C++ Templates are Turing Complete

Todd L. Veldhuizen
tveldhui@acm.org
Indiana University Computer Science

Abstract

We sketch a proof of a well-known folk theorem that C++
templates are Turing complete. The absence of a formal
semantics for C++ template instantiation makes a rigorous
proof unlikely.

1 Introduction

It has been known for some time that C+4 templates permit
complicated computations to be performed at compile time.
The first example was due to Erwin Unruh [3] who circu-
lated a small C4++ program that computed prime numbers
at compile time, and listed them encoded as compiler error
messages. In this short note we sketch a proof that C++
templates are Turing complete. We assume familiarity with
both C++ templates and basic theory of computation; for
background on Turing machines readers are referred to e.g.
[2]. The proof is straightforward: we show how any Turing
machine may be embedded in the C++ template instantia-
tion mechanism, from which the result is immediate.

2 Encoding Turing machines in C++ Templates

A Turing machine is a quadruple (K, %, 9, s), where K is a
finite set of states, X is an alphabet, s € K is the start state,
and ¢ is the transition function K x¥ — (KU{h})x (Zu{<
,=1}). The special state h is the halt state, < and = are
special symbols indicating left and right, and # € ¥ is the
blank symbol.

To illustrate how a Turing machine may be encoded as
a C++ template metaprogram, we use as an example this
simple machine which replaces a string of a’s with #’s and
then halts:

K = {q07q17h}
Y o= Ao, #}
s = Qo

We encode the states K and alphabet XU {<«, =} as empty
C++ types:

/* States */
struct Halt {};
struct Q0 {};
struct Q1 {};

/* Alphabet */
struct Left {};
struct Right {};
struct A {};
struct Blank {};

To encode the tape, we use a standard functional-style list:

/* Tape representation */
struct Nil { };
template<class Head, class Tail>
struct Pair {
typedef Head head;
typedef Tail tail;

Using these classes, the tape a#a is encoded as the C++
type Pair<A,Pair<Blank,Pair<A,Nil> > >. To represent
the position of the Turing machine at a particular place on
the tape, we split the tape into three parts: to the left, the
contents of the current tape cell, and to the right. So the
tape abcde, in which the Turing machine is positioned at
d, would be represented as the triple (abe, d, e). To provide
easy access to the tape cell directly to the left of the read
head, the left tape contents are stored in reverse order. So
the tape abcde would be encoded as these three types:

abc Pair<C,Pair<B,Pair<A,Nil> > >

d D

e Pair<E,Nil>
The transition function d(¢q, o) maps from the current state
q and contents of the tape cell o to the succeeding state
and action (character to be written, < or =). To real-
ize ¢ in templates, we provide specializations of a template
class TransitionFunction<State,Character>. Inside each
instance are typedefs for next_state and action, which
encode (respectively) the next state and action:

/* Transition Function */

template<typename State, typename Character>
struct TransitionFunction { };

/* q0 a —> (ql,#) */

template<> struct TransitionFunction<QO,A> {
typedef Q1 next_state;

typedef Blank action;

/* q0 # —> (h,#) */

template<> struct TransitionFunction<QO,Blank> {
typedef Halt next_state;

typedef Blank action;

/* ql a -> (q0,a) */

template<> struct TransitionFunction<Q1,A> {
typedef QO next_state;

typedef A action;

/* ql # => (q0,->) */
template<> struct TransitionFunction<Q1,Blank> {
typedef QO next_state;

typedef Right action;

A configuration is a member of K x ¥* x ¥ x ¥* and repre-
sents the state of the machine and tape at a single point in
the computation. We encode a configuration as an instance
of the template class Configuration<>, which takes these
template parameters:

Template parameter | Meaning

State Current state of the machine
Tape_Left
the read head (in reverse order)
Content of the tape cell under
the read head
Contents of the tape to the
right of the read head

Delta Transition function
Inside the class Configuration<>, the next_state and
action are computed by evaluating 6(q,0), and a helper
class ApplyAction is instantiated to compute the next con-
figuration:

Tape_Current

Tape_Right

/* Representation of a Configuration */
template<typename State,
typename Tape_Left,
typename Tape_Current,
typename Tape_Right,
template<typename Q, typename Sigma> class Delta>
struct Configuration {
typedef typename Delta<State,Tape_Current>::next_state
next_state;
typedef typename Delta<State,Tape_Current>::action
action;
typedef typename ApplyAction<next_state, action,
Tape_Left, Tape_Current, Tape_Right,
Delta>::halted_configuration
halted_configuration;

b
The class ApplyAction has five versions, to handle:
e Writing a character to the current tape cell;

e Transitioning to the halt state;

Moving left;

Moving right;

Moving right when at the rightmost non-blank cell on
the tape.

Each of these instantiates the next Configuration<>, and
recursively defines the halted_configuration.

/* Default action: write to current tape cell */
template<typename NextState, typename Action,
typename Tape_Left, typename Tape_Current,
typename Tape_Right,
template<typename Q, typename Sigma> class Delta>
struct ApplyAction {
typedef Configuration<NextState, Tape_Left,
Action, Tape_Right, Delta>::halted_configuration
halted_configuration;

};

/* Move read head left */

template<typename NextState,
typename Tape_Left, typename Tape_Current,
typename Tape_Right,

Contents of the tape to the left of

template<typename Q, typename Sigma> class Delta>
struct ApplyAction<NextState, Left, Tape_Left,
Tape_Current, Tape_Right, Delta>
{

typedef Configuration<NextState,
typename Tape_Left::tail,
typename Tape_Left::head,
Pair<Tape_Current,Tape_Right>,
Delta>::halted_configuration
halted_configuration;

H

/* Move read head right */

template<typename NextState, typename Tape_Left,
typename Tape_Current, typename Tape_Right,
template<typename Q, typename Sigma> class Delta>

struct ApplyAction<NextState, Right, Tape_Left,
Tape_Current, Tape_Right, Delta>

{
typedef Configuration<NextState,
Pair<Tape_Current,Tape_Left>,
typename Tape_Right::head,
typename Tape_Right::tail,
Delta>::halted_configuration
halted_configuration;

}s

/*

* Move read head right when there are no nonblank characters

* to the right -- generate a new Blank symbol.

*/

template<typename NextState, typename Tape_Left,
typename Tape_Current,
template<typename Q, typename Sigma> class Delta>
struct ApplyAction<NextState, Right, Tape_Left,
Tape_Current, Nil, Delta>

{
typedef Configuration<NextState,
Pair<Tape_Current,Tape_Left>,
Blank, Nil, Delta>::halted_configuration
halted_configuration;
}s

template<typename Action, typename Tape_Left,
typename Tape_Current, typename Tape_Right,
template<typename Q, typename Sigma> class Delta>

struct ApplyAction<Halt, Action, Tape_Left,
Tape_Current, Tape_Right, Delta>

/*

* We halt by not declaring a halted_configuration.

* This causes the compiler to display an error message
* showing the halting configuration.

*/

To “run” the Turing machine, we instantiate
Configuration<> on an appropriate starting configu-
ration. For example, to apply the machine to the string
aaa, we use the starting configuration (qo, aca):

/*

* An example "run": on the tape aaa starting in state qO
*/

typedef Configuration<QO, Nil, A, Pair<A,Pair<A,Nil> >,
TransitionFunction>::halted_configuration Foo;

When compiled with g+, this generates the error messages
shown in Figure 1; the errors show a trace of the machine
from its starting configuration (qo,aaa) to its halting con-

figuration (h, ###4).

turing.cpp: In instantiation of ‘Configuration<QO,Pair<Blank,Pair<Blank,Pair<Blank,Nil> > >,Blank,Nil,

TransitionFunction>’:
turing.cpp:82:
turing.cpp:82:
turing.cpp:82:
turing.cpp:82:
turing.cpp:82:
turing.cpp:82:

turing.cpp:163: instantiated from here

instantiated from ‘Configuration<Q1,Pair<Blank,Pair<Blank,Nil> >,Blank,Nil,TransitionFunction>’
instantiated from ‘Configuration<QO,Pair<Blank,Pair<Blank,Nil> >,A,Nil,TransitionFunction>’
instantiated from ‘Configuration<Q1,Pair<Blank,Nil>,Blank,Pair<A,Nil>,TransitionFunction>’
instantiated from ‘Configuration<QO,Pair<Blank,Nil>,A,Pair<A,Nil>,TransitionFunction>’
instantiated from ‘Configuration<Q1,Nil,Blank,Pair<A,Pair<A,Nil> >,TransitionFunction>’
instantiated from ‘Configuration<QO,Nil,A,Pair<A,Pair<A,Nil>>,TransitionFunction>’

turing.cpp:91: no type named ‘halted_configuration’ in ‘struct ApplyAction<Halt,Blank,Pair<Blank,
Pair<Blank,Pair<Blank,Nil> > >,Blank,Nil,TransitionFunction>’

Figure 1: Compiler errors from g++ 2.95.2. Reading the error messages backwards, one sees the configuration trace (qo, aaa)

Far (g1, #aa) Far (qo, #aa) Far (qu, #4a) Far (qo, #4a) For (qu, #H##) s (qo, ##H##H) For (b #HHH).

3 C+H+ Templates are Turing Complete

In the previous section, we gave an encoding of a simple
Turing machine in C++ templates. It is straightforward
to encode any Turing machine in such a manner, by defin-
ing appropriate alphabet and state types, and defining the
relevant specializations of a transition function.

Let M be a Turing machine and « a starting configu-
ration. Suppose a bas 81 Far s2 Far ... is a trace of the
Turing machine. The following lemma states that if you
compile a C++ program encoding M with an initial con-
figuration corresponding to «, then the C++ compiler will
produce instantiations of the Configuration template cor-
responding to si, s2,.... An important qualification is that
we assume a C++ compiler without limits on the number
of template instantiations it will produce.

Lemma 1. Let M be a Turing machine, and o« a start-
ing configuration. Let p be a C++ program encoding the
machine M and configuration o as outlined in the previous
section. Let ¢ : (K X X" X ¥ X ¥*) — type be a map that en-
codes configurations of M as instances of the template type
Configuration. If a b3, 3, then a C++ compiler without
instantiation limits will, in compiling p, instantiate ¢(53).

A formal proof of Lemma 1 presents problems, since one
would have to define formally the semantics of C++ tem-
plate instantiation, something that to our knowledge has
never been attempted. I believe its truth would be apparent
to anyone familiar with C++4 template instantiation willing
to comb through the encoding of the previous section.

Theorem 1. In the absence of instantiation bounds, C++
templates are Turing-complete.

Proof. Immediate from the construction of the previous sec-
tion and Lemma 1. O

A universal Turing machine is a special case of a Turing ma-
chine; thus UTMs can be implemented by C++ templates.
The usual diagonalization argument for undecidability ap-
plies. Therefore:

Corollary 1. In the absence of instantiation limits, whether
a C++ compiler will halt when compiling a given program
is undecidable.

In recognition of this difficulty, the C++ standards com-
mittee allows conforming compilers to limit the depth of
“recursively nested template instantiations,” with a recom-
mended minimum limit of 17 [1]. Compilers have adopted
this limit, many with an option to increase it.

template<int Depth, int A, typename B>
struct K17 {
static const int x =

K17<Depth+1, 0, K17<Depth,A,B>
K17<Depth+1, 1, K17<Depth,A,B>
K17<Depth+1, 2, K17<Depth,A,B>
K17<Depth+1, 3, K17<Depth,A,B>
K17<Depth+1, 4, K17<Depth,A,B>

+ o+ o+ o+
VvV VV V V

s
template<int A, typename B>
struct K17<16,A,B> {

static const int x = 1;

}s

static const int z = K17<0,0,int>::x;

Figure 2: A standard-conforming C++ program which does
not exceed the limit of 17 recursively nested template instan-
tiations, but nevertheless instantiates 5'7=762,939,453,125
templates.

This limit does not translate into any reliable time or
space bound on compiles, though; it is straightforward to
construct C4++ programs which instantiate k'7 templates
(i.e. within the recommended limit) for any arbitrarily large
k; see Figure 2 for an example with £ = 5.

References

[1] ANSI/ISO. Working Paper for Draft Proposed Interna-
tional Standard for Information Systems— Programming
Language C++. Washington DC, April 1995. Doc. No.
ANSI X3J16/95-0087 ISO WG21/N0687.

[2] LEwis, H. R., AND ParapIMITRIOU, C. H. Elements
of the theory of computation. Prentice-Hall, Englewood
Cliffs, New Jersey, 1981.

[3] UNRUH, E. Prime number computation, 1994. ANSI
X3J16-94-0075/1SO WG21-462.

