Section 14.1 The Nature of Acids and Bases

Arrhenius concept:

Acid - produces hydrogen ions in aqueous solutions.
Bases - produces hydroxide ions in aqueous solutions.

Bronsted - Lowery model

Acid - a proton ($\mathrm{H}+$) donor.
Base - a proton acceptor
Hydronium ion the ion that forms when water accepts a proton $\left(\mathrm{H}_{+}\right)$
General reaction that occurs when an acid is dissolved in water.

Conjugate Base everything that remains of acid molecule after a proton is lost.
Conjugate Acid the molecule which is formed when the proton is transferred to the base.
Conjugate Acid - Base pair consists of two substances related to each other by the donating and accepting of a single proton.

Equilibrium expression for a general acid dissolved in water reaction would be

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

K_{a} is called the Acid Dissociation Constant.

Section 14.2 Acid Strength

Strong Acid - one in which the equilibrium lies far to the right. It has a large value for K_{a}. Strong acids also yeild weak conjugate bases.

Weak Acid - one in which the equilibrium lies far to the left. It has a small value for K_{a}. Weak acids yeild relatively strong conjugate bases. See Table 14.1 p. 651

Diprotic Acid - an acid having two acidic protons. ex. - $\mathrm{H}_{2} \mathrm{SO}_{4}$
Oxyacids - the acidic proton is attached to an oxygen atom.
Organic Acids - those acids with a carbon atom backbone, and commonly contain the carboxyl group.
Monoprotic Acid - acids having only one acidic proton.
Amphoteric - can behave either as an acid or as a base. ex. - water
Autoionization - involves the transfer of a proton from one water molecule to another to produce a hydroxide ion and a hydronium ion.

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

**Notes have been derived from Zumdahl $4^{\text {th }}$ ed. - All page and table references are made to this edition.

Ion-Product Constant K_{w} (or dissociation constant for water) - always refers to the autoionization of water. Using the above reaction for the autoionization of water:

$$
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

at $25^{\circ} \mathrm{C}$

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7}
$$

so at $25^{\circ} \mathrm{C}$

$$
\mathrm{K}_{\mathrm{w}}=\left(1.0 \times 10^{-7} \mathrm{M}\right)^{2}=1.0 \times 10^{-14} \mathrm{~mol}^{2} / \mathrm{L}^{2}
$$

It is important to recognize the meaning of K_{w}. The product of $\left[\mathrm{H}^{+}\right]$and $\left[\mathrm{OH}^{+}\right]$must always equal 1.0×10^{-14}. This lends itself to three possibilities:

1. A neutral solution, where $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$.
2. An acidic solution, where $\left[\mathrm{H}^{+}\right]>[\mathrm{OH}]$.
3. A basic solution, where $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{+}\right]$.

Section 14.3 The pH Scale

pH Scale - provides a convenient way to represent solution acidity

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

Significant Figures for Logarithms - the number of decimal places in the log is equal to the number of significant figures in the original number.

Similar scales can be formed for pK and pOH .

$$
\begin{aligned}
\mathrm{pOH} & =-\log \left[\mathrm{OH}^{-}\right] \\
\mathrm{pK} & =-\log \mathrm{K}
\end{aligned}
$$

Many relationships maybe formed between these three equations - useful equations to know

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& \log \mathrm{K}_{\mathrm{w}}=\log \left[\mathrm{H}^{+}\right]+\log \left[\mathrm{OH}^{-}\right] \\
& \mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}
\end{aligned}
$$

and at $25^{\circ} \mathrm{C}$

$$
\mathrm{pH}+\mathrm{pOH}=14.00
$$

Section 14.4 Calculating the pH of Strong Acid Solutions

Common Strong Acids - (commit to memory) - $\mathrm{HCl}(\mathrm{aq}), \mathrm{HNO}_{3}(\mathrm{aq}), \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, and $\mathrm{HclO}_{4}(\mathrm{aq})$
One key to solving acid-base equilibrium, is you must focus on the solution components and their chemistry.
Major Species - are those solution components present in relatively large amounts.

Section 14.5 Calculating the pH of Weak Acid Solution

Step 1 - List the major species in the solution.
Step 2 - Choose the species that can produce H^{+}, and write a balanced equation for the reaction producing H^{+}.
Step 3 - Using the values of the equilibrium constant for the reactions you have written, decide which equilibrium will dominate in producing H^{+}.
Step 4 - Write the equilibrium expression for the dominant equilibrium.
**Notes have been derived from Zumdahl $4^{\text {th }}$ ed. - All page and table references are made to this edition.

Step 5 - List the initial concentrations of the species participating in the dominant equilibrium.
Step 6 - Define the change needed to achieve equilibrium; that is, define x .
Step 7 - Write the equilibrium concentrations in terms of x.
Step 8 - Substitute the equilibrium concentrations into the equilibrium expression.
Step 9 - Solve for x the "easy" way: that is by assuming $[H A]_{0}-x \approx[H A]_{0}$
Step 10 - Using the 5% rule verify whether the approximation is valid.
Step 11-Calculate $\left[\mathrm{H}^{+}\right]$and pH
5\% Rule - $\frac{\mathrm{x}}{[\mathrm{HA}]_{0}} \times 100<5 \%$ then the approximation is acceptable.
$\underline{\text { Percent Dissociation }}-$ Percent dissociation $=\frac{\text { amount dissociated }(\mathrm{mol} / \mathrm{L})}{\text { initial concentration }(\mathrm{mol} / \mathrm{L})} \times 100 \%$
For a given weak acid, the percent dissociation increases as the acid becomes more dilute. For solutions of any weak acid $\mathrm{HA},\left[\mathrm{H}^{+}\right]$decreases as $[\mathrm{HA}]_{0}$ decreases, but the percent dissociation increases as $[\mathrm{HA}]_{0}$ decreases.

Section 14.6 Bases

Strong Base - one which dissociates completely in water and has large K_{b} values.
General reaction for a base B and water is given by:

$$
\underset{\text { Base }}{\mathrm{B}(\mathrm{aq})}+\underset{\text { Acid }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{I})} \rightleftharpoons \underset{\substack{\text { Conjugate } \\ \text { Acid }}}{\mathrm{BH}^{+}(\mathrm{aq})}+\underset{\substack{\text { Conjugate } \\ \text { Base }}}{\mathrm{OH}^{-}(\mathrm{aq})}
$$

The equilibrium constant for this equation:

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{BH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
$$

Weak Base - small K_{b} values.

Section 14.7 Polyprotic Acids

Polyprotic Acids - acids which can furnish more than one proton. Table 14.4 p. 677 -important K_{a} values.

Characteristics of Weak Polyprotic Acids

1 Typically, successive K_{a} values are so much smaller than the first value that only the first dissociation step makes a significant contribution to the equilibrium concentration of H^{+}. This means that the calculation of the pH for a solution of a typical weak polyprotic acid is identical to that for a solution of a weak monoprotic acid.

2 Sulfuric acid is unique in being a strong acid in its first dissociation step and a weak acid in its second step. For relatively concentrated solutions of sulfuric acid (1.0 M or higher), the large concentration of H^{+}from the first dissociation step represses the second step. Which can be neglected as a contributor of H^{+}ions. For dilute solutions of sulfuric acid, the second step does make a significant contribution, and the quadratic equation must be used to obtain the total H^{+}concentration.
**Notes have been derived from Zumdahl $4^{\text {th }}$ ed. - All page and table references are made to this edition.

Section 14.8 Acid - Base Properties of Salts

Salt - another name for an ionic compound.
Salts that produce neutral solutions - salts that consist of the cations of strong bases and the anions of strong acids have no effect on $\left[\mathrm{H}^{+}\right]$when dissolved in water.

Salts that produce basic solutions - any salt whose cation has neutral properties and whose anion is the conjugate base of a weak acid, the aqueous solution will be basic. Ex:
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
Conjugate base
of the weak acid
Salts that produce acidic solutions - salts in which the anion is not a base and the cation is the conjugate acid of a weak base produce acidic solutions. Ex:

$$
\underset{\substack{\text { Conjugate acid } \\ \text { of the weak base }}}{\mathrm{NH}_{4}^{+}(\mathrm{aq})} \rightleftharpoons \underset{\text { Weak base }}{\mathrm{NH}_{3}(\mathrm{aq})}+\quad \mathrm{H}^{+}(\mathrm{aq})
$$

Highly charged metal ions - salts which contain highly charged metal ions produce an acidic solution. The metal ion becomes hydrated which then causes the solution to become acidic. See p. 687-689 (and Table 14.6)

Section 14.9 The Effect of Structure on Acid-Base Properties

There are two main factors that determine whether a molecule containing an X-H bond will behave as a Bronsted-Lowry acid: the strength of the bond and the polarity of the bond. Increased polarity and high electron density typically lends to large K_{a} values (strong acids).

Section 14.10 Acid-Base Properties of Oxides

A compound containing the $\mathrm{H}-\mathrm{O}-\mathrm{X}$ group will produce an acidic solution in water if the $\mathrm{O}-\mathrm{X}$ bond is strong and covalent. If the $\mathrm{O}-\mathrm{X}$ bond is ionic, the compound will produce a basic solution in water.

Acidic Oxides - a covalent oxide dissolves in water, and an acidic solution forms.
Basic Oxides - an ionic oxide dissolves in water, and oxide has a great affinity for H^{+}causing basic solutions.

Section 14.11 The Lewis Acid-Base Model

Lewis acid - is an electron-pair acceptor.
Lewis base - is an electron-pair donor.
The Lewis model encompasses the Bronsted-Lowry model, but the reverse is not true.

Section 14.12 Strategy for Solving Acid-Base Problems: A Summary

Read through pages 695-696
**Notes have been derived from Zumdahl $4^{\text {th }}$ ed. - All page and table references are made to this edition.

