M croworld Z80

Edi t or/ Assenbl er

I nstruction Manual

Machi ne Code Progranm ng For Your M crobee.

CONTENTS/ | NDEX

Introduction. 1
Getting it running.y 2
Brief description of Editor....................... 4
Editor instructions.......... ..., 5
Sub Edit instructions (editor).................... 9
Brief description of assenbler................... 10
Swi tches! Wat they are (descriptions)........... 11
Edit Error mesSsSages., 12
Assenbl er Error messSages.uuuiniiaenn.. 15
The McroBee Environment......................... 16
Qutput Device nunbers......... 18
Programmabl e Graphics Characters................. 18
Creating a PCG Character..............couuuuun... 19
Some Helpful Hints..... 21
Fossary of terms.......... . 22
What is an "Editor". 26
What is an "Assenmbler”. 28
Sonme "Hands On" Experience....................... 30
Test source listing........ 34
Command I ndex.............. ... 35
M croBee Mnitor and Commands. 36
Layout of a File...... 40
Editor scratch locations......................... 41
Basic scratch area............. 42

Zilog Mempnics. ... 45

I NTRODUCTI ON

This package consists of a "line oriented" text editor with
automatic |ine nunbering and an assenbl er which will generate Z80
machi ne code from standard Zilog Mienonics as specified in the
"Zil og Z80-Assenbly Language Programmi ng Manual ". Macro operators
and certain arithnetic operators are not supported.

The Editor files may be saved to, or |oaded from cassette
using the Save and Get conmands.

Miltiple files may be present in menory at the sane tine.
Lines from the prinmary file may be copied and appended to the
specified secondary file, or the entire contents of a specified
secondary file may be merged back into the primary file with
automatic renunmbering of the primary file if required.

Specific lines in the currently "open" file nmay be accessed
by their line nunber of by cursor control. Once accessed the
lines may be altered, appended to, replaced, or deleted. Lines
may be inserted into the file by sinply assigning a line nunber
appropriate to the location you wish it to take wup in the file.
Likewse a line, or block of lines, nmay be nanipulated or killed
by specifying the block of lines involved.

G obal search and replace functions are supported by the
editor, each occurrence in the run is reported as it is found.

Up to 14 lines on either side of the "current line" may be
i nspected, without noving the line pointer, by using the "View
feature.

Files may be typed to a printer with the Iline nunbers
stripped off, allowing the Editor to be used for letter witing.

The assenbl er produces its object code directly into nenory
ready for immediate execution. An offset feature allows the
object to be located in a location other than where it would
normally reside, to prevent overlaying inportant nenory areas
during assenbly. Since a three pass technique is used the object
code may even overlay the source file if desired.

Assenbler |labels may be up to 6 characters in |ength and
provided that they start with an ascii character nmay have al npst
any other character inbedded within them Source |Iistings
generated during assenbly may be suppressed or directed to either
VDU or printer.

Full error reporting is provided even when source listing is
suppressed, a "wait on error" function is allowed, wth
conditional return to the Editor automatically set up on the line
containing the error.

Print directives are provided to allow the listing to
printer to be turned on or off under software control, this
allows the printing of partial source listings. Listing of the
obj ect code for long strings or data statenents is automatically
suppressed to conserve paper, a "switch" is provided to allow
listing in full if desired.

GETTING | T RUNNI NG

There are three resident software packages supplied with the
M crobee. |If you have battery backup, any one of the three may be
runni ng when you turn your M crobee on. M crobees without battery
backup will always enter BASIC when they are turned on.

These three software facilities are described briefly here.

EDI TOR/ ASSEMBLER The editor and Z-80 assenbl er described
in this manual . VWhen t he
Edi tor/ Assenbl er is operating, the user
is prompted with ‘*’ and an underline
cursor

BASI C M croworl d 16K Basic. A superhuman basic
interpreter, often considered by nost
M crobee owners to be nore powerful than
a locomotive (until they discover the
joys of programm ng in machi ne | anguage
with the Editor/Assenbler). The user can
tell when the Basic interpreter is
running by noting that the pronpt is ‘>
and the cursor in an underline *_’

MONI TOR This is the software facility to use
when you want to know all about the
nitty-gritty details of the stuff inside
the conputer’s nenory. The main details
of the monitor are laid out in Appendi x-
E. The nonitor gives the same pronpt as
Basic ‘> but with a white blob cursor
(so you can tell them apart).

Getting into the Editor/Assenbler is a sinple matter. From
basic, typing EDASMwi |l get things started for you. (Note that
inreading this manula,if you are instructed to type anything,
you are expected to termnate the line by hitting <return> unless

you are specifically told not to). |If you haven't wused the
Edi t or/ Assenbl er recently, it will have forgotten how nmuch nenory
your M crobee has. If so, you will be asked the question ‘Menory

Size?'. |If you have a 16K M crobee, reply by typing 4000. This is
the menory size of your machine expressed in hexadeci mal (4000-
hex = 16384-dec = 16K). 32K M crobee owners can reply w th 8000.

If you wish to enter the Editor/Assenbler fromthe nonitor,
simply type X . This command neans °‘exchange’ and can al so be
used to get from Editor/Assenbler back into the nonitor.The
name of the command cones fromthe fact that nany users spend a
lot of tine ‘swapping’ between the Editor/Assenbler and the
nmoni t or .

There are many ways to get into the nmonitor. As already
noted, X gets into the nmonitor fromthe Editor/Assenbler. Typing
<reset>Mwill get into the monitor from anywhere. To do this,
just hold down <reset> for a second and then hold down the M key
and rel ease <reset> while Kkeeping the M key held down. This is
not a command, so it is not necessary to hit <return> You can
do a <reset>M absolutely anytinme (even in the mddle of a

progran .

Cetting into basic is a bit nore conplicated. Typing
<reset><esc> (in the sane ways as <reset>M) wll do a ‘cold

start’ in basic, which wll renove any basic prograns or
Editor/ Assenbler files. <reset><esc>is a last resort to start
fromscratch when everything goes wong. Like <reset>M, this

does not require a <return> and can be done anytinme. Appendi x-G
contains a bit of information about file and programretrieval if
you wsh to restore files or prograns after an accidental or
unavoi dabl e cold start.

A nore dignified way of ‘cold start’ing basic is the B
command (fromthe nonitor or Editor/Assenbler). This still w pes
all files and progranms, being identical to <reset><esc> but is
nore often wused out of choice rather than desperation. If you
wish to get into basic without losing your prograns and files
simply type G 8021 (fromthe nonitor) or X 8021 (fromthe Editor/
Assenmbler). Either of these commands will run the machi ne code
program at 8021-hex which happens to be the basic ‘warmstart’
vector.

Htting <reset> (on its own, held down for at Ileast a
second) will return the user to the nmpbst recently used system
For exanple, if <reset> is hit in the nmddle of a program
executing (called from the nmonitor), control will be returned to
t he noni t or. | f t he program had been run from the
Editor/ Assenbler, then <reset> would have returned us to the
Edi t or/ Assenbl er. The M crobee renenbers whi ch system was runni ng
by updating the relevant ‘where am|’-infornmation every tinme one
of the conmmands nentioned above is used to change from one system
to another. This includes using <reset>M and <reset><esc> but
does not work with G 8021 or X 8021, because a warmstart in

basi c does not update this ‘where am/l’-information. This means
that if basic is entered by a warmstart (by G 8021 or X 8021),
then any subsequent <reset> will cause the systemto revert back

to the nonitor or Editor/Assenbler, depending on which one basic
was called from

The way to fix this problem is by manually changing the
warmstart junp vector in the scratch |ocations at 00A2-hex. Do
this by getting into the nonitor and typing E A2 which wll
display data in and around location O00A2. Ht M (wthout
<return>) to nodify the menory and then type 2180 (wi thout
<return>). This enters the Basic-warmstart vector into the
| ocati ons 00A2 and O00A3 so hitting <reset> now w |l enter Basic
and cause Basic to be warmstarted every tine <reset>is hit from
now on (until an entry into the Monitor or Editor/Assenbler
changes the vector).

BRI EF DESCRI PTI ON OF EDI TOR

As you read this manual, you will notice that whenever a new
termis introduced into the text it is shown in CAPI TAL LETTERS

If after reading the paragraph, you are still not sure of the
neaning of the word, try looking it wup in the glossary of term
towards the end of this manual. Readers who have never nmet an
editor are advised to read Appendi x-A "Wat is and Editor" before
proceeding further into this section. Anything that is
I nadequately explained will probably be covered in nore detail in
t he Appendi x.

This editor is a line editor, enabling users to create files
in a manner simlar to basic prograns. Each |ine has a nunber and
the lines reside in the file in numerical order. The editor can
operate on two files, designated PRI MARY FI LE and SECONDARY FI LE
This facility enables the user to use bits and pieces of old
files to create new files by nmoving text fromone file to
another. In practice, many files may reside in menory
simul taneously, with only two of them being active at any one
tinme. To nake a file active (thus deactivating a currently active
file), you only need to open a file (primary or secondary) at the
place in menory where the file to be activated resides. This
neans that the user is responsible for keeping track of the
| ocation of of all the inactive file since the editor is ignorant
of their existance (until they are made active)

The editor commands allow you to insert, delete or replace
lines. The full dictionary of editor commands is detailed in the
next section. One special command is E (edit), which enables the
user to work on one line of a filein a nore detailed way,
inserting, deleting and replacing characters in the line. A whole
new set of conmands (subedit instructions) become avail abl e when
the E command is excecuted. The subedit commands are |listed in
Section 5

EDI TOR | NSTRUCTI ONS

We will now deal with the editor comrands in detail. Anyone
who is unsure of exactly what is going on is advised to | ook at
Appendi x-C for a tutorial exanple of the use of the editor (and

the assenbler). The conmands described here are listed in sone
sort of order of maxi mum conprehensibility, so anyone requiring
an al phabetical listing is requested to | ook in the command i ndex
i n Appendi x- D.

Note that in every conmand that can specify a |ine nunber as
a parameter, # can be wused to refer to the first Iline of the
file, * can be used to reference the last line in the file and .
refers to the current line. These are known as W LD CARDS.

z This command creates a new file, if an address is given
(e.g. Z 3000) the file is to be created at the specified
address. If no address is specified, the file wll be
creat ed at 1000- hex, by default. The file is
automatically opened as the primary file.

ZS This creates a file as above and makes it the current
secondary file. |If an address is given (e.g. ZS 3800)
then the file will be created at that address. Wen no
address is specififed, the file is created 1K above the
end of the current primary file. Note that the editor
does not do any checks to ensure that it does not destroy
the secondary file by enlarging the prinary file to wipe
over it. You may have a nunber of secondary files in
nenory at one time but only one can be open (active) for
use in operations with the primary file.

O Once we have created a few files here and there in
nmenory, they are all the same format, so files that were
created as secondary files will be no different to files

created as primary files. So, we can deactiveate our
current primary file and open any other inactive file by
the O command. For exanple O 2000 will nake the file at
2000-hex the current primary file (if there is a file at
2000- hex). Once again, "no address" defaults to 1000- hex.
If no file is resident at that address, a ‘No File Here’
error wll occur because the Editor/Assenbler is smart
enough to know what a file 1looks like in nbst cases.
However, it is always good practice to query the state of
the file (with the Q command) since it is possible that
sonme rubbish in nenory nmay look like a file.

cs This attenpts to open a secondary file at the address
speci fi ed (e.g. OS 3800), t hus deactivating the
previ ously open secondary file.

The insert command allows you to add new lines to the
primary file. For exanple 1180,10 w Il cause everything
subsequently typed to be inserted into the file at |ines
180, 190, 200, ... as specified by the starting nunber (180)
and the step size (10). If the step size is ommited, the
editor wll renenber the step size used last time an
insert was performed. So 1180 wll insert lines fromline
180 in the same size steps as wused in the last Insert
command. |If the start lineis onmmted, the lines are
inserted after he current linein the file (The current
line is the line nost recently | ooked at). However, if an
I command is used before any other instructions have been
done, then the default action is to insert at line 100 in
step sizes of 10. |If the [Ilinenunber steps over an
existing line, the insert is conpleted and term nates
with a ‘No Room Between Lines’ error nmessage. For
exanple, if a file already has |ines nunbered 230 and 250
an 1240,5 command wll insert Iines at 240 and 245 and
then term nate because of |ack of room between |ines. The
| instruction can also be aborted by typing <ctrl>C or
<ctrl>A (neither of which require a <return>)

The del ete comand has two formats, D245 or D240:250. In

the first case, only line 245 is deleted. In the second
case all lines between 240 and 250 (inclusive) are
deleted. As with all commands that allow a |ine nunber to
be specified, if no Iline nunber is given, the current

line is assuned. It is not recommended to use W LD CARDS
with the delete command, D# * is not the best way to
delete the entire file, use the Z comand i nstead

Repl ace the specified line in the file and then go into
insert nmbde. The conmand R240,10 is equivalent to D240
followed by 1240,10. Once again, if no paraneters are
given, default step size and |line nunber are as for the
insert conmand.

This command will renunber the conplete file. For exanple
N300, 10 will renunber the file so that the first linis
nunbered 300 and subsequent lines are nunbered in steps
of 20 (320, 340, 360, ...)

Query the status of the currently open prinary file. Four
addresses are printed out: START or file, address of
CURRENT LINE in file, address of END of file and UPPER
LIMT of nenory

Print lines onto the video display. So P200:450 will

print all lines from 200 to 450 inclusive. The w | dcards
“#, '* and '.’ can all be used with the print conmand
In all instances of the print command, the last line

printed becones the current line. If only one |ine nunber
is specified (e.g. P300) then this line alone is printed
and becomes the current line. A special version of the
comand is P with no paraneters specified which prints

L/ F

one screenful of lines starting at the current |ine. Thus
a useful way to look through the entire file is to print
the first line (P#) and then print the rest of the file
one screenful at atinme (P).

The circunfles causes the current line pointer to be
noved backwards by one line (towards the start of the
file). The new current line is printed. This comand does
not require a <return> which makes it fast for |ooking
through the file backwards.

The line feed is the same as ~ except that the current
I'ine pointer steps forward through the file. No <return>
is required.

View the 14 Ilines around the current line wthout
changing the current line pointer. |If the command
contains a nunber (e.g. V9) then the current line wll
appear at this line on the screen (in this case the
current line wll be the ninth line in the fourteen

printed on the screen).

Same as P command but with output directed to the printer
port instead of the video display.

This is another version of the P command but with the
output sent to the printer and the line nunbers stripped
fromthe file (useful for letter witing).

Edit a line using the subedit conmand |isted in Section
5 of this manual. E100 will edit line 100. E will edit
the current line.

The Find command will search through the file | ooking for
a given string, starting from the |line AFTER the current
line. The conmand F/elephant/ wll [look for the next
occurence of the word el ephant and print the |ine (making
it the new current line). The command F will search using
the string used for the last search (useful for searching
for the same string in several places in the file). If a
C conmand is executed, the last string used in an F
command is forgotten (because the sanme storage is used
for the C command).

The command C/ nouse/el ephant/ wll search for the next
occurance of the string ‘mouse’ and change it to
el ephant. The command C/ nmouse/elephant/* wll continue
repeating the change wuntil the end of the file is
reached. This wll only do the change to the first
occurance of ‘mouse’ on each line, and wll not do
anything to the lines before the current line.

The copy command wll take a block of lines fromthe
current primary file and append themto the end of the
currently open secondary file. The primary file is not

altered by this command. So the command COL00: 300 wil |
copy lines 100 to 300 (inclusive) onto the end of the
secondary file. After each copy, the status of the
secondary file is printed as a rem nder to the user that
the editor does not check or protect the secondary file.

The merge command wll copy the entire contents of the
currently open secondary file into the primary file
(insertine after the current line). The Ilines of the
secondary file are inserted wth line nunber steps of 2.
The lines following the inserted text are al so renunbered
in steps of 2 for as many lines as necesary to put the
line numbers back into increasing order. The conmmand
could be MBOO to nerge the secondary file in after line
300 in the primary file or just Mto do the nerge after
the current |ine.

Saves the current primary file to cassette. The comand
must be in the form S "NAVE' with the quotes and file
name (up to six characters) being compul sory.

This command will load a file fromtape. The conmand nust
be in one of two forns: G will load a file with any nane
and G"NAME" will not load the file wunless it was saved
with the name | abel "NAME".

The Bye command does a cold start of basic (quitting the
Edi tor/ Assenbler).

This command will execute a machine code program The
comand X with no paraneters wll execute the nonitor
(so this is the coommand to use to get into the nmonitor).
The command X3500 will execute the machine code program
starting at 350-hex.

This is the Assenble command. Sections 6 and 7 of thi
manual are devoted to describing the workings of thi
facility of the Editor/ Assenbler.

When inserting lines into a program renmenber the foll ow ng keys
have speci al neani ngs:

<t ab> | eaves blanks up to the next character position
which is a nmultiple of 8 Useful for putting
stuff into colums (such as assenbly |anguage
prograns) .

; recogni sed by the assenbl er, neani ng t hat
everything following the ‘;’ until the end of the
line is to be ignored as comments.

<B/ S> backspaces over characters, deleting them from
the input line buffer (but doesn’t delete them
fromthe screen).

SUB EDI T | NSTRUCTI ONS

Wiilst in EDT node, the normal editor command set is not
avail able, and a separate set of conmands are used. Note that
noe of these conmands require a <return> since the <return> key
has a special neaning of its own.

L

Q

<space>

<B/ S>

nC

nD

This command lists the entire line to the video display
so you can see what the line looks Ilike so far. This is
useful at the start of an edit to see what the |ine | ooks
like and during an edit to see how the edited |ine |ooks
so far. Note that the line as it appears when the L
command i s executed does not have to be included in the
file since the g command will quit the edit wthout the
changes being put into the file.

Quit the edit wthout changing the file. In other words
pretend the line was never edited.

The space key will nove the cursor one position forward
along the line and reveal the characters in the line as
it passes over them There is no equivalent key for
novi ng backwards since the back-space is destructive.

The backspace key is destructive as all characters
backspaced over will be renoved fromthe |ine.

Ignore all changes nade so far. Restart the edit with the
original |ine unchanged.

Insert all subsequent characters into the Iline. This
sequence is termnated by a <return>to finish the edit.
If further changes are required, you nust re-edit the
file.

This is the append conmand. The pointer is noved to the
end of the line and the insert comand node is entered.

Change the next n' characters in the line to whatever
you type next. You nmust now type the specified nunber of
characters. For exanple, if you are in the niddle of an
edit and you are at the start of the word ELEPHANT and
you type 5CMOUSE, then the first five letters of the
word will be changed so the word will now be MOUSEANT. |f
no value of nis given, it is assuned to be 1.

Del ete the next ‘n’ characters in the edit line. If no
value for ‘n’ is given it is assumed to be 1.

Del ete all characters after this point to the end of the
line, and then go into insert node to add nore text to
the end of the line. |If you only want to delete the
remai nder of the line without adding nore stuff to the
end, just type H<return> (since the <return> wll stop
the insert and exit fromthe edit.

nSx This command noves the pointer to the ‘n’th occurance of
the character x. For exanple, 5Sq will nove the pointer
to the 5th occurance of the letter ‘q" in the line.

nKx This will delete all characters fromthe current position
to the ‘n"th occurance of the letter x. So, 5Kgq wll
delete all characters from the current position to the

5th occurance of the letter ‘q'.

<ret> End the edit and put the edited line into the file (so
don't throwthe edited line away as for the Q conmand).
Control is returned to the nornal command node.

E The sane as <ret>, not usually used byt provided for
conpatibility with other editors. This does not work from
inside the insert sub conmmand which can only be

term nated by <return>.

DESCRI PTI ON OF ASSEMBLER

Readers who have never net an assenbler before are advised
to read Appendix-B, "What is an assenbler", before proceeding
further into this section.

The Assenbler is a three PASS device, this means that your
source file is read frombeginning to end three times by the
assenbler during the assenbly process. On the first pass the
LABELS are recorded in a special list, called a SYMBOL TABLE, and
addresses or values are assigned to them This list starts at the
TOP OF MEMORY address, given on entry to the editor, and grows
down t hrough nenory as each new | abel and val ue are added. Checks
are made to ensure that the synbol table does not "crash" into
the end of your source file. If this is about to occur, an error
nessage "Synbol table OVF' is generated, and the assenbly is
aborted. At the end of pass 1 the assenbler knows the |ocation
and val ue of every SYMBOLI C REFERENCE in your source file. Pass
two is used to interpret the NMEMONICS and assign the values to
all synmbolic references in the argunent field. It is during this
pass that nost errors will be detected, the source |Ilisting and
printouts are also generated at this tinme. The third pass is
used, if required, to generate the OBJECT programinto nenory.

To commence assenbly you issue an A command fromthe editor.
The format of this conmand is fairly exacting as an OFFSET may be
speci fied, and a nunber of SWTCHES nmay be included to direct the
assenbler to performspecific tasks during assenbly. NOTE, if no
switches are specified, the conmand nust be typed as A <ret> with
the space after the A being conpul sory.

The offset allows the assenbler to |ocate the output program
code at a different address in menory to the address that it is
intended to operate at. This feature wll not normally be
required by Mcrobee users since a special area at 400hex has
been allocated for them to generate and run their programin.

10

The offset wvalue is sinply added to the adress that each byte
will be stored at. eg an offset of 1000 specified for a source
ORGed at |ocation 400hex will cause the output code to be stored
starting at |ocation 1400hex. Reverse offsets are possible due to
address wap around at FFFFhex, this neans that an offset of
OF000 will cause the code to be stored at 1000hex bytes |ower in
nmenory. Note that the offset address is always in hex, no His
required after the address, and any value conmmencing with an
al pha character nust be preceded by a zero. After assenbly, any
code generated with an offset nust be noved to its correct
| ocation before it nay be run.

There are up to six SWTCHES that may be specified in the
assenbly conmand |ine. Each switch when wused is identified by
typing a slash before it. The switches are:-

WE This switch directs the assenbler to stop whenever an error
is detected during pass 2 of the assembly. The error is
displayed to the VDU, and the assenbler waits for a
direction from the keyboard. If Control Cis pressed, the
assenbly is aborted, and command is passed back to the

Editor with the error line set up as the current line so
that you may examince or edit the line. If Cis pressed (not
control C) the WE switch wll be cleared and assenbly

continues, however the assenbler will not stop on further
errors. If any other key is pressed the assenbly continues
with the VE switch still active.

NO This directs the assembler NOT to output any object code
during assenmbly. The NO switch should always be used for
trial assenblies until you are sure that no errors exist.

NL This suppresses listing to the VDU, errors if encountered
will however still be di spl ayed. The listing may

alternatively be urned on and off by special print

directives in the file. *L ON turns on the listing and *L

OFF turns the listing off. These comands are useful for

printing part listings fromthe assenbler.

is
il
t

NS Do not list or print the synbol table at the end of the
assenbly.

LP Direct all listings to the line printer device instead of to
t he VDU.

PT Wien listing strings (DEFM pseudo) the object field only
lists the first byte of the string. This is done to conserve
paper when printing. |f however vyou wish the object field
for the string to be listed in full, use the PT swtch.

The precise formats of the A instruction are shown in the comand
i ndex.

11

PSEUDO MNEMONI CS and ARI THVETI C OPERATORS

As stated wearlier the assenbler broadly conplies wth the

format as defined in the ZILOG assenbler, several variables are
allowed to assist those famliar with 8080 assenbl ers. The PSEUDO
operators supported are: -

ORG nnnn Set or redefine object address counter.
DEFB n Define byte to be value n.

DB

n Same as DEFB.

DEFL nnnn Tenporarily equate |abel value, nay be re defined

| ater.

DEFM ' ssss’ Define contents of an ascii string.

DEFR n Set default radi x value. 16-hex, 8=octal, 10=deci nal
(10 normal) if not defined, defaults to decinal
val ues.

DEFS nn Reserve nn nenory | ocati ons.

DEFW nnnn Define value of 16bit 'word to be nn.

DW

nnnn Same as DEFW

EQU nnnn Per manent equate | abel val ue, cannot be re defined.

END

End of source listing. Stop assenbly.

As well| as the pseudo operators certain arithmetic operators

are available for use in the operand field. These are:-

D
H
O

A Ro

Consi der val ue deci nal regardl ess of default radix.
Consi der val ue hex regardl ess of default radix.
Consi der value octal regardl ess of default radix.

The 4 remaining operators nay be used in conjunction with
each other on a line, they have no assuned Heirarchy they
are executed in strict left to right sequence.

Add the two val ues or | abels.

Has two functions. Wien used between two | abels or values it
produced the difference val ue. Wen used on its own before a
| abel it negates the value (2’'s conpl enent).

Produces the Logi cal AND value of two | abels or val ues.

This is the logical rotate left or right operator. The form
<4 will shift the bits of the value or label left by 4 bits.
The form<-5 will shift the value of the operand by 5 bits
in aright direction.

EDI T ERROR MESSAGES

The foll owi ng nessages may occur whilst using the editor.

"String not found"

The Find or Change command could not locate the string
requested. If you are sure that it should have been there,
you may have started the search fromafter the line with the
string init, in which case go to the top of the file and
try again. O you may have spelled the word incorrectly or
used the wong al pha case.

12

"Conmmand format error"
The argunents you have provided in the command line are
incorrect. You nmy have used an illegal wild card, or
forgotten to include a conma or colon etc. See the section
on editor instructions for the command you wi sh to use

"No such |ine"
The line nunber you have requrested does not exist in the
currently open file. You have probably done a file renunber

and the line nunber no longer exists. |If you know any
reasonably unique words or |abels that exist on the line
try to locate it with the Find command. If not you will just

have to step through the file wth the print command til
you | ocate the area you require

"File full"
The end of the file has reached the upper limt of nenory
al | ocated by the answer to "Menory size?" when you entered
the editor. If this is really the top of your available
menory, you will have to buy nbre nenory before you can

continue, or delete some comrents from the file to make it
smaller. Since there is no way of re-defining the nenory
size fromwithin the editor, reallocating extra menory (if
available) is alittle messy. You may either save the file
to cassette, reboot the editor to get the "nenory size?"
message and reload the cassette, or exit back to a MONITOR
|l evel and adjust the nmenory size bute directly. A list of
the location of the main scratch areas is provided in the
appendi ces.

"I'll egal conmand"
The comand letter used at the start of the line was not
recogni sed by the editor, or the argunent to the comand was
in an incorrect format. See the chapter on editor
instructions for the command you wish to use

"Li ne nunber too |arge"
Li ne nunbers greater than 65534 are not permtted

"No text in file"
You have issued a conmand that cannot be used on any enpty
file. eg tried to use Replace or Edit to start inserting
into the enpty file. In this instance use |Insert node

"No room between |ines"
I'n I NSERT or REPLACE nodes if the next Iline to be inserted
(after step size added) will not fit bel ow the next existing
linein the file the editor will abort with this nessage. To
continue the insert you may either reduce the step size by
I.,1<ret> or renunber the conplete file by N100, 10<ret >

"No file here"
You have given an instruction to re-open an OLD file at a
| ocation where the editor can't find a valid file. If you
are sure that there should be a file here it is possible

13

that sone | ocation has been corrupted (possibly bad ramor a
glitch on the nains etc). |If you feel conpetent to try to
find the bug, Read the section on the Ilayout of a file and
using your nonitor try to find and fix the error. You can
al ways reset to the file with an O command on re-entry

"No Secondary file"
You have attenpted to use the COpy or Merge conmmands when
the Editor does not have an "open" secondary file. You have
either forgotten to declare a secondary file (use ZS
command) or have done an interimassenbly or rebooted into
the editor, your old secondary file wll probably still be
intact and may be reopened with the OS command

"No room for nerge"
When doing a nerge fromsecondary to primary file, the
Editor nust first nove the end of the primary file upwards
in menory to provide a 'hole’ into which the secondary file
would fit. If this error nessage is displayed, the 'gap
between the two files is smaller than the length of the
secondary file, and it would have been danamaged during the
merge. You nust therefore nove the secondary file higher in
menory. There are several ways of doing this, which one you
shoul d use depends on the particular situation you have.
We suggest the follow ng technique be used. (for exanple
primary file at 2000, sec file at 3000) Query and record the
status of the primary file. eg
<ret >
2000 2000 2F80 3FFF

Set up the secondary file, renunber and query its status. eg
RB000<ret >

N100, 10<ret >

<ret>

3000 3000 33FD 3FFF

(I'n all cases you MIST ensure that the secondary file is
"nornalised” by renunbering it before proceeding after
setting to a secondary file.) Notice that the gap between
the file is only 80hex butes, and the secondary is nearly
400hex in length However there is nore than its own |ength
above itself. In this case we can create a copy of the
secondary file higher in menory. eg ZS3000<ret> CO#: *<ret>
2000<ret> 0S3800<ret> W are now back in the origina
primary file wth the secondary now at 3800 and plenty of

room for the nerge. In some cases the size of the
secondary file (or its location) may not allow us enough
roomto make a copy above itself. |If the length of the

secondary file is nore than twice the gap fromthe end of
the primary file to the end of menory we cannot do the nerge
in one operation anyway, however all is not l|ost. Remenber
that what we used to consider the secondary file is now our
primary file and may be saved to cassette. After saving a
copy of this file, we nmay be able to open a newfile (with
the Z conmand) at a |ocation where when the file is rel oaded

14

we will be able to do our nerge. If not we can proceed to
delete sone of the end of it till it is snall enough for the
merge, then reload the saved copy of the old secondary file
(at a suitable |location), delete what we previously nerged
and renerge the remainder. There will be a lot of swapping
between files, this is nmessy, but in an enmergency justified.

ASSEMBLER ERROR MESSAGES

The foll owi ng nessages may occur whilst attenpting to assenble a
file.

"Bad | abel "
The "word" encoutered in the label field (extreme |left)
does not satisfy the requirenents of a label. It nust not be

nmore than six characters long and nust start with an upper
case al pha character. No spaces or question marks nay be
i mhedded within the label, and it nust be separated fromthe
menonic field by a space or tab.

"Branch out of range"
You have used a "relative" instruction (eg JRor DINZ) to
branch to a location in your programthat 1is nore than 128
bytes away. Either rearange your programto bring the
destination closer, or wuse an "abolute" branch instruction
(eg JP).

"I'll egal format"
Your line of source is not laid out out in accordance with,
or contains characters not supported by, the standard ZI LOG
requi rements. Refer to " Z80-Assenbly Language Progranming
Manual . "

"M ssing information"
The end of |ine was encountered beforee all information
required had been read. You nmay have inbedded a semicolon in
the line, or sinmply left out an argunent.

"END mi ssi ng"
The assenbler found an end of file marker before the END
statement, you have probably forgotten to insert one, or may
have put it in the |abel field by mstake. Not a fatal error
but will inhibit the generation of object code.

"Duplicate |abel"
This | abel has been previously defined, or may be one on the
assenblers pre-defined list. eg use of HL or AF etc as
labels will invoke this error nessage.

15

"Field OVF"
Wil st resolving arithnmetic argunents in the operand field
of aline, a value was produced that is greater than 65535
deci mal (FFFFhex) .

"Ref duplicate |abel"
This nessage will be invoked on all |Ilines containing
reference to duplicated | abels.

"Synbol table OVF"
The synbol table being produced in pass 1 of the assenbly
has grown down to the point where, if assenbly continued,
the source code would be damaged. This is a fatal error and
assenbly is imediately aborted.

"Label not known"
You have attenpted to reference a |abel which has not been
defined in the |label field. Usually invoked by spelling
m stakes, or forgetting to assign scratch |ocations.

"Expression error"
The operand (address or value) field could not be resol ved.
It may contain a value or character that is not supported in
the current radix default (eg alpha character in decinmal
expression) or applying a 16 bit mask to an 8 bit val ue.

THE M CROBEE ENVI RONVENT

Perhaps the nost difficult part of any nachi ne code program
is the interface to outside world. This chapter wll hopefully
give the wuser an idea of howthe McroBee input and output
facilities are used.

Fortunately, due to the well planned structuring of nobst of
the software on the McroBee, the Input and output routines used
by Basic are also easily used by any other program For exanple,
the programbelow is a sinple denonstration of these routines.

ORG 400H ;Start code generation at 400-hex

I NPUT EQU 8006H ;Location of input routine

QUTPT EQU 800CH ;Location of output routine

START CALL I NPUT ; Get one character fromthe keyboard
LD B, A ; Transfer this character into B reg
CALL QUTPT ; Send this character to the VDU
JR START ; Go back and do it again
END

The routine at 8006 will wait for a key to be hit and return
the ASCI| value of that key in the Aregister. For a full list of
the ASCII character set of the McroBee, see Appendi X-I. The
routine at 800C will take a character in the B register and print
it onto the VOU screen.

16

This program can be assenbled wth the A command and then
excecuted by typing X 400. Anyone who has had previous
experience with assenbly | anguage progranmming will appreciate the
val ue of these general subroutines provided on the McroBee, as
tools for taking sone of the hard work out of the task of
interfacing their prograns to the outside world. Sone of the nore
useful routines availiable on the McroBee are described bel ow

Note that sone of these "routines" never return you to your
program because they junp to such places as Basic. These are
| abeled with an *.

Deci mal address Hex address Functi on

32768 8000 * Same effect as hitting reset
32774 8006 Wait for keyboard (in A)
32798 801E * Execute Basic program (RUN)
32801 8021 * Warm start into basic

32804 8024 Initialise Hres graphics
32807 8027 Initialise Lores graphics
32810 202A Initialise Inverse in PCG
32813 802D Initialise Underline in PCG
32816 8030 Set dot X=HL Y=DE

32819 8033 Reset dot X=HL Y=DE

32822 8036 I nvert dot X=HL Y=DE

Al'l these graphics routines
return with flag set to Nz
i f coordinates out of range.

32825 8039 Test a dot X=HL Y=DE
Returns NZ if dot set or error
32828 803C plot a line
X-start coordinate is in 80FD
Y-start coordinate is in 80FF
X-end coordinate is in 80F9
Y-end coordinate is in 80FB
32831 803F Redirected I nput (in A)
32834 8042 Redi rected CQutput (from A)
32837 8045 Redirected print out (fromA)

The redirected inputs, outputs and printouts correspond to
the [INPUT, PRINT and LPRINT basic commands respectively. The
devices can be selected (as with IN¢, OUT# or OUTL# in basic) by
setting the bit maps in |ocations O0E4-hex (228-dec), OOE2-hex
(226-dec) or O0OE3-hex (227-dec) respectively. For exanple, if
| ocation E2-hex contains the nunber 21-hex (00100001-binary) then
devices 5 and 0 are selected so any calls to the routine at 8042-
hex will send output to the video screen (device 0) and also to
the RS-232 port at 1200 baud (device 5).

The addresses of the routines selected by the bit map are
kept in tables in scratch. The output devices are pointed to by a
table at 00B2-hex, and the input device table is at 00C2-hex.
This means that the user can create his (or her) own routines
pointed to by the bit map by sinply altering the table used to
point to the routines. For exanple, you can wite your own out put

17

routine if you desire, and access it by putting the address of
the routine into | ocations OOBE and 00BF-hex and setting bit six
of the output device bit map (as long as output device 6 is not
al ready used).

The tables below list the input and output device options
selectable by the bit maps. The pointer addresses given are the
addresses of the table entries that contain the addresses of the
routines. For exanple, locations 00B4 and 00B5-hex contain the
sixteen bit address of the routine to output a character to the
paral l el port.

QUTPUT DEVI CE NUMBERS: ADDRESS OF PO NTER:
0 VDU out put device (normal) 00B2- hex (178-dec)
1 M croBee parall el port output 00B4- hex (180-dec)
2 300- baud cassette out put 00B6- hex (182-dec)
3 1200- baud cassette out put 00B8- hex (184-dec)
4 RS232 at 300 baud 00BA- hex (186-dec)
5 RS232 at 1200 baud 00BC- hex (188-dec)
6 Nul | routine 00BE- hex (190-dec)
7 Nul | routine 00Q0- hex (192-dec)

I NPUT DEVI CE NUMBERS:

0 Normal M croBee keyboard 00C2- hex (194-dec)
1 Paral l el port (for external keyboard) 00C4- hex (196-dec)
2 300 baud cassette 00C6- hex (198-dec)
3 1200 baud cassette 00C8- hex (200-dec)
4 RS232 at 300 baud 00CA- hex (202-dec)
5 RS232 at 1200 baud 00CC- hex (204-dec)
6 Nul | routine 00CE- hex (206-dec)
7 Nul | routine 00DO0- hex (208-dec)

PROGRAMVABLE GRAPHI CS CHARACTERS

The video screen of the McroBee is nenory mapped in
| ocati ons FO0O- hex (61440-dec) to F7FF-hex (63487-dec). Any ASCI|
character stored in |location FOOO-hex will appear at the top left
corner of the screen, and F3FF-hex maps to the bottomright of
the screen on a 16x64 screen format (this neans that on a
M croBee with a 16x64 VDU format, the screen nenory map only uses
half of the availiable space for screen nenory). Because each
screen | ocation contains one byte, there are 256 possible
characters that can go in each character position the screen. |f
the top bit of the byte in a screen nenory location is zero (i.e.
the number is in the range 0..127) then the character will appear
on the screen as a normal ASClI| character.

The actual shape of these characters is defined in a Read
Only Menory. This ROM is accessible to the programer by a
devious trick shown below In addition, if the top bit of the
byte in a screen location is one (i.e. the nunber is in the range

18

128..255) then the character that appears on the screen will be
defined by the programmable character generator. This is a
character generator contained in RAMfor the user to define
hi s/ her own characters. The nmenory map of the video nmenory is
shown bel ow.

Deci mal address Hex address Descri ption

61440 FO00 Screen map (top left corner)

62463 F3FF Bottomright corner (16x64)

63359 F77F Bottom ri ght corner (24x80)

63487 F7FF End of screen map

63488 F800 Start of pr ogr anmabl e
character generator

63503 F8OF End of first character
(code 80- hex)

63504 F810 Start of second charact er
(code 81-hex)

61440+(16* X) Fzz0 Start of character code ZZ-hex
(X- dec)

65535 FFFF End of | ast character

(code FF-hex)

The Read Only Menory for the character generator for the 128
ASCl | characters is accessed by witing a 1 to output port OB-hex
(11-dec). \When this is done, the screen nmenory map i s renoved and
replaced by the character generator ROM So, instead of having
screen RAM for the first 2K and PCG RAM for the other 2K of the
video menory, the video memory w Il contain all of the character
generator for the VDU, with the first 2K being the permanent read
only nenory.

The VDU (for a |6x64 display), displays the text on the
screen in 256 lines with 512 dots on each line. This is precisely
the resolution of the hires graphics. A bit of quick arithmetic
will reveal that each character nust be conposed of 8 dots per
line and 16 lines. The creation of a programmmable character is
best described by exanple :-

CREATI NG A PCG CHARACTER

Mani put ati ng PCG characters nanually is nost easily done in
the Monitor, so get into the Monitor (by anyone of the methods
list in chapter 2). Type E F300 to exam ne menory | ocation F300-
hex. It should contain 20-hex which is the ASCII code for the
bl ank character. Ht M(for Mdify) and type 80 (don't hit
return). This will put the character on the screen (at the left
edge about 3/4 down the screen). The character that appears is
the PCG character defined in nenory |ocations F800..F80F. W can
now change this character to one of our own.

19

Type <esc> (no carriage return) to get back into the Monitor
comand node and type E F800. Hit M (for Mdify) and then type
3C4242. .. as shown bel ow

F7FO XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
F800 9C B2 B2 67 25 25 3D 19 18 66 66 42 81 E7 A5 A5
F810 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
F820 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
F830 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
F840 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX

These 16 bytes define the character that will appear on the
screen whenever the byte 80-hex appears in the screen nmenory map
(e.g. at F300-hex in this case). The way the character is defined
is illustrated bel ow

Byt e Bi nary Character shape
++++++++++
9C 10011100 +X XXX+
B2 10110010 +X XX X +
B2 10110010 +X XX X +
67 01100111 + XX XXX+
25 00100101 + X X X+
25 00100101 + X X X+
3D 00111101 + XXXX X+
19 00011001 + XX X+
18 00011000 + XX o+
66 01100110 + XX XX +
66 01100110 + XX XX +
42 01000010 + X X +
81 10000001 +X X+
E7 11100111 +XXX XXX+
A5 10100101 +X X X X+
A5 10100101 +X X X X+
++++++++++

This character will appear on the screen whenever a 80-hex
byte appears in the nenory |location coresponding to that screen
position. If we had put the 16 bytes into nmenory at FD50-hex (for
exanpl e), then the character woul d have been defined as character
nunber D5-hex instead of 80-hex.

SCRATCH LOCATI ONS

Somre of the nore wusable scratch locations have been
descri bed here as they were relevant to the routines that used
them A nore conprehensive |ist of the McroBee scratch | ocations
is given in Appendix-G

20

SOVE HELPFUL HI NTS

Probably the nost helpful hint that can ever be given is
that regularly creating backup copies is the best neans of
preventing nejor disasters. It has been stated that while ever
mans fingers are pointed towards a keyboard they will
occasionally get in front of his brain. |magine wishing to print
your latest hours of typing with an T#* and accidentally
pressing D#: * thereby deleting the entire file. It has
happened!!! It may be the |ast backup was nmde a half an hour
ago, but it is always easier to redo the last half hours work
than to start fromthe begi nning.

Get into the habit of always starting your source files with
a comment line which has the file nane, and or description, AND
THE DATE. | t often happens that when you wish to reload from an
old file there are several backup copies of it in existence. The
date, and if desired the time, of the save will help to identify
the nost recent copy.

Al ways do your trial assenblies with the VW and NO switches
specified. This wll ensure that no crashes occur, and that you
nmust attend to each error as it is reported.

Sonetimes an error wll be reported on a line, and yet you
cant see anything wong. It is possible that a non printable
character may have been inserted into the line by either an

editing error, or a power glitch. The best solution here is to
delete the line and type it in again. If the error is still
there, re read the manuals for the type of Iline you are
inserting. The error nmessage will usually help to pin it down.

If you wish to delete a line fromthe file, use the D
command, don't try to edit it back to nothing with the backspace
key, this can cause sone unpredictable crashes under certain
ci rcunst ances.

The two npst common problenms with assenbled prograns that
don’t appear to work, is forgetting to append a H to hex val ues,
particularly when EQUating nonitor calls, and not keeping the
number of PUSH s and POP's balanced in sub routines. |If your
prograns seemto crash in a great heap, try looking at these two
probl em areas first.

The line nunmbers inserted onto each line by the editor are
not recogni sed by the assenbler as |abels, therefore you cannot
use themas synbolic references for CALLS or JUWS etc as you
woul d in BASIC.

If whilst tryingtolist a file to the VDU the P command
refuses to go past a certain point inthe file, or appears to be
|l ooping back on itself, try renunbering the file, this wll
usually fix the problem Wat has happened is that a faulty
menory location (or a glitch) has caused a line nunber in the
file to appear to be |ower than the one before it. and the editor

21

has beconme confused.

The "end of file marker" is two bytes containing FF FF, this
represents line nunber 65534 and all other lines will be placed
before it. If for any reason one of these two bytes gets danaged,
the file will appear to continue on into whatever rubbish happens
to be in nmenory. The fix here is to step forward gradually
through the file till vyou are sitting on the line before the
crash, then use the Q command to |ocate your position in menory,
and then use the systemnonitor to replace the two FF's at the
end of the file. See appendix B for the exact layout of a file to
get a better understanding of the problem Renmenber that nost
crashes can be recovered from if you use a little thought before
proceedi ng. Rushing into the "fix" will often only conpound the
probl em

GLOSSARY OF TERMS

ADDRESS Descri bes an actual nenory location in the computer. with
assenblers it is normal to refer to addresses in HEXADECH MAL
notation. |If the address starts with a letter it is correct
procedure to prefix the address wth a zero to avoid confusion
with a word or label. eg OBAD is an address.

APPEND Add to the end of. eg append a coment to a line.

ARGUMENT The val ue, address, or name that we w sh the assenbler
to assign to the particular field. The argument may be a conpl ex
statenment conprising arithmetic or |ogical operators.

ASSEMBLER See the chapter "what is an assenbler"”.

BASIC An "english word" oriented interpreter, used to allow
peopl e not experienced in advanced programing techniques to
create and run their own conputer prograns.

BLOCK MOVE A command that allows you to physically nove the
location of a file or collection of bytes.

BUFFER An area of nenory set aside for storage and processing of
comands, editing of lines, resolving argunent fields etc.

BYTE An 8 bit hexadeci mal nunber (00 to FF) which represents the
256 different values that can be stored in one |ocation of
conputer nenory.

COWPI LER Any program which can produce a nachine or object code
output froma menonic source file.

COPY A conmand which allows you to duplicate a line, or lines,
into another part of nenory.

CP/ M A di sk based operating systemfor 8080 and Z80 processors.
(copyright by Digital Research U S A).

22

CURSOR A pointer to your current |location in the line or file,
usual | y shown as a flashing square on the display.

CONTROL CODE These are special key codes typed on the keyboard to
instruct the programto performa certain task. Sonetines a
special key is provided, other tines you nmnust sinultaneously
press the CONTROL key and a letter key. the TAB key is the sane
as control |. abbreviated as Cntrll or ~I.

DEFAULT The condition or value that the program assunes in the
absence of a specific value being given by the user.

DELETE The act of renmoving a line or group of lines fromthe
file.

DELI M TER A character (usually <ret> or /) wused to signify the
end of the line, or argument within the Iine.

DGOS A machi ne | anguage operating system sold by Applied
Technology for use with their S100 processor series. (DGOS is
copyright by M D. Giffiths).

EDI T The nethod of altering, or correcting a line in the file.

EDI TOR See the chapter "what is an editor."

EQUATE To assign a value to. To define the nmeaning of.

FIELD Refers to a sub section of a line. eg label field, menonic
field, operand field, comrent field.

FILE Any collection of words, letters, characters, nunbers or
data stored on cassette, disk, or in the conputer’s nmenory.

FREE FORM Means that the programis not affected by the precise
| ayout of your entry within certain constraints, eg you may use
single or nultiple spaces instead of tabs etc.

GLOBAL All inclusive, not just limted to the area you are
wor ki ng in.

REX or HEXADECI MAL A system of counting with a base of 16 rather
than the nore famliar base of 10, conprises the digits 0 to 9
followed by Ato F.

I NSERT The act of providing a newline, or lines into the file.

LABEL A "word" or group of characters, starting with a letter,
whi ch defines a particular l|ocation or val ue.

LINE The collection of words starting with the LINE nunber and

ended by pressing the the <ret> key that conprise an instruction,
or conmand, for the assenbler to process.

23

MACHI NE CODE The col | ection of hexideci mal nunbers read directly
by the processor that conprise a program Also referred to as
OBJECT CODE.

MERGE The act of bringing back into the file a line, or group of
lines, fromelsewhere in nenory. The converse of COPY.

M CROBEE A snmall, self contained, z80 based nicroprocessor, sold
by Applied Technol ogy pty Ltd.

MNEMONIC A "word" or synbol, often heavily abbreviated which
refers to a specific task you wi sh the conputer to perform

MONI TOR A program (usually in EPROV) wused to perform the
essential tasks of loading tapes, printing to the VDU, reading
t he keyboard, etc.

NULL LINE An enpty line, used to visually break up the program
into nodules. This is created by pressing <ret> only as a line
entry. Null lines are ignored by the assenbler.

OBJECT CODE The collection of hex nunbers that conprise a
conmputer program the output fromthe assenbler is object code,
also referred to as MACH NE CODE.

OFFSET A constant value added to the address when the assenbler
is outputing the object code, this causes it to be stored in a
different nenory location fromthe one where it would normally be
run.

OPERAND The value field. It isin this field that the value to
be assigned, or the address to be used is determn ned.

ORG The origin address specified in your source file that
directs the assenbler as to where the programis required to
operate in nenory.

PATCH An alteration to the programthat is done outside the main
body of the program Usually placed at a location where it is
convenient for the wuser to be able to mbdify, or customise the
program for his own needs.

PERI PHERALS Addi tional devices connected to the conputer to
perform specific tasks. PRINTERS, CASSETTE recorders, etc are
exanpl es of peripheral devices.

PROGRAM A group of commands, or instructions, that direct a
processor to performa specific task.

PRI NTER The conput er "Hard copy" device, an el ectronic
typewiter of sone form connected to the conputer.

PSEUDO Literally ’'false'. Pseudo mmenonics, although not really

a defined mmenonic, are used in the menonic field to specify
certain tasks to be perforned.

24

REPLACE This comand deletes one line from the file, and all ows
you to insert a newline, or lines in its place.

RENUMBER The automatic process of re-adjusting all the |1i
nunbers so that they are in ascending sequence, with equal
spaced steps.

ne
ly

SCREEN This is an alternate word used to describe the VDU or T.V.

SOURCE FI LE The list of instructions, created with the editor,
and read by the assenbler, to create your nmachine |anguage
pr ogram

SOURCE LI STING The printed listing fromthe assenbler that shows
the source file wth the addresses and object code produced for
each line.

STATUS A display of the START, CURRENT PO NTER, and END addresses
of the file, plus the currently set upper limt of nenory.

STRING A group of characters, simlar to a sentence in nornal
speech.

SWTCHES Two letter groups, wused to direct the assenbler to
perform particul ar tasks during assenbly, if not specified, each
switch is considered to be in a OFF state.

SUB EDIT Wiilst in EDIT node, an alternate set of command letters
are used to direct the processor, these are called SUB EDT
i nstructions.

SYSTEM A col l ective termrefering to the group of conponents
whi ch make up your "conputer".

VDU The conmputer display device, usually a nodified TV receiver.

VIEW The ability to look around the area you are currently
working in without altering the current pointers.

W LD CARDS Characters used to perform a task wthin certain
broadly specified restraints, eg P.:* nmeans display fromcurrent
location to end of the file, or G neans load in any program
fromtape regardl ess of name or type.

ZI LOG The Anmerican conpany who devel oped and produced the Z80
processor system and laid down the preferred MNEMONICS to be
used to refer to its many operation codes.

z80 A CPU chip which is an advanced, upwards conpatabl e, version
of t he 8080 series of processors. As wel | as its
instructions, a Z80 can also execute own all of the 8080
i nstructions.

8080 A CPU chip devel oped by INTEL U.S. A The predecessor of the
Z80 processor that you are currently running.

25

Appendi x- A VWHAT IS AN "EDI TOR" ?

Essentially an EDITORis a program which allows you to
create in nenory a "file" containing text. You nmay use the editor
to enter, correct, or rearrange your file and to save and
retrieve it fromsone storage medium wusually (disk or cassette)

There are two types of editors in common usage, these are
known as "SCREEN' editors and "LINE" editors. The screen editor
is the nore sophisticated of the two, it uses the T.V. screen
(VDU) as a "window' into the file. To visualise this consider a
pi ece of card with a cutout that is the width of the printing on
this page and about 20 lines high, you can slide the card up and
down the page and see the window effect in action. In the screen
editor you have a flashing point of Ilight (cursor) that can be
noved anywhere on the display. |If you try to nove the cursor
above or below the screen, the windowis automatically noved up
or down the file so that the cursor is always on the screen. As
you insert or delete letters or words, the entire screen display
is redrawmn to show how that part of the file is |ayed out

The really sophisticated screen editors provide features
like justifying the left and right edges of the lines so that
they are both straight as in this manual. These editors are
usual ly referred to as "word processors", they are very expensive
prograns to purchase, use up a |arge anobunt of processor nenory,
and require a "DISK' systemfor file storage. This is because the
editor itself is solarge that there is not much roomleft in
menory for the file, therefore it nust be edited directly from
the di sk. Enough of this dream ng of what m ght be, you are stuck
with a "line" editor.

The line editor is quite different in concept, it considers
your file to be a collection of LINES, each line has a maximum
length, wusually the width of your TV screen; these lines are
considered to be in sequential order usually wth a LI NE NUMBER
attached to them The |I|ine nunbers are wusually arranged to
increnent by 10 as each line is inserted into the file. This is
done to allow extra lines to be inserted between existing ones
The main disadvantage here is that if you need to insert nore
than 9 |lines between any pair of existing |ines you nmust renunber
the file and then any printout you nay be using to edit your file
fromw ||l disagree in nunbering. |In practice this is not a najor
probl em

To use the editor to create a file, you just type the
required lines whilst in |NSERT node, renmenbering to press the
return key at the end of each line. Up to this point it Is nearly
as easy to use as a screen editor, however here the sinmlarity
ends. |If you wish to change sonething in the file, you may direct
the editor to go to a line nunber that is near where you wish to
make the change, npve the cursor (now called a CURRENT LINE
PO NTER) up or down the file till it points to the Iine you w sh
to change, and give an appropriate command to DELETE, EDT
I NSERT, REPLACE, etc. |If your conmand was Edit, this version of

26

the Editor is provided with a 'SUBEDI T' package which gives you
somre of the advantages of a screen editor, however you are
confined within the bounds of the line you are currently editing

To make life a little bit easier (who said it wasn't neant
to be), we have provided conmands to allow you to search your
file for particular words or phrases, and if required replace
themw th alternate ones

Al'though line editors usually have 1ine nunbers associated
with them the editor does all the allocation and distribution of
them Since over 65000 are allowed vyou will always run out of
nmenory | ong before you run out of nunbers, unless you nunber your
file in increments of a hundred or so. The file nay al so be typed
with the line nunbers autonmatically suppressed for letter witing
etc.

27

Appendi x- B VWHAT IS AN "ASSEMBLER' ?

Al though a conputer nay appear to be an extrenmely conpl ex
and intelligent piece of equipnent, it is inreality a nunber of
PERI PHERALS (VDU, keyboard, nenory, printer, cassettes, etc) all
connected to the CPU chip (Central Processor Unit). This tiny
silicon wafer in a 40pin |I.C package has one claimto fane; it
can do a small nunber (a couple of hundred) sinple tasks, very
quickly, and very reliably. It is instructed to do each of these
tasks by a sequence of numbers which when strung together as a
series of tasks produce a PROGRAM It is the program not the
conmput er which produces the illusion of intelligence. Wilst the
CPU unit in your McroBee knows that the sequence C30080 neans to
go to nmenory address 8000hex and start "RUNNING' the BASIC
interpreter we have installed there, you as the wuser cannot be
expected to know what all the hundreds of conbinations of nunbers
w |l mean.

It will be obvious by now that if you wi sh your conputer to
do any wuseful work for you it nmust be given prograns to do do
these tasks, so how do you provide these? You could go out and
purchase all your progranms. That is assumng they are avail abl e,
and are within your financial resources. An alternate approach is
to purchase a "H GH LEVEL LANGUAGE" such as PILOT, BASIC, PASCAL,
FORTRAN, COBOL, etc. These prograns allow you to list your
program requirements wusing a group of "english" Ilike words
sonetimes referred to as MEMONICS. Wen run, these prograns
"interpret" your words and provide the functions required.

The main disadvantages with this approach are the cost of
the interpreters, the amunt of menory they require to operate,
restrictions in the tasks that can be performed, and the speed of
execution is fairly slow The speed factor is particularly
important if you wish to play real time ganes such as "SPACE
I NVADERS". Whi | st COWPI LER versions of nost of the above prograns
are avail able they are not suitable for small systens.

Havi ng reached the subject of conpilers we can now discuss
the sinplest conpiler of them all, the ASSEMBLER | use the word
sinplest only in the sense that you can’t just say PRI NT and have
the program go away and produce a conplete SUB PROGRAMto do a
"print message’ function as you would with an interpreter;
however in this sinplicity lives its versatility, you have
conpl ete control over each and every instruction in the program

As with an interpreter you provide a SOURCE FILE consisting
of mmenonics, in this case each LINE of the source describes ONE
instruction that you wish the conputer to perform you nay al so
provide LABELS on any line so that you may later instruct the
conmputer to go to this point in the program Conments may al so be
inserted on the line so that you or your friends may |ater be
able to work out what was intended when you wote it. As well as
referring to a location wthin a program |abels my also be
assi gned absolute values. This has the advantage of allow ng you
to alter this value everywhere in the program by just altering

28

the value at the location it is declared. Another reason for
assigning values to labels is that it is often sinpler to
remenber a nane than the value assigned to it, eg it is easier

and clearer to say TAB or SPACE than to remenber that they are 09
and 32 respectively.

In case you haven't al ready guessed, the assenbler
interprets your source code and produces, directly in nmenory, the
sequence of nunbers referred to as MACH NE CODE or OBJECT CODE
that make up the programready for your processor to execute at
full machine speed. It is good practice to save your source file
on cassette in case you wish to nake alterations in the future,
or wish to assenble the program to operate at a different
location in nenory. The latter can be done by sinply changing the
origin (ORG address and re-assenbling the file.

29

Appendi x- C SOVE " HANDS ON' EXPERI ENCE

By far the best way to cone to grips with any new processor
operating system is to have sonmeone denonstrate the programin
actual use, and then try it out by yourself under supervision.
Unfortunately we can't quite do this here but we can guide you
through a tutorial wth the sanple programlisted at the end of

this Appendix. Hopefully this will give you a better under-
standi ng of the commands and their use when we describe themin
nore detail in the main sections of the manual.

First you nust get into the program From Basic, sinply type
EDASM More details on getting into the Editor/Assenbler are
given in chapter 2. Wen you are asked Menory size?, reply with
4000 (if you have a [I6K McroBee) or 8000 (if you have a 32K
M croBee). After you hit <return> you should get the wusual
Edi t or/ Assenbl er prompt '>'.

Type Qxret>
The programw || respond 1000 1000 1000 3FFF

If you have a 32K McroBee, the last nunber will be 7FFF.
The first address indicates that the file will start at 1000-hex.
The second address is the location of the CURRENT LINE pointer
and is now pointing to the start of the file. The third address
indicates that the file ends at 1000-hex (which is |ogical cause
there ain't no file there yet) the last address is one byte | ower
than the upper limt of memory that you set on entry, the editor
will not attenpt to use menory above this point.

Now to enter our sanple file:- After reading this
par agr aph, type |<ret> The program responds 00100 _
(_ represents the cursor)

You may then type in the file called "TEST" in appendix A

The program as |isted contains sone deliberate errors to
denonstrate editing and error handling. If you make a couple nore
errors typing it in don't worry, we wll show you how to correct

themat the end. Don’t forget to press <ret> at the end of each
line. You will notice that each Iine is tabulated into colums,
this tabulation is normally produced by pressing the TAB key (or
Control and | sinultaneously) at each break instead of the SPACE
key. This neat layout format is to nmake the code nore easily read
by you and is not essential for the assenbler, it is quite happy
with just single spaces between each Fl ELD.

If you nake a conplete bollox of it first tine just reset
the processor and start again. Notice that the editor inserted
the line nunbers for you. N.B. WHEN YOU HAVE FI Nl SHED THE LAST
LI NE TYPE "A or "C. TH S MEANS PRESS THE CONTROL KEY AND THE A or
C KEYS SI MULTANEQUSLY, this will get you out of the | NSERT node
and back to the editor.

You should now be back in the editor with the "*" pronpt
showing and the test file typed in, with or wthout a few nore

30

typing errors of your own. It is suggested that you save the file
on cassette now to save having to retype it all back later. Do
this by starting the recorder and typing S "TEST"<ret> The editor
will repronpt with a * when it has conpleted the save.

To examine the file you have typed in, type P# *<ret>
and the entire programshould be listed to the VDU (a bit too
quickly to read). Now type P#<ret> and only the top line will be
printed, each time you press the Line Feed key one nore line wll
be di splayed, by this nmeans you can step through your file line
by line. press the cicunflex key '~ and you wll see that you
w |l step backwards through the file one |ine each time you press
the key. Back to the top of the file again by P#<ret> now press
P<ret> and you can step through the file a screen full at a tinme.

Lets assunme you really nmucked up Iine 200, the easiest way
is to REPLACE it by typing R200<ret> and type the line in again,
end the line with a return as normal. Notice that you press
return twice, first after the conmand and again at the end of the
line. The programshould return to the editor with the nessage
"no room between lines". Nornally the replace node would allow

you to replace the. line with nore than one line, but here after
replacing line 200 the counter was increnented to 210 and the
program would have destroyed an existing line if you had

continued. If you wish to put in nore than 1 |line use the comand
R200, 2<ret> this would allow you up to 5 lines nunbered 200, 202,
204, 206, 208 before it aborted out, you can of course finish
earlier by the pressing Control and C (or A).

There are two inportant points to note, here firstly you
nmust not press the Control C at the end of the last |line before
you exit or it wll not be inserted into the file, end the line
with a <ret> and type the AC when it pronpts with the next line
nunber (which you do not wish to enter). Secondly if you used the
format R200,2 vyour |ine nunber increment counter is now set up
for steps of 2, and all future changes will be in steps of 2
until 1t is reset to sone other value. The step size may be
altered by appending a comma and new step value to the REPLACE,
I NSERT, or RENUMBER commands. You will have noticed that the
editor starts up wth the first |line nunber as 100 and steps of
10. These are the DEFAULT val ues.

If you nade any typing errors you may either fix them now
with the replace conmmand, or wait till after we have exam ned the
DIT function and edit out your errors.

Lets EDIT line 100, type E100<ret> the editor prints 00100
with the cursor after the nunber, ready for a sub edit conmmand.
Press the space bar a few tines, you wll notice that the
characters are gradually revealed on the line, the space bar is
doing a "non destructive" forward space function. Now type L and
the entire line is displayed and the cursor is redisplayed at the
start of the line ready for another edit of the line. Now type X
and the line is displayed with the cursor sitting at the end of
the line ready for you to append a commrent. Now type FRED LI KES

31

NUTS<ret> and edit the line again, you wll notice that your
comment has been added to the end of the line. Use the X sub
comand to go to the end of the line again and use the backspace
key to step back over your comment then press return, your
comment has been renpbved from the line. This denpbnstrates that
backspace is "destructive". |If the error you wsh to correct is
near the end of aline it is often faster to go to the end of the
i ne, backspace over the error and retype the end of the line.

The 1line should be back to something like its original
condition. Now type E100<ret> again, press the space bar to
reveal the ";" as before and type 4D ANOTHER<ret> the 4D

instructed the editor to delete the next 4 characters, then you
told it to insert the following characters, and the "<ret>"
caused it to finish the edit of the line. Your line now reads
00100 ; ANOTHER program for “"skywiter". If what you w shed to
repl ace was the sane |length as what you were replacing you could
have typed 4CBILL<ret> which would have CHANGED the next 4
characters to BILL. There are nany other commands in the sub edit
node but what you know now should allow you to fix up any
m st akes you may have nmde whilst typing in the test file, we
will deal with the rest in detail later.

One final hint at this stage, if you really make a nmuck up
of your file and wish to start again fromthe version saved on
cassette type Z<ret>to erase the file in menory, then type G
"TEST"<ret> and play the tape you recorded before. After the tape
has | oaded you should be back at the Editor-Assenbler nessage
with the file in menory ready to edit again.

Assuming that all has gone well and your file | ooks exactly
like the one in the appendix we are ready to try to assenble it
into a working program |f the version you previously saved to
cassette is not correct, it would be advisable to resave the file
Now.

To do a trial assenbly type A/NOWE<ret>. The 2 letter
groups follow ng each slash are terned SWTCHES and these direct
the assenbler to do specific functions during the assenbly. The 2
sw tches used here are: -

NO nmeans No Cbject code is to be output into nenory.
WE neans Wait if you find an Error. (and report it)

If all has gone according to plan you should have seen
several screen fulls of SOURCE LISTING scroll up the VDU, and
when |ine 400 was reached, the assenbly was stopped and an error
reported. If you now type Control and C sinultaneously you wll
find yourself back in the editor with the CURRENT LI NE PO NTER at
the start of the line with the error in. Now type E<ret>L and the
line will be displayed. What the assenbl er was conpl ai ni ng about
was an unknown |abel called STRNG you will notice that when we
defined it inline 480 it was called STRING To fix this up type
X then two backspaces and | NGsret> which should fix this error.
Now try the assenbly again.

32

Again the assenbler should stop at an error, this time on
line 490, now the error is reported as an "argument error". Wat
we are being told is that the value OAis incorrect, renenber
that in-its present setup the assenbler is expecting all val ues
to be decimal and OA is a hex nunber. The fault can be fixed by
changing the value to 10 (the decinal equival ent of O0Ahex) or by
sinply adding a Hto the end of the line to tell the assenbler
that we require a hex value. This time the file should assenble
wi t hout any errors.

If any other errors are reported you should be able to work
themout by reference to the chapter on "assenbler errors" and
rechecki ng your file against the listing in the appendi x.

| cannot stress the concept of backup too strongly, now that
you have a working file, save it to cassette.

Note that a list of all the labels, with their values was
printed at the end of the assenmbly, this is called a SYMBOL
TABLE. As a final check before we generate the object program
check that VDU is shown as FOOO in the synbol table and START is
shown as 3000. It is so easy to forget to put the H after hex
values and wunless the value contains an ascii character the
assenbler will happily accept it as decinmal.

The final step nowis to assenble the file and generate the
program in nenory. To do this type A/ WE<ret> it is always
good practice to use the VE switch since it is better to stop the
assenbly if an error occurs than to miss seeing the error
reported, and try to run a faulty program

When the assenbler has finished and returned to the editor
pronmpt you may attenpt to run your programwith the eXecute
command X3000<ret> the top 4 lines of the screen should now be
cleared and a small rocket should slowy circulate round the top
of the screen producing a banner with the alphabet on it. In
this sinple program| have not attenmpted to allow any exit, it
wi Il continue ad nauseamtill you reset the processor. Resetting
the processor may with sone systens destroy the source file, and
you may need to reload fromcassette to continue experinenting
with the source file.

33

TEST SOURCE LI STI NG

This is the test programyou are required to enter for the
tutorial. Note that you enter exactly what is shown here with the
exception of the nunbers shown in the right hand column;
these are shown for your conveni ence and should match the nunber
automatically inserted by the editor at the start of each line.

If you nmke a mistake whilst typing a line you may use the
backspace key to fix it, If you do not notice it till after you
finish the line, wait till we have shown you how to EDI T |ines.
; Test program for "skywiter" 00100
VDU EQU OFOOOH 00110
SPACE EQU 20H 00120
ORG 3000H 00130
START LD HL, VDY 00140
LD ATA 00150
LS (CHAR), A 00160
CLEAR LD (HL), SPACE ; Clear top of VDU 00170
I NC HL 00180
LD AL 00190
OR A 00200
JR Nz, CLEAR 00210
LD HL, VDU 00220
FLY LD DE, 0 ; Speed val ue 00230
VWAI T DEC DE ; Sl ow down di spl ay 00240
LD A D 00250
OR E 00260
JR Nz, WAI T 00270
LD A, (CHAR) 00280
LD (HL), A ; Put char to VDU 00290
I NC A 00300
CcP "7 +1 00310
JR C, STORE 00320
LD ACA 00330
STORE LD (CHAR), A 00340
I NC L 00350
PUSH HL 00360
CALL PLANE 00370
pPoP HL 00380
JR FLY 00390
PLANE LD DE, STRNG ; There is an error here 00400
PRINT LD A, (DE) 00410
OR A 00420
RET z 00430
LD (HL), A 00440
I NC L 00450
I NC DE 00460
JR PRI NT 00470
STRING DB T 00480
DB 0A ; Anot her error 00490
DB 9 00500
DB 0 00510
CHAR DB A 00520
END 00530

34

Appendi x- D COVVAND | NDEX

Edi t or.

B Exit to 'nonitor’ Q
C Change /stringl/string2/ R
CO Copy to secondary file S
D Delete lines fromprinary file T
E Enter edit sub node \%
F Find/ string/

G Get fromtape "NAME' or * X

| Enter insert node

L List to printer 4
M Merge from secondary file VA
N Renunber prianary file N

O Open old primary file ‘
OS Open old secondary file B/ S
P Print file to VDU L/ F
C/ R End of line character il C
Sub edit

A lgnore changes, restart edit L
nC Change next n characters

nD Delete next n characters Q
E End edit include changes

H Delete rest of line, & insert X

| Insert string into line

nKx Kill all chars to the n"th x

B/'S Destructive nove |eft R
Assenbl er

A <ret> Nor nal

Query file status

Repl ace |ines

Save file called "NAVE"
Type, no |line nunbers
View | i nes around
current

Exit fromeditor to
addr ess

Create new primary file
Create new secondary file
Step back one line
Freeze VDU during scroll
Destructive backspace
Step forward one |ine
Exit insert node

List full
edit
Quit do not alter
original line
Insert fromend of

line, restart

line

SPACE Non destructive nove

right
End edit
editor

return to

assenbl ey with object code produced

(space between A and <ret>)

Annnn <ret>
nnnn
Al Sl / S2/ S3/ S? <ret>

Assenbl e with object offset

Assenble with swtch
Annnn /Sl /S2/ S? <ret> Assenble wth offset

in menory by

control
under switch control

‘ Freeze display during listing, any other key continues listing
Swi t ches

WE Wait if error found NS No synbol table

NO No obj ect code produced di spl ayed

NL No source listing LP Produce full listing to
PT Print strings in full printer

After error encountered during assenbly

Control C Return to editor with error
editor line
C Cl ear down error switch
Any ot her key Continue assenbly with error switch still

35

line as current

(no wait if extra errors)

on

Appendi x- E M cr obee MONI TOR

Since Mcrobee, inits standard formis essentially a "BASIC
only mcroprocessor, with the ability to run pre-recorded nachi ne
code prograns, it was decided to provide some of the functions
found in a conventional MONITOR based system These should be
considered as helpful tools to create, nodify, and run your own
machi ne | evel prograns rather than a conpl ete operating
environnment. The functions provided have been linmted to those
that can be nost profitably fitted in the space at the end of
assenbl er EPROVs. Since the start location will vary as changes
or wupdates are nmde to the Editot/Assenbler it is entered by
typing X <CR> formthe Editor.

MONI TOR COMVANDS

A nnnn <CR> ALTER MEMORY, nnnn is nenory address to be
altered. (same as the Examine menory, with
no need to type Mto alter menory)

B <CR> Return to basic.(cold starts back to basic)

C XXXX yyyy nnnn Conpare two bl ocks of menmory. xxxx is start

address of the first block, yyyy is the
start address of the second block and nnnn
is the nunber of bytes to be conpared. Any
di fferences between the first block and the
second block wll be displayed on the
bottom hal f of the screen in the follow ng
format: aaaa ff ss
aaaa is the address of the difference in
the first bl ock.
ff is the contents of the first bl ock.
ss is the contents of the second bl ock.
The Conpare conmmand will be terni nated when
the total nunmber of bytes (nnnnH) has been
conpared or when the screen is filled up.
If there are too many differences to fit on
the screen, conpare snaller bl ocks.

D "FILE" M xxxx yyyy nnnn <CR>

Dump file at 1200baud. File name no | onger
than six letters and enclosed in double
quotes. Mis a single character filetype.
This should be a letter to indicate the
type of the file: e.g.

B for BASIC files

M for MACHI NE | anguage files

S for SOURCE files

D for DATA files.
Note that BASICwill only load file types
"B" and "M'.
XXXX is the start address of the data to be
witten to cassette.

36

Appendi x- E

E xxxx <CR>

v <CR>

M crobee MONI TOR con’t

yyyy is the end address of the data to be
witten to cassette (inclusive).

nnnn i s an optional auto execute address.
This auto execute address is stored in the
header and defaults to the sane as the start
address if no addressis given. BASIC uses
this to run "M type files, but the nachine
| anguage nmonitor does not wuse it when a
file is Read.

Exami ne nenory |location xxxx. This wll
produce a hexadecimal core dunp on the
screen with a cursor indicating the byte
addressed by xxxx. The cursor can be noved
left, right, up or down by depressing the
CTRL key and the letters A S, Wor Z
respectively ("A NS, MW AZ) . Thi s
interactive core dump is particularly
versatile entry and exam nation node whose
nerits will soon becone apparent to you. To
change the contents of any |ocation, when
the cursor is pointing to the desired
| ocation press the "M key to authorize the
nodify nmnode and then enter the desired
hexadeci mal val ue(s). Entry, can be
continued wthout haveing to rekey "M
until the cursor is noved by cursor control
or the Examne command is termnated. The
exam ne conmand can be terminated at any
time by pressing the "ESC' key. This will
return control to the command node but will
| eave the |l ast core dunp on the screen.

This command sinply clears the screen and
allows the wuser to use the Mcrobee as a
"T.V. or ass typewiter". The text is of
no use as it cannot be printed or saved,
but the user can get an idea of what
control characters are supported by the VDU
driver etc.

W"FILE" M xxxx yyyy nnnn <CR>

F XXxx yyyy

Wite a file to tape at 300 baud. Sane
format as the Dunp conmand.

zz <CR>

This comand will junp to the Editor /
Assenmbler (if the X conmand is used in the
Editor/ Assenbler it will junmp you back to
the Monitor).

This comand will FILL menory from the

start address xxxx to the end address yyyy
with the value zz Hex (if no value is given

37

Appendi x- E

G xxxx <CR>
M xxxx yyyy 111 <eR>
P <CR>

R "FI LE" xxxx <CR>

-NULLS

- NAVE

- TYPE

- LENGTH
-LOAD ADDR
- AUTO ADDR
- SPEED

M crobee MONI TOR con’t
it will default to 00 Hex).

This conmand prenmits program execution to
commence from any address above O01FF Hex.
The warm start address of the nmachine
| anguage nonitor is pushed onto the stack
before jumping to the wuser’s address, so
that the wuser program can return control
to the nonitor by executing a "RET" (e.g.
C9Hex) instruction.

Move bl ock of nmenory. Myve the block of
nmenory at location xxxx to |ocation yyyy.
Il is the nunmber bytes to be noved, it is
a Hex wvalue(llll 1s the LENGTH of the
bl ock)

This command cl ears the screen (page clear)
and returns to the conmand node.

This comand Reads tape files. The file
name is optional but can be used to load a
particular file off a tape. xxxx is also an
option to load the file to address xxxx in
nenory. The machine |anguage nonitor will
initialise the tape routines and start
| ooking for a valid header (produced by the
"D' or "W commands). If no filenane is
given, the first file found will be | oaded.
If a filename is given the nonitor waits
for the correct file before | oading;
however, each header will be displayed as
it is encountered. This allows you to
observe what files are on the tape.

If a CRC error is detected during a read,
the read will be ternminated and a "C' put
at the end of the command line. To verify a
machi ne |anguage file wuse: R"FILE" 8000
<CR> as this will read the file into ROM
space and hence nothing will be destroyed
in menory in case of a bad Dunp or Wite.

DGOS TAPE FORNAT:

16 At least 16 null characters (OOH).

1 Start of header character (01H).

6 Filenanme. Nulls in unused positions.

1 Filetype. single ASCII character.

2 Length of file.

2 Load addresses.

2 Execute addresses. (see text)

1 Speed: O01H for 1200 Bd & O0H for 300 Bd.

38

Appendi x- E M crobee MONI TOR con’ t

- EXEC 1 0O0OH for no auto execute, FFH for auto
execute.

- SPARE 1 Spare byte (not used).

-CRC 1 CRC byte for header.

- DATA 256 Byte data bl ock. (see note)

-CRC 1 CRC for data bl ock.

NOTE: Al data bl ocks are 256 bytes |ong,
except for the last one which be from1 to
256 bytes long to nake up the total |ength
of the file. The last block wll be
followed by a CTRL character.

Loadi ng can be terminated at any time by
pressing the RESET key.

S xxxx yyyy aa (bb) (cc) (dd) (ee) (ff) <CR>
Search from start address xxxx to end
address yyyy. aa is the byte to be searched
for. bb to ff are (optional) bytes to
searched for. Any address at which the byte
or bytes are found will be displayed on the
| ower half of the screen.

NOTE: If you enter a character that is not ’'understood by the
nmoni tor a flashing question mark will appear. Use the ' BACKSPACE
or "ESC key to cancel the error and return the nonitor to the
command node.

39

Appendi x- F LAYOUT OF A FILE

For those who wish to attenpt to recover a "crashed" file
or convert a differently formatted file for use with this editor
the precise layout is defined here

There is no start of character, nor is there any end of
line character stored on the line, the lines are stored
sequentialy, in ascending order of line nunbers. Each |line
consists of a 16 bit value representing the |ine nunber, norma
8080/ 780 address format is used, that is the low byte first. eg
line nunber 100 will appear as 64 00 (100 decimal is 0064 hex)
Following the |line nunmber is a single hex byte representing the
nunmber of characters (not counting the line nunber or itself)
that are in the line. The actual characters (in hex) of the line
follow the length byte. After the last line of the file is the
"end of file marker" which consists of 2 bytes, doth FF, the end
of file marker serves two. purposes, FF FF represents |ine nunber
65535, and ensures that all other lines wll be stored bel ow
itself. It also represents the end of the file. Note that the end
of file pointer displayed by the Q comnmand shows the |ocation of
the first of these two bytes. And any attenpt to save the file
from outside the environment of the editor nust include both
FF' s.

To satisfy the editor that a valid file exists, |t nust be
capabl e of stepping through the file by nmeans of the length
bytes, until it finds the end of the file marker bel ow the end of

nenory address. Wilst stepping through it nmust not find a length
byte longer than 7F hex, nor nust there be any characters in the
line that have the sign bit set (reverse video). If any of these
criteria are not met, the nessage "No file here" wll be
di spl ayed

The following is a sanple file, at 2000hex, and the menory
i mage produced.

After printing the file, the status displayed by the Q
command was:
Q <CR>
2000 2026 202D 3FFF

00100: TEST LI NE

00110 ORG 100H
00120 JP 0DOOOH
00130 END

2000 64 00 OA 3B 54 45 53 54 20 4C 49 4E 45
200D 6E 00 09 09 4F 52 47 09 31 30 30 48
2019 78 00 OA 09 4A 50 09 30 44 30 30 30 48
2026 82 00 04 09 45 4E 44

202D FF FF

40

Appendi x- G EDI TOR SCRATCH LOCATI ONS

This list is not conprehensive, but nearly covers those
|l ocations you are nost likely to w sh access to. Wen shown as
xxxx/y it means that 16 bit value is used.

0200/ 1 Pointer to start of currently open primary file.
0228 Secondary file open flag.

0229/ A Start of secondary file pointer.

022B/ C End of secondary file pointer.

022D E Current |ine pointer.

022F/ 0 End of nmenory pointer. Set up on entry to editor.
0231/ 2 End of file pointer (points to first FF).

0233 step size between |ine nunbers.

0243/ C3 128 character general purpose buffer.

02C4/ 5 Pointer to current character being accessed in buffer.

02C6 Size of line currently in buffer.

02D4/ 5 Error count. Keeps count of nunber of errors during
assenbl y.

02D6 1/ O suppress flag. Non zero suppresses output to both
VDU and line printer. Used to suppress |istings under
NL switch etc.

02D8 Printer flag. Non =zero causes printer to be used

i nstead of VDU.
02DF/ 0 Pointer to bottom of synbol table. Only valid after
conpl eati on of an assenbly.

02E1 Suppress line nunbers on printout if non zero.
02E2 File initialized flag. Editor will ask for "Menory
size", and create a null file at the default file

address if this location is not set to 55hex on entry
to the Editor.

02E9 Current value default radix.
02EA Reserved for |ine nunber of printouts.
02EB Reserved for page nunber of printouts.

02F0/ 5 Assenbl er switch storage scratch.
02F7/ 06 Cassette nane conpare buffer.

0207/ 16 Cassette header and address buffer.
0217/ 97 Return address stack.

41

Appendi x- G BASI C SCRATCH LOCATI ONS

BFF5 M e
BFF5 i BASI C SCRATCH AREA
BFF5 N e
0000 : org srtch
0000 :; 100H boundary ..
0000 :hash_table equ .
0000 : defs 128
0080 :; Need {CTC} vectors to 10H boundary ..
0080 :nmove_here equ . i NZ scratch start
0080 :ctcvl defs 4*2
0088 :piovl defs 2
008A :piov2 defs 2
008C : break_di sab defs 1 ; di sabl es break key if nz here
008D :save_di sab defs 1 ;disables SAVE etc if NZ
008E : defs '20’-(6*2)-2-7 ;reserved
0099 :col _flag defs 1 ;=255 if colour BEE, else O
009A :col _nrsl defs 1 ; col or node byte result
009B :col _rslt defs 1 ;normal byte result
009C :col _fore defs 1 ; foreground col or
009D : col _back defs 1 ; background col or
009E : col _node defs 1 ; col or node
009F rucl _flag defs 1 ;control UC node of LIST
; nz=list in |ower
00AO0 -
00A0 :stack defs 2 ;top of nenory=stack
00A2 irst_junp defs 2 ;warmstart junp address
00A4 :chk_byte def s 2 ;55AA if initialized
00A5 I save_exec defs 2 ; machi ne | anguage exec address
00A8 1j p_mem defs 3 ;nodi fiable junp vectors for keywords
00AB 1] p_net defs 3
00AE 1] p_edasm defs 3
00B1 : defs 1 ;reserved
00B2 T
00B2 :; this is the input and output vector tables
ooB2 rout_tab defs *8
ooc2 in_tab defs 2*8
00D2 -
ooD2 :; this is the crtc table, copied to ramfor esc a,s,w,z
0oD2 :crtc_tab defs 2
oon4 :crtc_hor defs 5
00D9 icrtc_ver defs 3
oobC :crtc_curs defs 6 ;cursor control byte
00E2 -
00E2 :out _dev defs 1 ; sel ect output from above table
00E3 routl _dev defs 1 ;select Iprint output
fromout_tab
00E4 cin_def defs 1 ;selects input fromin_tab
00E5 -
00E5 :vdnode defs 1 ; video node control byte
00E6 :speed defs 1 ;vdu del ay period
00E7 :chars_used defs 1 ;my addition for USED, etc.
O0OES8 :plot_type defs 1 ;has "R',"1" or space
00E9 :lo_cycle defs 1 ;controls tape routine speed

42

Appendi x- G con’ t

00EA
00EB
00EB
00EB
O00F1
00F7
O00F8
O00FA
00FC
00FE
O00FF
0100
0101
0101
0101
0102
0103
0105

0106
0107

0108
0109

010A

010B
010D

010E
0110
0111

0112
0114
0116
0118
011A
012A
012B
012B
012C
012E
013E
0140

0142
0144
0145
0147
0200
0200

;; 100H bounary .

BASI C SCRATCH LOCATI ONS

: RS_baud defs 1 ;control s RS232 speed

:; this is a shared scratch : graphics plot / tape routines

1 gr_pseudo equ .

:required defs 6 ;the load name to match

:header defs 6 ; dgos type header bl ock

:fltype defs 1 ;file type character

flleng defs 2 ;length of file

flstrt defs 2 ;normal starting address

:flauto defs 2 :jp to this address if flexec nz

f| speed defs 1 ;0 -> 300bd, nz -> 1200 bd

fl exec defs 1 ;is nz if this is auto execute

flprotect defs 1

:; From here on the scratchpad nay change between versions

:al pha_rev defs 1 ;non z -> al pha reversed

s key_down defs 2 ;this key-code is down

i rept _count defs 2 ;controls speed of repeat key

crept_flip defs 1 ;defines if retrace or not
at last | ook

:last_ascii defs 1 ; keeps last char send
by scn_in for repeat

: keep_char defs 1 ; keeps an ASCI| code
for inkey$' s use

: kbds defs 1 ;for port a keyboard

:port_ack defs 1 ;zero if parallel port out
usabl e

:buf f _count defs 1 ;no. bytes in cassette
redirect buffer

ccursor defs 2 ;cursor address ' FOOO' +

:sec_flag defs 1 ;nz if last vdu_out char
was excape

:hol dde defs 2 ; save de during ops

:showcr defs 1 ;let list-line do inverse

ctrwd defs 1 ;ignore o/ p ovf STR
if -1 else max/1ine

:svel ps defs 2

:sveaut defs 2 ; save de during ops

cuplink defs 2 ;scratch for renum

:sram defs

:rnd defs " 10’ ; random nunmber seed

;1 oad_opt defs 1 ; hol ds | oad options

:free defs 1 ; pcg storage .

:vdu_addr defs 2

:new_char defs pcg_charz

: cont pos defs 2 ;conti nue address (de)

:contstart defs 2 ;start of currently
executing statenent

rerr_trap defs 2 ;=line numif ON ERROR active

serr_code def s 1

rerr_line defs 2 ;status of last error

org (.>8+1)<8

43

Appendi x-G con’ t BASI C SCRATCH LOCATI ONS

0200
0200
0200
0300
0400
0400
0400
0500
06B0
06E4
0700
0700
0700
0728
0800
08C0
08C0
08C1
08C2
08C3
08C5
08Cr7
08C8
08C9
08CA
08CC
08CE
08D0
08D2
08D4
08D6
08D8
08DA
08DC
08DE
08DF
08EO
08E1
08E2
08E3
08E4
08E5
08E7
08E9
08EB
08EC
08EE
08EF
08F1
08F3
08F5
08F7
08F7
08F9
08FB
08FC
08FD
08FF
0900
0900
0900
0900

;*** from here may be overl oaded by machi ne | anguage progs. ***

;;* this should be at scratch+ 200’

:ref _counts defs n_pcg_chars*2
:free_recs defs n_pcg_chars*2
:; Need 100H boundary org (.>8+1)<8
rastck defs 100’

ravar defs ' 1BO’
sivar defs 26*2
:fnstor defs T 10

: orf (.>8+1)<8
0 Fore to 100H boundary
:fpbuff defs ' 28’

cibufs defs 100" -’ 28
:ovufs defs ' Co’

1 sd defs 1

fw defs 1

1 dp defs 1
ctnpl defs 2
1tnp2 defs 2
:count defs 1

: defs 1
rauto defs 1
:crlbl defs 2

1t nmp3 defs 2
:tnp4 defs 2

: pbgn defs 2

: pend defs 2
:stlvl defs 2

soptr defs 2
cvstrt defs 2

:tnpa defs 2
:sstrt defs 2

I XSwe def s 1

T xswl defs 1
sprnt defs 1
:sprmt defs 1

1t npc defs 1

1 zone defs 1

: node defs 1

1t mpd defs 2

1t nmp5 defs 2

:dl oc defs 2
:flags defs 1

clins defs 2
autstp defs 1

rautln defs 2

1t np8 defs 2

1t nmp9 defs 2

:ptrps defs 2
:;stach nmoved (shouldn’t be in table C, replaced by ..

caut def defs 2 ;default for edit

ot mpf defs 2

ablvl defs 1

:odvce defs 1

contln defs 2 ; CONT line No

: defs 1 ; space filler
ipstrt equ .

:end equ

: end

44

Appendi x- H ZI LOG MNEMONI CS

Al phabeti cal

Assenbl y Mienoni c Operation

ADC HL, ss Add with carry Reg. pair ss to HL

ADC A'S Add with carry operand s to Acc.

ADD A n Add value n to Acc.

ADD Ar Add Reg. r to Acc.

ADD A, (HL) Add | ocation (HL) to Acc.

ADD A, (1 X+d) Add | ocation (IX+d) to Acc.

ADD A, (1Y+d) Add | ocation (IY+d) to Acc.

ADD HL,ss Add Reg. pair ss to HL

ADD | X, pp Add Reg. pair pp to I X

ADD Y,rr Add Reg. pair rr to lY

AND s Logi cal ' AND of operand s and Acc.

BIT b, (H) Test BIT b of location (HL)

BIT b, (I X+d) Test BIT b of location (I X+d)

BIT b, (1Y+d) Test BIT b of location (IY+d)

BIT b,r Test BIT b of Reg. r

CALL cc, nn Call subroutine at location nn if condition cc
is true

CALL nn Uncondi tional call subroutine at |ocation nn

CCF Conpl ement carry flag

CP s Conpar e operand. with Acc.

CPD Conpare | ocation (HL) and Acc. decrenent HL and BC

CPDR Conpare | ocation (HL) and Acc. decrenent HL and BC
repeat until BC=0

CPI Conpare | ocation (HL) and Acc. increnment HL and
decrement BC

CPIR Conpare | ocation (HL) and Acc. increnment HL, and
decrenment BC repeat until BC=0

CPL Conpl ement Acc. (1's conpl enent)

DAA Deci mal adjust Acc.

DEC m Decrenent operand m

DEC [|X Decrenment | X

DEC 1Y Decrenent 1Y

DEC ss Decrenent Reg. pair ss

Di Di sable interrupts

DINZ e Decrenent B and Junp relative if B=0

El Enabl e interrupts

EX (SP), HL Exchange the location (SP) and HL

EX (SP),IX Exchange the location (SP) and I X

EX (SP),1Y Exchange the location (SP) and |Y

EX AF, AF Exchange the contents of AF and AF

EX DE HL Exchange the contents of DE and HL

EXX Exchange the contents of BCDE,HL wth t he

HALT HALT (wait for interrupt or reset)

IM 0 set interrupt node 0O

IM 1 Set interrupt node 1

IM 2 Set interrupt node 2

IN A (n) Load the Acc. with input from device n

IN r,(0O Load the Reg. r with I nput fromdevice (O

INC (HL) Increnent |ocation (HL)

INC [IX I ncrenent | X

45

Appendi x-H con’ t ZI LOG MNEMONI CS

INC (I X+d) I ncrenent |ocation (IX+d)

INC IY Increnment 1Y

INC (IY+d) Increnent | ocation (IY+d)

INC r Increnent Reg. r

INC ss Increnent Reg. pair ss

I ND Load location (HL) with input fromport (O,
decrenment HL and B

I NDR Load | ocation (HL) with input fromport (O,
decrenment HL and decrenment B, repeat until B=0

I NI Load |l ocation (HL) with input fromport (C; and
increnent HL and decrenent B.

INIR Load location (HL) with input fromport (O,
increment HL and decrenent B, repeat until B=0

JP (HL) Uncondi tional Junp to (HL)

JP (IX) Uncondi tional Junmp to (IX)

JP 1Y Uncondi tional Junmp to (1Y)

JP cc.nn Junp to location nn if condition cc is true

JP nn Unconditional junp to location nn

JR Ce Junp relative to PCte if carry=l

JR e Uncondi tional Junp relative to PCte

JR NC e Junp relitive to PCte if carry=0

JR Nz, e Junp relitive to PCte if zero (z=1)

JR z,e Junp relative to PC+te if zero (Z=l)

LD A (BO Load Acc. with location (DC)

LD A (Dg) Load Acc. with location (DE)

LD Al Load Acc. with |

LD A (nn) Load Acc. with location nn

LD AR Load Acc. with Reg. R

LD (BO,A Load |l ocation (BC) with Acc.

LD (DE), A Load | ocation (DE) with Acc.

LD (HL),n Load location (HL) with value n

LD dd, nn Load Reg. pair dd with value nn

LD dd, (nn) Load Reg. pair dd with | ocation (nn)

LD HL, (nnfromport (Celative to PC+te if non zero (Z=0)

LD A (BO Load Acc. with location (BC)

LD A (Dg) Load Acc. with location (DE)

LD Al Load Acc. with |

LD A (nn) Load Ace. with |ocation nn

LD AR Load A

LD 1Y, (nn) Load IY with [ocation (nn)

LD (1Y+d),n Load location (l1Y+d) with value n

LD (lY+d),r Load location (l1Y+d) with Reg. r

LD (nn), A Load | ocation (nn) with Acc.

LD (nn),dd Load | ocation (nn) with Reg. pair dd

LD (nn), HL Load | ocation (nn) with HL

LD (nn),IX Load location (nn) with I X

LD (nn),lY Load | Ccation (nn) with IY

LD R A Load R wth Acc.

LD r,(H) Load Reg. r with location (HL)

LD r, (I X+d) Load Reg. r with location (IX+d)

LD r,(1Y+d) Load Reg. r with location (IY+d)

LD r,n Load Reg. r with value n

LD r,r’ Load Reg. r with Reg. r’

LD SP, HL Load SP with HL

LD SP, I X Load SP with I X

46

Appendi x-H con’ t

LD
LDD

LDDR

PUSH
PUSH
PUSH
RES

RET
RETI
RETN
RL
RLA
RLC
RLC
RLC
RLC
RLCA
RLD

SP, 1Y

ZI LOG MNEMONI CS
Load SP with IY

Load location (DE) with location (HL), decrenent
DE, HL and BC

Load location (DE) with location (HL), decrenent
DE, HL and BC, repeat until BC=0

Load | ocation (DE) with location (HL), increnment
DE, HL, decrenent BC

Load |l ocation (DE) with location (HL), increnment
DE, HL, decrenent BC and repeat until BC=0

Negate Acc. (2's conpl enent)
No operation
Logical 'OR of operand s and Acc.

Load out put port (C) with location (HL), decrenent
HL and B, repeat until B=0

Load out put port (C with location (HL), increnent
HL and decrenent B, repeat until B=0

Load out put port (C) wth Reg. r

Load out put port (n) with Acc.

Load out put port (C) with location HL, decrenent
HL and B

Load out put port (C wth location HL, increnent

HL and decrenent B

Load I X with top of stack

Load IY with top of stack

Load Reg. pair ggq with top of stack
Load | X onto stack

Load IY onto stack

Load Reg. pair gg onto stack

Reset Bit b of operand m

Ret urn
Ret urn
Ret urn
Return

from subroutine

fromsubroutine if condition cc is true
frominterrupt

from non maskabl e interrupt

Rot at e
Rot at e
Rot at e
Rot at e
Rot at e

| eft through carry operand m
| eft Acc. through carry
location (HL) left circular
location (IX+d) left circular
location (1Y+d) left circular
Rotate Reg. r left circular
Rotate left circular Acc.
Rotate digit left and right
| ocation (HL)

Rotate right through carry operand m
Rotate right Acc. through carry

Rot at e operand mright circular

Rotate right circular Acc.

Rotate digit right and left between Acc.
| ocation (HL)

Restart to location p

Subtract operand s fromAcc. with carry
Subtract Reg. pair ss fromHL with carry
Set carry flag (C=l)

bet ween Acc. and

and

set Bit b of location (HL)
Set Bit b of location (IX+d)
Set Bit b of location (IY+d)

Set Bit b of Reg. r

Shift operand mleft arithmetic
Shift operand mright arithmetic
Shift operand mright | ogical
Subtract operand s from Acc.
Exclusive 'OR operand s and Acc.

47

