
kept in tables in scratch. The output devices are pointed to by a
table at 00B2-hex, and the input device table is at 00C2-hex.
This means that the user can create his (or her) own routines
pointed to by the bit map by simply altering the table used to
point to the routines. For example, you can write your own output

 17

routine if you desire, and access it by putting the address of
the routine into locations 00BE and 00BF-hex and setting bit six
of the output device bit map (as long as output device 6 is not
already used).

 The tables below list the input and output device options
selectable by the bit maps. The pointer addresses given are the
addresses of the table entries that contain the addresses of the
routines. For example, locations 00B4 and 00B5-hex contain the
sixteen bit address of the routine to output a character to the
parallel port.

OUTPUT DEVICE NUMBERS: ADDRESS OF POINTER:

0 VDU output device (normal) 00B2-hex (178-dec)
1 MicroBee parallel port output 00B4-hex (180-dec)
2 300-baud cassette output 00B6-hex (182-dec)
3 1200-baud cassette output 00B8-hex (184-dec)
4 RS232 at 300 baud 00BA-hex (186-dec)
5 RS232 at 1200 baud 00BC-hex (188-dec)
6 Null routine 00BE-hex (190-dec)
7 Null routine 00C0-hex (192-dec)

INPUT DEVICE NUMBERS:

0 Normal MicroBee keyboard 00C2-hex (194-dec)
1 Parallel port (for external keyboard) 00C4-hex (196-dec)
2 300 baud cassette 00C6-hex (198-dec)
3 1200 baud cassette 00C8-hex (200-dec)
4 RS232 at 300 baud 00CA-hex (202-dec)
5 RS232 at 1200 baud 00CC-hex (204-dec)
6 Null routine 00CE-hex (206-dec)
7 Null routine 00D0-hex (208-dec)

 PROGRAMMABLE GRAPHICS CHARACTERS

 The video screen of the MicroBee is memory mapped in
locations F000-hex (61440-dec) to F7FF-hex (63487-dec). Any ASCII
character stored in location F000-hex will appear at the top left
corner of the screen, and F3FF-hex maps to the bottom right of
the screen on a 16x64 screen format (this means that on a
MicroBee with a 16x64 VDU format, the screen memory map only uses
half of the availiable space for screen memory). Because each
screen location contains one byte, there are 256 possible
characters that can go in each character position the screen. If
the top bit of the byte in a screen memory location is zero (i.e.
the number is in the range 0..127) then the character will appear
on the screen as a normal ASCII character.

 The actual shape of these characters is defined in a Read
Only Memory. This ROM is accessible to the programmer by a
devious trick shown below. In addition, if the top bit of the
byte in a screen location is one (i.e. the number is in the range

 18

128..255) then the character that appears on the screen will be
defined by the programmable character generator. This is a
character generator contained in RAM for the user to define
his/her own characters. The memory map of the video memory is
shown below.
Decimal address Hex address Description

61440 F000 Screen map (top left corner)
62463 F3FF Bottom right corner (16x64)
63359 F77F Bottom right corner (24x80)
63487 F7FF End of screen map

63488 F800 Start of programmable
 character generator
63503 F80F End of first character
 (code 80-hex)
63504 F810 Start of second character
 (code 81-hex)
61440+(16*X) FZZ0 Start of character code ZZ-hex
 (X-dec)
65535 FFFF End of last character
 (code FF-hex)

 The Read Only Memory for the character generator for the 128
ASCII characters is accessed by writing a 1 to output port 0B-hex
(11-dec). When this is done, the screen memory map is removed and
replaced by the character generator ROM. So, instead of having
screen RAM for the first 2K and PCG RAM for the other 2K of the
video memory, the video memory will contain all of the character
generator for the VDU, with the first 2K being the permanent read
only memory.

 The VDU (for a l6x64 display), displays the text on the
screen in 256 lines with 512 dots on each line. This is precisely
the resolution of the hires graphics. A bit of quick arithmetic
will reveal that each character must be composed of 8 dots per
line and 16 lines. The creation of a programmable character is
best described by example :-

CREATING A PCG CHARACTER

 Maniputating PCG characters manually is most easily done in
the Monitor, so get into the Monitor (by anyone of the methods
list in chapter 2). Type E F300 to examine memory location F300-
hex. It should contain 20-hex which is the ASCII code for the
blank character. Hit M (for Modify) and type 80 (don’t hit
return). This will put the character on the screen (at the left
edge about 3/4 down the screen). The character that appears is
the PCG character defined in memory locations F800..F80F. We can
now change this character to one of our own.

 19

 Type <esc> (no carriage return) to get back into the Monitor
command mode and type E F800. Hit M (for Modify) and then type
3C4242... as shown below.

F7F0 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
F800 9C B2 B2 67 25 25 3D 19 18 66 66 42 81 E7 A5 A5
F810 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
F820 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
F830 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
F840 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

 These 16 bytes define the character that will appear on the
screen whenever the byte 80-hex appears in the screen memory map
(e.g. at F300-hex in this case). The way the character is defined
is illustrated below.

Byte Binary Character shape
 ++++++++++
9C 10011100 +X XXX +
B2 10110010 +X XX X +
B2 10110010 +X XX X +
67 01100111 + XX XXX+
25 00100101 + X X X+
25 00100101 + X X X+
3D 00111101 + XXXX X+
19 00011001 + XX X+
18 00011000 + XX +
66 01100110 + XX XX +
66 01100110 + XX XX +
42 01000010 + X X +
81 10000001 +X X+
E7 11100111 +XXX XXX+
A5 10100101 +X X X X+
A5 10100101 +X X X X+
 ++++++++++

 This character will appear on the screen whenever a 80-hex
byte appears in the memory location coresponding to that screen
position. If we had put the 16 bytes into memory at FD50-hex (for
example), then the character would have been defined as character
number D5-hex instead of 80-hex.

SCRATCH LOCATIONS

 Some of the more usable scratch locations have been
described here as they were relevant to the routines that used
them. A more comprehensive list of the MicroBee scratch locations
is given in Appendix-G.

 20

 SOME HELPFUL HINTS

 Probably the most helpful hint that can ever be given is
that regularly creating backup copies is the best means of
preventing major disasters. It has been stated that while ever
mans fingers are pointed towards a keyboard they will
occasionally get in front of his brain. Imagine wishing to print
your latest hours of typing with an T#:* and accidentally
pressing D#:* thereby deleting the entire file. It has
happened!!! It may be the last backup was made a half an hour
ago, but it is always easier to redo the last half hours work
than to start from the beginning.

 Get into the habit of always starting your source files with
a comment line which has the file name, and or description, AND
THE DATE. I t often happens that when you wish to reload from an
old file there are several backup copies of it in existence. The
date, and if desired the time, of the save will help to identify
the most recent copy.

 Always do your trial assemblies with the WE and NO switches
specified. This will ensure that no crashes occur, and that you
must attend to each error as it is reported.

 Sometimes an error will be reported on a line, and yet you
cant see anything wrong. It is possible that a non printable
character may have been inserted into the line by either an
editing error, or a power glitch. The best solution here is to
delete the line and type it in again. If the error is still
there, re read the manuals for the type of line you are
inserting. The error message will usually help to pin it down.

 If you wish to delete a line from the file, use the D
command, don’t try to edit it back to nothing with the backspace
key, this can cause some unpredictable crashes under certain
circumstances.

 The two most common problems with assembled programs that
don’t appear to work, is forgetting to append a H to hex values,
particularly when EQUating monitor calls, and not keeping the
number of PUSH’s and POP’s balanced in sub routines. If your
programs seem to crash in a great heap, try looking at these two
problem areas first.

 The line numbers inserted onto each line by the editor are
not recognised by the assembler as labels, therefore you cannot
use them as symbolic references for CALLS or JUMPS etc as you
would in BASIC.

 If whilst trying to list a file to the VDU the P command
refuses to go past a certain point in the file, or appears to be
looping back on itself, try renumbering the file, this will
usually fix the problem. What has happened is that a faulty
memory location (or a glitch) has caused a line number in the
file to appear to be lower than the one before it. and the editor

 21

has become confused.

 The "end of file marker" is two bytes containing FF FF, this
represents line number 65534 and all other lines will be placed
before it. If for any reason one of these two bytes gets damaged,
the file will appear to continue on into whatever rubbish happens
to be in memory. The fix here is to step forward gradually
through the file till you are sitting on the line before the
crash, then use the Q command to locate your position in memory,
and then use the system monitor to replace the two FF’s at the
end of the file. See appendix B for the exact layout of a file to
get a better understanding of the problem. Remember that most
crashes can be recovered from if you use a little thought before
proceeding. Rushing into the "fix" will often only compound the
problem.

 GLOSSARY OF TERMS

ADDRESS Describes an actual memory location in the computer. with
assemblers it is normal to refer to addresses in HEXADECIMAL
notation. If the address starts with a letter it is correct
procedure to prefix the address with a zero to avoid confusion
with a word or label. eg 0BAD is an address.

APPEND Add to the end of. eg append a comment to a line.

ARGUMENT The value, address, or name that we wish the assembler
to assign to the particular field. The argument may be a complex
statement comprising arithmetic or logical operators.

ASSEMBLER See the chapter "what is an assembler".

BASIC An "english word" oriented interpreter, used to allow
people not experienced in advanced programming techniques to
create and run their own computer programs.

BLOCK MOVE A command that allows you to physically move the
location of a file or collection of bytes.

BUFFER An area of memory set aside for storage and processing of
commands, editing of lines, resolving argument fields etc.

BYTE An 8 bit hexadecimal number (00 to FF) which represents the
256 different values that can be stored in one location of
computer memory.

COMPILER Any program which can produce a machine or object code
output from a mnemonic source file.

COPY A command which allows you to duplicate a line, or lines,
into another part of memory.

CP/M A disk based operating system for 8080 and Z80 processors.
(copyright by Digital Research U.S.A.).

 22

CURSOR A pointer to your current location in the line or file,
usually shown as a flashing square on the display.

CONTROL CODE These are special key codes typed on the keyboard to
instruct the program to perform a certain task. Sometimes a
special key is provided, other times you must simultaneously
press the CONTROL key and a letter key. the TAB key is the same
as control I. abbreviated as CntrlI or ^I.

DEFAULT The condition or value that the program assumes in the
absence of a specific value being given by the user.

DELETE The act of removing a line or group of lines from the
file.

DELIMITER A character (usually <ret> or /) used to signify the
end of the line, or argument within the line.

DGOS A machine language operating system sold by Applied
Technology for use with their S100 processor series. (DGOS is
copyright by Mr D. Griffiths).

EDIT The method of altering, or correcting a line in the file.

EDITOR See the chapter "what is an editor."

EQUATE To assign a value to. To define the meaning of.

FIELD Refers to a sub section of a line. eg label field, mnemonic
field, operand field, comment field.

FILE Any collection of words, letters, characters, numbers or
data stored on cassette, disk, or in the computer’s memory.

FREE FORM Means that the program is not affected by the precise
layout of your entry within certain constraints, eg you may use
single or multiple spaces instead of tabs etc.

GLOBAL All inclusive, not just limited to the area you are
working in.

REX or HEXADECIMAL A system of counting with a base of 16 rather
than the more familiar base of 10, comprises the digits 0 to 9
followed by A to F.

INSERT The act of providing a new line, or lines into the file.

LABEL A "word" or group of characters, starting with a letter,
which defines a particular location or value.

LINE The collection of words starting with the LINE number and
ended by pressing the the <ret> key that comprise an instruction,
or command, for the assembler to process.

 23

MACHINE CODE The collection of hexidecimal numbers read directly
by the processor that comprise a program. Also referred to as
OBJECT CODE.

MERGE The act of bringing back into the file a line, or group of
lines, from elsewhere in memory. The converse of COPY.

MICROBEE A small, self contained, z80 based microprocessor, sold
by Applied Technology pty Ltd.

MNEMONIC A "word" or symbol, often heavily abbreviated which
refers to a specific task you wish the computer to perform.

MONITOR A program (usually in EPROM) used to perform the
essential tasks of loading tapes, printing to the VDU, reading
the keyboard, etc.

NULL LINE An empty line, used to visually break up the program
into modules. This is created by pressing <ret> only as a line
entry. Null lines are ignored by the assembler.

OBJECT CODE The collection of hex numbers that comprise a
computer program, the output from the assembler is object code,
also referred to as MACHINE CODE.

OFFSET A constant value added to the address when the assembler
is outputing the object code, this causes it to be stored in a
different memory location from the one where it would normally be
run.

OPERAND The value field. It is in this field that the value to
be assigned, or the address to be used is determined.

ORG The origin address specified in your source file that
directs the assembler as to where the program is required to
operate in memory.

PATCH An alteration to the program that is done outside the main
body of the program. Usually placed at a location where it is
convenient for the user to be able to modify, or customise the
program for his own needs.

PERIPHERALS Additional devices connected to the computer to
perform specific tasks. PRINTERS, CASSETTE recorders, etc are
examples of peripheral devices.

PROGRAM A group of commands, or instructions, that direct a
processor to perform a specific task.

PRINTER The computer "Hard copy" device, an electronic
typewriter of some form, connected to the computer.

PSEUDO Literally ’false’. Pseudo mnemonics, although not really
a defined mnemonic, are used in the mnemonic field to specify
certain tasks to be performed.

 24

REPLACE This command deletes one line from the file, and allows
you to insert a new line, or lines in its place.

RENUMBER The automatic process of re-adjusting all the line
numbers so that they are in ascending sequence, with equally
spaced steps.

SCREEN This is an alternate word used to describe the VDU or T.V.

SOURCE FILE The list of instructions, created with the editor,
and read by the assembler, to create your machine language
program.

SOURCE LISTING The printed listing from the assembler that shows
the source file with the addresses and object code produced for
each line.

STATUS A display of the START, CURRENT POINTER, and END addresses
of the file, plus the currently set upper limit of memory.

STRING A group of characters, similar to a sentence in normal
speech.

SWITCHES Two letter groups, used to direct the assembler to
perform particular tasks during assembly, if not specified, each
switch is considered to be in a OFF state.

SUB EDIT Whilst in EDIT mode, an alternate set of command letters
are used to direct the processor, these are called SUB EDIT
instructions.

SYSTEM A collective term refering to the group of components
which make up your "computer".

VDU The computer display device, usually a modified TV receiver.

VIEW The ability to look around the area you are currently
working in without altering the current pointers.

WILD CARDS Characters used to perform a task within certain
broadly specified restraints, eg P.:* means display from current
location to end of the file, or G* means load in any program
from tape regardless of name or type.

ZILOG The American company who developed and produced the Z80
processor system, and laid down the preferred MNEMONICS to be
used to refer to its many operation codes.

z80 A CPU chip which is an advanced, upwards compatable, version
of the 8080 series of processors. As well as its
instructions, a Z80 can also execute own all of the 8080
instructions.

8080 A CPU chip developed by INTEL U.S.A. The predecessor of the
Z80 processor that you are currently running.

 25

Appendix-A WHAT IS AN "EDITOR" ?

 Essentially an EDITOR is a program which allows you to
create in memory a "file" containing text. You may use the editor
to enter, correct, or rearrange your file and to save and
retrieve it from some storage medium, usually (disk or cassette).

 There are two types of editors in common usage, these are
known as "SCREEN" editors and "LINE" editors. The screen editor
is the more sophisticated of the two, it uses the T.V. screen
(VDU) as a "window" into the file. To visualise this consider a
piece of card with a cutout that is the width of the printing on
this page and about 20 lines high, you can slide the card up and
down the page and see the window effect in action. In the screen
editor you have a flashing point of light (cursor) that can be
moved anywhere on the display. If you try to move the cursor
above or below the screen, the window is automatically moved up
or down the file so that the cursor is always on the screen. As
you insert or delete letters or words, the entire screen display
is redrawn to show how that part of the file is layed out.

 The really sophisticated screen editors provide features
like justifying the left and right edges of the lines so that
they are both straight as in this manual. These editors are
usually referred to as "word processors", they are very expensive
programs to purchase, use up a large amount of processor memory,
and require a "DISK" system for file storage. This is because the
editor itself is so large that there is not much room left in
memory for the file, therefore it must be edited directly from
the disk. Enough of this dreaming of what might be, you are stuck
with a "line" editor.

 The line editor is quite different in concept, it considers
your file to be a collection of LINES, each line has a maximum
length, usually the width of your TV screen; these lines are
considered to be in sequential order usually with a LINE NUMBER
attached to them. The line numbers are usually arranged to
increment by 10 as each line is inserted into the file. This is
done to allow extra lines to be inserted between existing ones.
The main disadvantage here is that if you need to insert more
than 9 lines between any pair of existing lines you must renumber
the file and then any printout you may be using to edit your file
from will disagree in numbering. In practice this is not a major
problem.

 To use the editor to create a file, you just type the
required lines whilst in INSERT mode, remembering to press the
return key at the end of each line. Up to this point it is nearly
as easy to use as a screen editor, however here the similarity
ends. If you wish to change something in the file, you may direct
the editor to go to a line number that is near where you wish to
make the change, move the cursor (now called a CURRENT LINE
POINTER) up or down the file till it points to the line you wish
to change, and give an appropriate command to DELETE, EDIT,
INSERT, REPLACE, etc. If your command was Edit, this version of

 26

the Editor is provided with a ’SUBEDIT’ package which gives you
some of the advantages of a screen editor, however you are
confined within the bounds of the line you are currently editing.

 To make life a little bit easier (who said it wasn’t meant
to be), we have provided commands to allow you to search your
file for particular words or phrases, and if required replace
them with alternate ones.

 Although line editors usually have line numbers associated
with them, the editor does all the allocation and distribution of
them, Since over 65000 are allowed you will always run out of
memory long before you run out of numbers, unless you number your
file in increments of a hundred or so. The file may also be typed
with the line numbers automatically suppressed for letter writing
etc.

 27

Appendix-B WHAT IS AN "ASSEMBLER" ?

 Although a computer may appear to be an extremely complex
and intelligent piece of equipment, it is in reality a number of
PERIPHERALS (VDU, keyboard, memory, printer, cassettes, etc) all
connected to the CPU chip (Central Processor Unit). This tiny
silicon wafer in a 40pin I.C. package has one claim to fame; it
can do a small number (a couple of hundred) simple tasks, very
quickly, and very reliably. It is instructed to do each of these
tasks by a sequence of numbers which when strung together as a
series of tasks produce a PROGRAM. It is the program, not the
computer which produces the illusion of intelligence. Whilst the
CPU unit in your MicroBee knows that the sequence C30080 means to
go to memory address 8000hex and start "RUNNING" the BASIC
interpreter we have installed there, you as the user cannot be
expected to know what all the hundreds of combinations of numbers
will mean.

 It will be obvious by now that if you wish your computer to
do any useful work for you it must be given programs to do do
these tasks, so how do you provide these? You could go out and
purchase all your programs. That is assuming they are available,
and are within your financial resources. An alternate approach is
to purchase a "HIGH LEVEL LANGUAGE" such as PILOT, BASIC, PASCAL,
FORTRAN, COBOL, etc. These programs allow you to list your
program requirements using a group of "english" like words
sometimes referred to as MNEMONICS. When run, these programs
"interpret" your words and provide the functions required.

 The main disadvantages with this approach are the cost of
the interpreters, the amount of memory they require to operate,
restrictions in the tasks that can be performed, and the speed of
execution is fairly slow. The speed factor is particularly
important if you wish to play real time games such as "SPACE
INVADERS". Whilst COMPILER versions of most of the above programs
are available they are not suitable for small systems.

 Having reached the subject of compilers we can now discuss
the simplest compiler of them all, the ASSEMBLER. I use the word
simplest only in the sense that you can’t just say PRINT and have
the program go away and produce a complete SUB PROGRAM to do a
’print message’ function as you would with an interpreter;
however in this simplicity lives its versatility, you have
complete control over each and every instruction in the program.

 As with an interpreter you provide a SOURCE FILE consisting
of mnemonics, in this case each LINE of the source describes ONE
instruction that you wish the computer to perform, you may also
provide LABELS on any line so that you may later instruct the
computer to go to this point in the program. Comments may also be
inserted on the line so that you or your friends may later be
able to work out what was intended when you wrote it. As well as
referring to a location within a program, labels may also be
assigned absolute values. This has the advantage of allowing you
to alter this value everywhere in the program by just altering

 28

the value at the location it is declared. Another reason for
assigning values to labels is that it is often simpler to
remember a name than the value assigned to it, eg it is easier
and clearer to say TAB or SPACE than to remember that they are 09
and 32 respectively.

 In case you haven’t already guessed, the assembler
interprets your source code and produces, directly in memory, the
sequence of numbers referred to as MACHINE CODE or OBJECT CODE
that make up the program ready for your processor to execute at
full machine speed. It is good practice to save your source file
on cassette in case you wish to make alterations in the future,
or wish to assemble the program to operate at a different
location in memory. The latter can be done by simply changing the
origin (ORG) address and re-assembling the file.

 29

Appendix-C SOME "HANDS ON" EXPERIENCE

 By far the best way to come to grips with any new processor
operating system is to have someone demonstrate the program in
actual use, and then try it out by yourself under supervision.
Unfortunately we can’t quite do this here but we can guide you
through a tutorial with the sample program listed at the end of
this Appendix. Hopefully this will give you a better under-
standing of the commands and their use when we describe them in
more detail in the main sections of the manual.

 First you must get into the program. From Basic, simply type
EDASM. More details on getting into the Editor/Assembler are
given in chapter 2. When you are asked Memory size?, reply with
4000 (if you have a l6K MicroBee) or 8000 (if you have a 32K
MicroBee). After you hit <return>, you should get the usual
Editor/Assembler prompt ’>’.

Type Q<ret>
The program will respond 1000 1000 1000 3FFF

 If you have a 32K MicroBee, the last number will be 7FFF.
The first address indicates that the file will start at 1000-hex.
The second address is the location of the CURRENT LINE pointer
and is now pointing to the start of the file. The third address
indicates that the file ends at 1000-hex (which is logical cause
there ain’t no file there yet) the last address is one byte lower
than the upper limit of memory that you set on entry, the editor
will not attempt to use memory above this point.

 Now to enter our sample file:- After reading this
paragraph, type I<ret> The program responds 00100 _
(_ represents the cursor)

 You may then type in the file called "TEST" in appendix A.
The program as listed contains some deliberate errors to
demonstrate editing and error handling. If you make a couple more
errors typing it in don’t worry, we will show you how to correct
them at the end. Don’t forget to press <ret> at the end of each
line. You will notice that each line is tabulated into columns,
this tabulation is normally produced by pressing the TAB key (or
Control and I simultaneously) at each break instead of the SPACE
key. This neat layout format is to make the code more easily read
by you and is not essential for the assembler, it is quite happy
with just single spaces between each FIELD.

 If you make a complete bollox of it first time just reset
the processor and start again. Notice that the editor inserted
the line numbers for you. N.B. WHEN YOU HAVE FINISHED THE LAST
LINE TYPE ^A or ^C. THIS MEANS PRESS THE CONTROL KEY AND THE A or
C KEYS SIMULTANEOUSLY, this will get you out of the INSERT mode
and back to the editor.

 You should now be back in the editor with the "*" prompt
showing and the test file typed in, with or without a few more

 30

typing errors of your own. It is suggested that you save the file
on cassette now to save having to retype it all back later. Do
this by starting the recorder and typing S "TEST"<ret> The editor
will reprompt with a * when it has completed the save.

 To examine the file you have typed in, type P#:*<ret>
and the entire program should be listed to the VDU (a bit too
quickly to read). Now type P#<ret> and only the top line will be
printed, each time you press the Line Feed key one more line will
be displayed, by this means you can step through your file line
by line. press the cicumflex key ’^’ and you will see that you
will step backwards through the file one line each time you press
the key. Back to the top of the file again by P#<ret>, now press
P<ret> and you can step through the file a screen full at a time.

 Lets assume you really mucked up line 200, the easiest way
is to REPLACE it by typing R200<ret> and type the line in again,
end the line with a return as normal. Notice that you press
return twice, first after the command and again at the end of the
line. The program should return to the editor with the message
"no room between lines". Normally the replace mode would allow
you to replace the. line with more than one line, but here after
replacing line 200 the counter was incremented to 210 and the
program would have destroyed an existing line if you had
continued. If you wish to put in more than 1 line use the command
R200,2<ret> this would allow you up to 5 lines numbered 200, 202,
204, 206, 208 before it aborted out, you can of course finish
earlier by the pressing Control and C (or A).

 There are two important points to note, here firstly you
must not press the Control C at the end of the last line before
you exit or it will not be inserted into the file, end the line
with a <ret> and type the AC when it prompts with the next line
number (which you do not wish to enter). Secondly if you used the
format R200,2 your line number increment counter is now set up
for steps of 2, and all future changes will be in steps of 2
until it is reset to some other value. The step size may be
altered by appending a comma and new step value to the REPLACE,
INSERT, or RENUMBER commands. You will have noticed that the
editor starts up with the first line number as 100 and steps of
10. These are the DEFAULT values.

 If you made any typing errors you may either fix them now
with the replace command, or wait till after we have examined the
EDIT function and edit out your errors.

 Lets EDIT line 100, type E100<ret> the editor prints 00100
with the cursor after the number, ready for a sub edit command.
Press the space bar a few times, you will notice that the
characters are gradually revealed on the line, the space bar is
doing a "non destructive" forward space function. Now type L and
the entire line is displayed and the cursor is redisplayed at the
start of the line ready for another edit of the line. Now type X
and the line is displayed with the cursor sitting at the end of
the line ready for you to append a comment. Now type FRED LIKES

 31

NUTS<ret> and edit the line again, you will notice that your
comment has been added to the end of the line. Use the X sub
command to go to the end of the line again and use the backspace
key to step back over your comment then press return, your
comment has been removed from the line. This demonstrates that
backspace is "destructive". If the error you wish to correct is
near the end of a line it is often faster to go to the end of the
line, backspace over the error and retype the end of the line.

 The line should be back to something like its original
condition. Now type E100<ret> again, press the space bar to
reveal the ";" as before and type 4DIANOTHER<ret> the 4D
instructed the editor to delete the next 4 characters, then you
told it to insert the following characters, and the "<ret>"
caused it to finish the edit of the line. Your line now reads
00100 ;ANOTHER program for "skywriter". If what you wished to
replace was the same length as what you were replacing you could
have typed 4CBILL<ret> which would have CHANGED the next 4
characters to BILL. There are many other commands in the sub edit
mode but what you know now should allow you to fix up any
mistakes you may have made whilst typing in the test file, we
will deal with the rest in detail later.

 One final hint at this stage, if you really make a muck up
of your file and wish to start again from the version saved on
cassette type Z<ret> to erase the file in memory, then type G
"TEST"<ret> and play the tape you recorded before. After the tape
has loaded you should be back at the Editor-Assembler message
with the file in memory ready to edit again.

 Assuming that all has gone well and your file looks exactly
like the one in the appendix we are ready to try to assemble it
into a working program. If the version you previously saved to
cassette is not correct, it would be advisable to resave the file
now.

 To do a trial assembly type A/NO/WE<ret>. The 2 letter
groups following each slash are termed SWITCHES and these direct
the assembler to do specific functions during the assembly. The 2
switches used here are:-

NO means No Object code is to be output into memory.
WE means Wait if you find an Error. (and report it)

 If all has gone according to plan you should have seen
several screen fulls of SOURCE LISTING scroll up the VDU, and
when line 400 was reached, the assembly was stopped and an error
reported. If you now type Control and C simultaneously you will
find yourself back in the editor with the CURRENT LINE POINTER at
the start of the line with the error in. Now type E<ret>L and the
line will be displayed. What the assembler was complaining about
was an unknown label called STRNG, you will notice that when we
defined it in line 480 it was called STRING. To fix this up type
X then two backspaces and ING<ret> which should fix this error.
Now try the assembly again.

 32

 Again the assembler should stop at an error, this time on
line 490, now the error is reported as an "argument error". What
we are being told is that the value 0A is incorrect, remember
that in-its present setup the assembler is expecting all values
to be decimal and 0A is a hex number. The fault can be fixed by
changing the value to 10 (the decimal equivalent of 0Ahex) or by
simply adding a H to the end of the line to tell the assembler
that we require a hex value. This time the file should assemble
without any errors.

 If any other errors are reported you should be able to work
them out by reference to the chapter on "assemb1er errors" and
rechecking your file against the listing in the appendix.

 I cannot stress the concept of backup too strongly, now that
you have a working file, save it to cassette.

 Note that a list of all the labels, with their values was
printed at the end of the assembly, this is called a SYMBOL
TABLE. As a final check before we generate the object program
check that VDU is shown as F000 in the symbol table and START is
shown as 3000. It is so easy to forget to put the H after hex
values and unless the value contains an ascii character the
assembler will happily accept it as decimal.

 The final step now is to assemble the file and generate the
program in memory. To do this type A/WE<ret> it is always
good practice to use the WE switch since it is better to stop the
assembly if an error occurs than to miss seeing the error
reported, and try to run a faulty program.

 When the assembler has finished and returned to the editor
prompt you may attempt to run your program with the eXecute
command X3000<ret> the top 4 lines of the screen should now be
cleared and a small rocket should slowly circulate round the top
of the screen producing a banner with the alphabet on it. In
this simple program I have not attempted to allow any exit, it
will continue ad nauseam till you reset the processor. Resetting
the processor may with some systems destroy the source file, and
you may need to reload from cassette to continue experimenting
with the source file.

 33

 TEST SOURCE LISTING

 This is the test program you are required to enter for the
tutorial. Note that you enter exactly what is shown here with the
exception of the numbers shown in the right hand column;
these are shown for your convenience and should match the number
automatically inserted by the editor at the start of each line.
If you make a mistake whilst typing a line you may use the
backspace key to fix it, If you do not notice it till after you
finish the line, wait till we have shown you how to EDIT lines.

;Test program for "skywriter" 00100
VDU EQU 0F000H 00110
SPACE EQU 20H 00120
 ORG 3000H 00130
START LD HL,VDY 00140
 LD A,’A’ 00150
 LS (CHAR),A 00160
CLEAR LD (HL),SPACE ;Clear top of VDU 00170
 INC HL 00180
 LD A,L 00190
 OR A 00200
 JR NZ,CLEAR 00210
 LD HL,VDU 00220
FLY LD DE,0 ;Speed value 00230
WAIT DEC DE ;Slow down display 00240
 LD A,D 00250
 OR E 00260
 JR NZ,WAIT 00270
 LD A,(CHAR) 00280
 LD (HL),A ;Put char to VDU 00290
 INC A 00300
 CP ’Z’+1 00310
 JR C,STORE 00320
 LD A,’A’ 00330
STORE LD (CHAR),A 00340
 INC L 00350
 PUSH HL 00360
 CALL PLANE 00370
 POP HL 00380
 JR FLY 00390
PLANE LD DE,STRNG ;There is an error here 00400
PRINT LD A,(DE) 00410
 OR A 00420
 RET Z 00430
 LD (HL),A 00440
 INC L 00450
 INC DE 00460
 JR PRINT 00470
STRING DB ’>’ 00480
 DB 0A ;Another error 00490
 DB 9 00500
 DB 0 00510
CHAR DB ’A’ 00520
 END 00530

 34

Appendix-D COMMAND INDEX

Editor.

B Exit to ’monitor’ Q Query file status
C Change /stringl/string2/ R Replace lines
CO Copy to secondary file S Save file called "NAME"
D Delete lines from primary file T Type, no line numbers
E Enter edit sub mode V View lines around
F Find/ string/ current
G Get from tape "NAME" or * X Exit from editor to
I Enter insert mode address
L List to printer Z Create new primary file
M Merge from secondary file ZS Create new secondary file
N Renumber priamary file ^ Step back one line
O Open old primary file ‘ Freeze VDU during scroll
OS Open old secondary file B/S Destructive backspace
P Print file to VDU L/F Step forward one line
C/R End of line character CtlC Exit insert mode

Sub edit

A Ignore changes, restart edit L List full line, restart
nC Change next n characters edit
nD Delete next n characters Q Quit do not alter
E End edit include changes original line
H Delete rest of line, & insert X Insert from end of line
I Insert string into line SPACE Non destructive move
nKx Kill all chars to the n’th x right
B/S Destructive move left C/R End edit return to
 editor

Assembler

A <ret> Normal assembley with object code produced
 (space between A and <ret>)
Annnn <ret> Assemble with object offset in memory by
 nnnn
A/Sl/S2/S3/S? <ret> Assemble with switch control
Annnn /Sl/S2/S? <ret> Assemble with offset under switch control

‘ Freeze display during listing, any other key continues listing

Switches
WE Wait if error found NS No symbol table
NO No object code produced displayed
NL No source listing LP Produce full listing to
PT Print strings in full printer

After error encountered during assembly
Control C Return to editor with error line as current
 editor line
C Clear down error switch (no wait if extra errors)
Any other key Continue assembly with error switch still on

 35

Appendix-E Microbee MONITOR

Since Microbee, in its standard form is essentially a "BASIC"
only microprocessor, with the ability to run pre-recorded machine
code programs, it was decided to provide some of the functions
found in a conventional MONITOR based system. These should be
considered as helpful tools to create, modify, and run your own
machine level programs rather than a complete operating
environment. The functions provided have been limited to those
that can be most profitably fitted in the space at the end of
assembler EPROMs. Since the start location will vary as changes
or updates are made to the Editot/Assembler it is entered by
typing X <CR> form the Editor.

 MONITOR COMMANDS

A nnnn <CR> ALTER MEMORY, nnnn is memory address to be
 altered. (same as the Examine memory, with
 no need to type M to alter memory)

B <CR> Return to basic.(cold starts back to basic)

C xxxx yyyy nnnn Compare two blocks of memory. xxxx is start
 address of the first block, yyyy is the
 start address of the second block and nnnn
 is the number of bytes to be compared. Any
 differences between the first block and the
 second block will be displayed on the
 bottom half of the screen in the following
 format: aaaa ff ss
 aaaa is the address of the difference in
 the first block.
 ff is the contents of the first block.
 ss is the contents of the second block.
 The Compare command will be terminated when
 the total number of bytes (nnnnH) has been
 compared or when the screen is filled up.
 If there are too many differences to fit on
 the screen, compare smaller blocks.

D "FILE" M xxxx yyyy nnnn <CR>
 Dump file at 1200baud. File name no longer
 than six letters and enclosed in double
 quotes. M is a single character filetype.
 This should be a letter to indicate the
 type of the file: e.g.
 B for BASIC files
 M for MACHINE language files
 S for SOURCE files
 D for DATA files.
 Note that BASIC will only load file types
 "B" and "M".
 xxxx is the start address of the data to be
 written to cassette.

 36

Appendix-E Microbee MONITOR con’t

 yyyy is the end address of the data to be
 written to cassette (inclusive).
 nnnn is an optional auto execute address.
 This auto execute address is stored in the
 header and defaults to the same as the start
 address if no addressis given. BASIC uses
 this to run "M" type files, but the machine
 language monitor does not use it when a
 file is Read.

E xxxx <CR> Examine memory location xxxx. This will
 produce a hexadecimal core dump on the
 screen with a cursor indicating the byte
 addressed by xxxx. The cursor can be moved
 left, right, up or down by depressing the
 CTRL key and the letters A, S, W or Z
 respectively (^A,^S,^W,^Z). This
 interactive core dump is particularly
 versatile entry and examination mode whose
 merits will soon become apparent to you. To
 change the contents of any location, when
 the cursor is pointing to the desired
 location press the "M" key to authorize the
 modify mode and then enter the desired
 hexadecimal value(s). Entry, can be
 continued without haveing to rekey "M"
 until the cursor is moved by cursor control
 or the Examine command is terminated. The
 examine command can be terminated at any
 time by pressing the "ESC" key. This will
 return control to the command mode but will
 leave the last core dump on the screen.

v <CR> This command simply clears the screen and
 allows the user to use the Microbee as a
 "T.V. or Glass typewriter". The text is of
 no use as it cannot be printed or saved,
 but the user can get an idea of what
 control characters are supported by the VDU
 driver etc.

W "FILE" M xxxx yyyy nnnn <CR>
 Write a file to tape at 300 baud. Same
 format as the Dump command.

X <CR> This command will jump to the Editor /
 Assembler (if the X command is used in the
 Editor/Assembler it will jump you back to
 the Monitor).

F xxxx yyyy zz <CR>
 This command will FILL memory from the
 start address xxxx to the end address yyyy
 with the value zz Hex (if no value is given

 37

Appendix-E Microbee MONITOR con’t

 it will default to 00 Hex).

G xxxx <CR> This command premits program execution to
 commence from any address above 01FF Hex.
 The warm start address of the machine
 language monitor is pushed onto the stack
 before jumping to the user’s address, so
 that the user program can return control
 to the monitor by executing a "RET" (e.g.
 C9Hex) instruction.

M xxxx yyyy llll <eR>
 Move block of memory. Move the block of
 memory at location xxxx to location yyyy.
 llll is the number bytes to be moved, it is
 a Hex value(llll is the LENGTH of the
 block)

P <CR> This command clears the screen (page clear)
 and returns to the command mode.

R "FILE" xxxx <CR> This command Reads tape files. The file
 name is optional but can be used to load a
 particular file off a tape. xxxx is also an
 option to load the file to address xxxx in
 memory. The machine language monitor will
 initialise the tape routines and start
 looking for a valid header (produced by the
 "D" or "W" commands). If no filename is
 given, the first file found will be loaded.
 If a filename is given the monitor waits
 for the correct file before loading;
 however, each header will be displayed as
 it is encountered. This allows you to
 observe what files are on the tape.
 If a CRC error is detected during a read,
 the read will be terminated and a "C" put
 at the end of the command line. To verify a
 machine language file use: R "FILE" 8000
 <CR> as this will read the file into ROM
 space and hence nothing will be destroyed
 in memory in case of a bad Dump or Write.

 DGOS TAPE FORMAT:

-NULLS 16 At least 16 null characters (00H).
-SOH 1 Start of header character (01H).
-NAME 6 Filename. Nulls in unused positions.
-TYPE 1 Filetype. single ASCII character.
-LENGTH 2 Length of file.
-LOAD ADDR 2 Load addresses.
-AUTO ADDR 2 Execute addresses. (see text)
-SPEED 1 Speed: 01H for 1200 Bd & 00H for 300 Bd.

 38

Appendix-E Microbee MONITOR con’t

-EXEC 1 00H for no auto execute, FFH for auto
 execute.
-SPARE 1 Spare byte (not used).
-CRC 1 CRC byte for header.
-DATA 256 Byte data block. (see note)
-CRC 1 CRC for data block.
 NOTE: All data blocks are 256 bytes long,
 except for the last one which be from 1 to
 256 bytes long to make up the total length
 of the file. The last block will be
 followed by a CTRL character.
 Loading can be terminated at any time by
 pressing the RESET key.

S xxxx yyyy aa (bb) (cc) (dd) (ee) (ff) <CR>
 Search from start address xxxx to end
 address yyyy. aa is the byte to be searched
 for. bb to ff are (optional) bytes to
 searched for. Any address at which the byte
 or bytes are found will be displayed on the
 lower half of the screen.

NOTE: If you enter a character that is not ’understood’ by the
monitor a flashing question mark will appear. Use the ’BACKSPACE’
or ’ESC’ key to cancel the error and return the monitor to the
command mode.

 39

Appendix-F LAYOUT OF A FILE

 For those who wish to attempt to recover a "crashed" file,
or convert a differently formatted file for use with this editor,
the precise layout is defined here.

 There is no start of character, nor is there any end of
line character stored on the line, the lines are stored
sequentia1y, in ascending order of line numbers. Each line
consists of a 16 bit value representing the line number, normal
8080/Z80 address format is used, that is the low byte first. eg
line number 100 will appear as 64 00 (100 decimal is 0064 hex).
Following the line number is a single hex byte representing the
number of characters (not counting the line number or itself)
that are in the line. The actual characters (in hex) of the line
follow the length byte. After the last line of the file is the
"end of file marker" which consists of 2 bytes, doth FF, the end
of file marker serves two. purposes, FF FF represents line number
65535, and ensures that all other lines will be stored below
itself. It also represents the end of the file. Note that the end
of file pointer displayed by the Q command shows the location of
the first of these two bytes. And any attempt to save the file
from outside the environment of the editor must include both
FF’s.

 To satisfy the editor that a valid file exists, It must be
capable of stepping through the file by means of the length
bytes, until it finds the end of the file marker below the end of
memory address. Whilst stepping through it must not find a length
byte longer than 7F hex, nor must there be any characters in the
line that have the sign bit set (reverse video). If any of these
criteria are not met, the message "No file here" will be
displayed.

 The following is a sample file, at 2000hex, and the memory
image produced.

 After printing the file, the status displayed by the Q
command was:
Q <CR>
2000 2026 202D 3FFF

00100:TEST LINE
00110 ORG 100H
00120 JP 0D000H
00130 END

2000 64 00 0A 3B 54 45 53 54 20 4C 49 4E 45
200D 6E 00 09 09 4F 52 47 09 31 30 30 48
2019 78 00 0A 09 4A 50 09 30 44 30 30 30 48
2026 82 00 04 09 45 4E 44
202D FF FF

 40

Appendix-G EDITOR SCRATCH LOCATIONS

 This list is not comprehensive, but mearly covers those
locations you are most likely to wish access to. When shown as
xxxx/y it means that 16 bit value is used.

0200/1 Pointer to start of currently open primary file.
0228 Secondary file open flag.
0229/A Start of secondary file pointer.
022B/C End of secondary file pointer.
022D/E Current line pointer.
022F/0 End of memory pointer. Set up on entry to editor.
0231/2 End of file pointer (points to first FF).
0233 step size between line numbers.
0243/C3 128 character general purpose buffer.
02C4/5 Pointer to current character being accessed in buffer.
02C6 Size of line currently in buffer.
02D4/5 Error count. Keeps count of number of errors during
 assembly.
02D6 I/O suppress flag. Non zero suppresses output to both
 VDU and line printer. Used to suppress listings under
 NL switch etc.
02D8 Printer flag. Non zero causes printer to be used
 instead of VDU.
02DF/0 Pointer to bottom of symbol table. Only valid after
 compleation of an assembly.
02E1 Suppress line numbers on printout if non zero.
02E2 File initialized flag. Editor will ask for "Memory
 size", and create a null file at the default file
 address if this location is not set to 55hex on entry
 to the Editor.
02E9 Current value default radix.
02EA Reserved for line number of printouts.
02EB Reserved for page number of printouts.
02F0/5 Assembler switch storage scratch.
02F7/06 Cassette name compare buffer.
0207/16 Cassette header and address buffer.
0217/97 Return address stack.

 41

Appendix-G BASIC SCRATCH LOCATIONS

BFF5 :;----------------------------------
BFF5 :; BASIC SCRATCH AREA
BFF5 :;----------------------------------
0000 : org srtch
0000 :; 100H boundary ..
0000 :hash_table equ .
0000 : defs 128
0080 :;Need {CTC} vectors to 10H boundary ..
0080 :move_here equ . ;NZ scratch start
0080 :ctcv1 defs 4*2
0088 :piov1 defs 2
008A :piov2 defs 2
008C :break_disab defs 1 ;disables break key if nz here
008D :save_disab defs 1 ;disables SAVE etc if NZ
008E : defs ’20’-(6*2)-2-7 ;reserved
0099 :col_flag defs 1 ;=255 if colour BEE, else 0
009A :col_mrsl defs 1 ;color mode byte result
009B :col_rslt defs 1 ;normal byte result
009C :col_fore defs 1 ;foreground color
009D :col_back defs 1 ;background color
009E :col_mode defs 1 ;color mode
009F :ucl_flag defs 1 ;control UC mode of LIST
 ; nz=list in lower
00A0 :;
00A0 :stack defs 2 ;top of memory=stack
00A2 :rst_jump defs 2 ;warm-start jump address
00A4 :chk_byte defs 2 ;55AA if initialized
00A5 :save_exec defs 2 ;machine language exec address
00A8 :jp_mem defs 3 ;modifiable jump vectors for keywords
00AB :jp_net defs 3
00AE :jp_edasm defs 3
00B1 : defs 1 ;reserved
00B2 :;
00B2 :; this is the input and output vector tables
00B2 :out_tab defs 2*8
00C2 :in_tab defs 2*8
00D2 :;
00D2 :; this is the crtc table, copied to ram for esc a,s,w,z
00D2 :crtc_tab defs 2
00D4 :crtc_hor defs 5
00D9 :crtc_ver defs 3
00DC :crtc_curs defs 6 ;cursor control byte
00E2 :;
00E2 :out_dev defs 1 ;select output from above table
00E3 :outl_dev defs 1 ;select lprint output
 from out_tab
00E4 :in_def defs 1 ;selects input from in_tab
00E5 :;
00E5 :vdmode defs 1 ;video mode control byte
00E6 :speed defs 1 ;vdu delay period
00E7 :chars_used defs 1 ;my addition for USED, etc.
00E8 :plot_type defs 1 ;has "R","I" or space
00E9 :lo_cycle defs 1 ;controls tape routine speed

 42

Appendix-G con’t BASIC SCRATCH LOCATIONS

00EA :RS_baud defs 1 ;controls RS232 speed
00EB :; this is a shared scratch : graphics plot / tape routines
00EB :gr_pseudo equ .
00EB :required defs 6 ;the load name to match
00F1 :header defs 6 ;dgos type header block
00F7 :fltype defs 1 ;file type character
00F8 :flleng defs 2 ;length of file
00FA :flstrt defs 2 ;normal starting address
00FC :flauto defs 2 ;jp to this address if flexec nz
00FE :flspeed defs 1 ;0 -> 300bd, nz -> 1200 bd
00FF :flexec defs 1 ;is nz if this is auto execute
0100 :flprotect defs 1
0101 :;
0101 :; From here on the scratchpad may change between versions
0101 :alpha_rev defs 1 ;non z -> alpha reversed
0102 :key_down defs 2 ;this key-code is down
0103 :rept_count defs 2 ;controls speed of repeat key
0105 :rept_flip defs 1 ;defines if retrace or not
 at last look
0106 :last_ascii defs 1 ;keeps last char send
 by scn_in for repeat
0107 :keep_char defs 1 ;keeps an ASCII code
 for inkey$’s use
0108 :kbds defs 1 ;for port a keyboard
0109 :port_ack defs 1 ;zero if parallel port out
 usable
010A :buff_count defs 1 ;no. bytes in cassette
 redirect buffer
010B :cursor defs 2 ;cursor address ’F000’+
010D :sec_flag defs 1 ;nz if last vdu_out char
 was excape
010E :holdde defs 2 ;save de during ops
0110 :showcr defs 1 ;let list-line do inverse
0111 :trwd defs 1 ;ignore o/p ovf STR
 if -1 else max/line
0112 :svelps defs 2
0114 :sveaut defs 2 ;save de during ops
0116 :uplink defs 2 ;scratch for renum
0118 :sram defs 2
011A :rnd defs ’10’ ;random number seed
012A :load_opt defs 1 ;holds load options
012B :;
012B :free defs 1 ;pcg storage ..
012C :vdu_addr defs 2
012E :new_char defs pcg_charz
013E :contpos defs 2 ;continue address (de)
0140 :contstart defs 2 ;start of currently
 executing statement
0142 :err_trap defs 2 ;=line num if ON ERROR active
0144 :err_code defs 1
0145 :err_line defs 2 ;status of last error
0147 :;
0200 : org (.>8+1)<8
0200 :; 100H bounary ..

 43

Appendix-G con’t BASIC SCRATCH LOCATIONS

0200 :;*** from here may be overloaded by machine language progs. ***
0200 :;* this should be at scratch+’200’
0200 :ref_counts defs n_pcg_chars*2
0300 :free_recs defs n_pcg_chars*2
0400 :;
0400 :; Need 100H boundary org (.>8+1)<8
0400 :astck defs ’100’
0500 :avar defs ’1B0’
06B0 :ivar defs 26*2
06E4 :fnstor defs ’10’
0700 : orf (.>8+1)<8
0700 :; Fore to 100H boundary
0700 :fpbuff defs ’28’
0728 :ibufs defs ’100’-’28’
0800 :ovufs defs ’C0’
08C0 :
08C0 :sd defs 1
08C1 :fw defs 1
08C2 :dp defs 1
08C3 :tmp1 defs 2
08C5 :tmp2 defs 2
08C7 :count defs 1
08C8 : defs 1
08C9 :auto defs 1
08CA :crlb1 defs 2
08CC :tmp3 defs 2
08CE :tmp4 defs 2
08D0 :pbgn defs 2
08D2 :pend defs 2
08D4 :stlv1 defs 2
08D6 :optr defs 2
08D8 :vstrt defs 2
08DA :tmpa defs 2
08DC :sstrt defs 2
08DE :xswe defs 1
08DF :xsw1 defs 1
08E0 :prmt defs 1
08E1 :sprmt defs 1
08E2 :tmpc defs 1
08E3 :zone defs 1
08E4 :mode defs 1
08E5 :tmpd defs 2
08E7 :tmp5 defs 2
08E9 :dloc defs 2
08EB :flags defs 1
08EC :lims defs 2
08EE :autstp defs 1
08EF :autln defs 2
08F1 :tmp8 defs 2
08F3 :tmp9 defs 2
08F5 :ptrps defs 2
08F7 :;stach moved (shouldn’t be in table C), replaced by ..
08F7 :autdef defs 2 ;default for edit
08F9 :tmpf defs 2
08FB :ablv1 defs 1
08FC :odvce defs 1
08FD :contln defs 2 ;CONT line No
08FF : defs 1 ;space filler
0900 :pstrt equ .
0900 :
0900 :end equ .
0900 : end

 44

Appendix-H ZILOG MNEMONICS

Alphabetical
Assembly Mnemonic Operation

ADC HL,ss Add with carry Reg. pair ss to HL
ADC A,S Add with carry operand s to Acc.
ADD A,n Add value n to Acc.
ADD A,r Add Reg. r to Acc.
ADD A,(HL) Add location (HL) to Acc.
ADD A,(IX+d) Add location (IX+d) to Acc.
ADD A,(IY+d) Add location (IY+d) to Acc.
ADD HL,ss Add Reg. pair ss to HL
ADD IX,pp Add Reg. pair pp to IX
ADD IY,rr Add Reg. pair rr to IY
AND s Logical ’AND’ of operand s and Acc.
BIT b,(HL) Test BIT b of location (HL)
BIT b,(IX+d) Test BIT b of location (IX+d)
BIT b,(IY+d) Test BIT b of location (IY+d)
BIT b,r Test BIT b of Reg. r
CALL cc,nn Call subroutine at location nn if condition cc
 is true
CALL nn Unconditional call subroutine at location nn
CCF Complement carry flag
CP s Compare operand. with Acc.
CPD Compare location (HL) and Acc. decrement HL and BC
CPDR Compare location (HL) and Acc. decrement HL and BC
 repeat until BC=0
CPI Compare location (HL) and Acc. increment HL and
 decrement BC
CPIR Compare location (HL) and Acc. increment HL, and
 decrement BC repeat until BC=0
CPL Complement Acc. (1’s complement)
DAA Decimal adjust Acc.
DEC m Decrement operand m
DEC IX Decrement IX
DEC IY Decrement IY
DEC ss Decrement Reg. pair ss
DI Disable interrupts
DJNZ e Decrement B and Jump relative if B=0
EI Enable interrupts
EX (SP),HL Exchange the location (SP) and HL
EX (SP),IX Exchange the location (SP) and IX
EX (SP),IY Exchange the location (SP) and IY
EX AF,AF’ Exchange the contents of AF and AF’
EX DE,HL Exchange the contents of DE and HL
EXX Exchange the contents of BC,DE,HL with the
HALT HALT (wait for interrupt or reset)
IM 0 set interrupt mode 0
IM 1 Set interrupt mode 1
IM 2 Set interrupt mode 2
IN A,(n) Load the Acc. with input from device n
IN r,(C) Load the Reg. r with input from device (C)
INC (HL) Increment location (HL)
INC IX Increment IX

 45

Appendix-H con’t ZILOG MNEMONICS

INC (IX+d) Increment location (IX+d)
INC IY Increment IY
INC (lY+d) Increment location (lY+d)
INC r Increment Reg. r
INC ss Increment Reg. pair ss
IND Load location (HL) with input from port (C),
 decrement HL and B
INDR Load location (HL) with input from port (C),
 decrement HL and decrement B, repeat until B=0
INI Load location (HL) with input from port (C); and
 increment HL and decrement B.
INIR Load location (HL) with input from port (C),
 increment HL and decrement B, repeat until B=0
JP (HL) Unconditional Jump to (HL)
JP (IX) Unconditional Jump to (IX)
JP IY Unconditional Jump to (IY)
JP cc.nn Jump to location nn if condition cc is true
JP nn Unconditional jump to location nn
JR C,e Jump relative to PC+e if carry=l
JR e Unconditional Jump relative to PC+e
JR NC,e Jump relitive to PC+e if carry=0
JR NZ,e Jump relitive to PC+e if zero (z=1)
JR z,e Jump relative to PC+e if zero (Z=l)
LD A,(BC) Load Acc. with location (DC)
LD A,(DE) Load Acc. with location (DE)
LD A,I Load Acc. with I
LD A,(nn) Load Acc. with location nn
LD A,R Load Acc. with Reg. R
LD (BC),A Load location (BC) with Acc.
LD (DE),A Load location (DE) with Acc.
LD (HL),n Load location (HL) with value n
LD dd,nn Load Reg. pair dd with value nn
LD dd,(nn) Load Reg. pair dd with location (nn)
LD HL,(nnfrom port (Celative to PC+e if non zero (Z=0)
LD A,(BC) Load Acc. with location (BC)
LD A,(DE) Load Acc. with location (DE)
LD A,I Load Acc. with I
LD A,(nn) Load Ace. with location nn
LD A.R Load A
LD IY,(nn) Load IY with location (nn)
LD (IY+d),n Load location (IY+d) with value n
LD (IY+d),r Load location (IY+d) with Reg. r
LD (nn),A Load location (nn) with Acc.
LD (nn),dd Load location (nn) with Reg. pair dd
LD (nn),HL Load location (nn) with HL
LD (nn),IX Load location (nn) with IX
LD (nn),IY Load lOcation (nn) with IY
LD R,A Load R with Acc.
LD r,(HL) Load Reg. r with location (HL)
LD r,(IX+d) Load Reg. r with location (IX+d)
LD r,(IY+d) Load Reg. r with location (IY+d)
LD r,n Load Reg. r with value n
LD r,r’ Load Reg. r with Reg. r’
LD SP,HL Load SP with HL
LD SP,IX Load SP with IX

 46

Appendix-H con’t ZILOG MNEMONICS

LD SP,IY Load SP with IY
LDD Load location (DE) with location (HL), decrement
 DE,HL and BC
LDDR Load location (DE) with location (HL), decrement
 DE,HL and BC; repeat until BC=0
LDI Load location (DE) with location (HL), increment
 DE,HL, decrement BC
LDIR Load location (DE) with location (HL), increment
 DE,HL, decrement BC and repeat until BC=0
NEG Negate Acc. (2’s complement)
NOP No operation
OR s Logical ’OR’ of operand s and Acc.
OTDR Load output port (C) with location (HL), decrement
 HL and B, repeat until B=0
OTIR Load output port (C) with location (HL), increment
 HL and decrement B, repeat until B=0
OUT (C),r Load output port (C) with Reg. r
OUT (n),A Load output port (n) with Acc.
OUTD Load output port (C) with location HL, decrement
 HL and B
OUTI Load output port (C) with location HL, increment
 HL and decrement B
POP IX Load IX with top of stack
POP IY Load IY with top of stack
POP qq Load Reg. pair qq with top of stack
PUSH IX Load IX onto stack
PUSH IY Load IY onto stack
PUSH qq Load Reg. pair qq onto stack
RES b,m Reset Bit b of operand m
RET Return from subroutine
RET cc Return from subroutine if condition cc is true
RETI Return from interrupt
RETN Return from non maskable interrupt
RL m Rotate left through carry operand m
RLA Rotate left Acc. through carry
RLC (HL) Rotate location (HL) left circular
RLC (IX+d) Rotate location (IX+d) left circular
RLC (IY+d) Rotate location (IY+d) left circular
RLC r Rotate Reg. r left circular
RLCA Rotate left circular Acc.
RLD Rotate digit left and right between Acc. and
 location (HL)
RR m Rotate right through carry operand m
RRA Rotate right Acc. through carry
RRC m Rotate operand m right circular
RRCA Rotate right circular Acc.
RRD Rotate digit right and left between Acc. and
 location (HL)
RST p Restart to location p
SBC A,s Subtract operand s from Acc. with carry
SBC HL,ss Subtract Reg. pair ss from HL with carry
SCF Set carry flag (C=l)
SET b,(HL) set Bit b of location (HL)
SET b,(IX+d) Set Bit b of location (IX+d)
SET b,(IY+d) Set Bit b of location (IY+d)
SET b,r Set Bit b of Reg. r
SLA m Shift operand m left arithmetic
SRA m Shift operand m right arithmetic
SRL m Shift operand m right logical
SUB s Subtract operand s from Acc.
XOR s Exclusive ’OR’ operand s and Acc.

 47

