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Abstract: It is shown that the set of all finitary consequence operators

defined on any nonempty language is a join-complete lattice. This re-

sult is applied to various collections of physical theories to obtain an

unrestricted supremum unification.

1. Introduction.

In Herrmann (2001a, b), a restricted hyperfinite ultralogic unification is con-
structed. The restrictions placed upon this construction were necessary in order to
relate the constructed ultralogic directly to the types of ultralogics used to model
probability models (Herrmann 2001c, d). In particular, the standard collections of
consequence operators are restricted to a very special set of operators HX, where
X is itself restricted to the set of all significant members of a language Λ. In this
paper, all such restrictions are removed. For reader convince, some of the intro-
ductory remarks that appear in Herrmann (2001a, b) are repeated. Over seventy
years ago, Tarski (1956, pp. 60-109) introduced consequence operators as models
for various aspects of human thought. There are two such mathematical theories
investigated, the general and the finitary consequence operators (Herrmann, 1987).
Let L be a nonempty language, P be the power set operator and F the finite power
set operator. There are three cardinality independent axioms.

Definition 1.1. A mapping C:P(L) → P(L) is a general consequence operator
(or closure operator) if for each X, Y ∈ P(L)

(1) X ⊂ C(X) = C(C(X)) ⊂ L; and if

(2) X ⊂ Y, then C(X) ⊂ C(Y).

A consequence operator C defined on L is said to be finitary (finite) if it satisfies

(3) C(X) =
⋃
{C(A) | A ∈ F(X)}.

Remark 1.2. The above axioms (1), (2), (3) are not independent. Indeed, (1)
and (3) imply (2). Clearly, the set of all finitary consequence operators defined on a
specific language is a subset of the set of all general operators. The phrase “defined
on L” means formally defined on P(L).

*Any typographical errors that appear in the published version of this paper are
caused by faulty publisher editing.
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All known scientific logic-systems use finitely many rules of inference and
finitely many steps in the construction of a deduction from these rules. Hence,
as shown in Herrmann (2001a, b), the consequence operator that models such the-
ory generating thought processes is a finitary consequence operator. Although many
of the results in this paper hold for the general consequence operator, we are only
interested in collections of finitary consequence operators. Dziobiak (1981, p. 180)
states the Theorem 2.10 below. However, the statement is made without a formal
proof and is relative to a special propositional language. Theorem 2.10 is obtained
by using only basic set-theoretic notions and Tarski’s basic results for any language.
Further, the proof reveals some interesting facts not previously known. Unless
noted, all utilized Tarski (1956, pp. 60-91) results are cardinality independent.

2. The Lattice of Finitary Operators.

Definition 2.1. In all that follows, any set of consequence operators will be
nonempty and each is defined on a nonempty language. Define the relation ≤ on
the set C of all general consequence operators defined on L by stipulating that for
any C1, C2 ∈ C, C1 ≤ C2 if for every X ∈ P(L), C1(X) ⊂ C2(X).

Obviously, ≤ is a partial order contained in C × C. Our standard result will show
that for the entire set of finitary consequence operators Cf ⊂ C defined on L, the
structure 〈Cf ,≤〉 is a lattice.

Definition 2.2. Define I:P(L) → P(L) and U:P(L) → P(L) as follows: for
each X ⊂ L, let I(X) = X, and let U(X) = L.

Notice that I is the lower unit (the least element) and U the upper unit (the greatest
element) for 〈Cf ,≤〉 and 〈C,≤〉.

Definition 2.3. Let C ∈ C. A set X ⊂ L is a C-system or simply a system
if C(X) ⊂ X and, hence, if C(X) = X. For each C ∈ C, let S(C) = {X | (X ⊂
L) ∧ (C(X) = X)}.

Since C(L) = L for each C ∈ C, then each S(C) 6= ∅.

Lemma 2.4 For each C1, C2 ∈ C, C1 ≤ C2 if and only if S(C2) ⊂ S(C1).

Proof. Let any C1, C2 ∈ C and C1 ≤ C2. Consider any Y ∈ S(C2). Then
C1(Y) ⊂ C2(Y) = Y. Thus, C1 ∈ S(C1) implies that S(C2) ⊂ S(C1).

Conversely, suppose that S(C2) ⊂ S(C1). Let X ⊂ L. Then since, by axiom
1, C2(X) ∈ S(C2), it follows, from the requirement that C2(X) ∈ S(C1), that
C1(C2(X)) = C2(X). But X ⊂ C2(X) implies that C1(X) ⊂ C1(C2(X)) = C2(X),
from axiom 2. Hence, C1 ≤ C2 and the proof is complete.

Definition 2.5. For each C1, C2 ∈ C, define the following binary relations in
P(L)×P(L). For each X ⊂ L, let (C1 ∧C2)(X) = C1(X)∩C2(X) and (C1 ∨w C2) =⋂
{Y ⊂ L | (X ⊂ Y = C1(Y) = C2(Y))} For finitely many members of C, the

operators ∧, ∨w are obviously commutative and associative. These two relations are
extended to arbitrary A ⊂ C by defining (

∧
A)(X) =

∧
A(X) =

⋂
{C(X) | C ∈ A}
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and (
∨

w A)(X) =
∨

w A(X) =
⋂
{Y ⊂ L | X ⊂ Y = C(Y) for all C ∈ A} (Dziobiak,

1981, p. 178). Notice that
∨

w A(X) =
⋂
{Y ⊂ L | (X ⊂ Y) ∧ (Y ∈

⋂
{S(C) | C ∈

A})}.

Lemma 2.6. Let A ⊂ C [resp. Cf ] and S′ = {X | (X ⊂ L) ∧ (X =
∨

w A(X))}.
Then S′ =

⋂
{S(C) | C ∈ A}.

Proof. By Tarski’s Theorem 11 (b) (1956, p. 71), which holds for finitary
and general consequence operators, for each X ⊂ L and C ∈ A, X ⊂

∨
w A(X) =

Y′ ∈ S(C). Hence, if Y′ ∈ S′, then
∨

w A(Y′) = Y′ ∈ S(C) for each C ∈ A. Thus
S′ ⊂

⋂
{S(C) | C ∈ A}. Conversely, let Y ∈

⋂
{S(C) | (C ∈ A)}. From the definition

of
∨

w,
∨

w A(Y) = Y and, hence, Y ∈ S′ and this completes the proof.

Lemma 2.7. Let nonempty B ⊂ P(L) and L ∈ B. Then the operator CB

defined for each X ⊂ L by CB(X) =
⋂
{Y | X ⊂ Y ∈ B} is a general consequence

operator defined on L.

Proof. Assuming the hypothesis, it is obvious that CB:P(L) → P(L) and X ⊂
CB(X). Clearly, if Z ⊂ X ⊂ L, then CB(Z) ⊂ CB(X); and, for each Y ∈ B, X ⊂ Y
if and only if CB(X) ⊂ Y. Hence, CB(CB(X)) =

⋂
{Y | CB(X) ⊂ Y ∈ B} = CB(X).

This completes the proof.

Remark 2.8. The hypothesis of Lemma 2.7 is not restricted to a collection
that is closed under arbitrary intersection.

Theorem 2.9. With respect to the partial order relation ≤ defined on L, the

structure 〈C,∨w,∧, I, U〉 is a complete lattice with upper and lower units.

Proof. Let A ⊂ C and B =
⋂
{S(C) | C ∈ A}. Since L ∈ B, then by Lemma 2.7,∨

w A = CB ∈ C. Moreover, by Lemmas 2.4 and 2.6, CB is the least upper bound
for A with respect to ≤ .

Next, let B =
⋃
{S(C) | C ∈ A}. For X ⊂ L, X ⊂ C(X) for each C ∈ A. For

each C ∈ A, there does not exist a YC such that YC ∈ S(C), X 6= YC, YC 6= C(X)
and X ⊂ YC ⊂ C(X). Hence, CB(X) =

⋂
{Y | X ⊂ Y ∈ B} =

⋂
{C(X) | C ∈ A} =∧

A(X). Hence,
∧
A ∈ C and it is obvious that

∧
A is the greatest lower bound for

A with respect to ≤ . This completes the proof.

Although the proof appears in error, (Wójcicki, 1970) stated Theorem 2.9 for
a propositional language. In what follows, we only investigate the basic lattice
structure for 〈Cf ,≤〉.

Theorem 2.10. With respect to the partial order relation ≤ defined on Cf , the

structure 〈Cf ,∨w,∧, I, U〉 is a lattice with upper and lower units.

Proof. It is only necessary to consider two distinct C1, C2 ∈ Cf . As mentioned,
the commutative and associative laws hold for ∧ and ∨w and by definition each
maps P(L) into P(L). In 〈C,≤〉, using theorem 2.9, axiom 1 and 2 hold for the
greatest lower bound C1 ∧ C2 and for the least upper bound C1 ∨w C2. Next, we
have that (C1 ∧ C2)(X) = (

⋃
{C1(Y) | Y ∈ F(X)}) ∩ (

⋃
{C2(Y) | Y ∈ F(X)}) =⋃

{C1(Y) ∩ C2(Y) | Y ∈ F(X)} =
⋃
{(C1 ∧ C2)(Y) | Y ∈ F(X)} and axiom 3 holds

and, hence, C1∧C2 ∈ Cf . Therefore, 〈Cf ,∧, I, U〉 is, at the least, a meet semi-lattice.
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Next, we show by direct means that for each C1, C2 ∈ Cf , C1 ∨w C2 ∈ Cf . Let
(the cardinality of L) |L| = ∆. For each Xi ⊂ L, (i ∈ ∆), let A′(Xi) = {Y | (Xi ⊂
Y ∈ S(C1)∩S(C2))∧(Y ⊂ L)}. Let

⋂
{Y | Y ∈ A′(Xi)} = Yi. By Tarski’s Theorem

11a (1956, p. 71), Xi ⊂ Yi ∈ S(C1)∩S(C2), and by definition Yi = (C1∨w C2)(Xi).
Hence, Yi ∈ A′(Xi) and is the least (⊂) element. For Xi ⊂ L, let A′′(Xi) =
{Y | (C1(Xi) ⊂ Y ∈ S(C1) ∩ S(C2)) ∧ (Y ⊂ L)}. Since Xi ⊂ Ck(Xi), k = 1, 2,
then A′′ ⊂ A′. Since L ∈ A′(Xi), A′(Xi) 6= ∅. Indeed, let Y ∈ A′(Xi). Then
Xi ⊂ Ck(Y) = Y, k = 1, 2. Additionally, Xi ⊂ C1(Y) = Y implies that Xi ⊂
C1(Xi) = C1(C1(Xi)) ⊂ C1(C1(Y)) = C1(Y) = Y. Hence, it follows that for any
Xi ⊂ L, A′′(Xi) = A′(Xi). For fixed Xi ⊂ L, let Xj ∈ F(Xi). Let Yj be defined as
above and, hence, Yj is the least element in A′(Xj) = A′′(Xj). Consider D = {Yj |
Xj ∈ F(Xi)}, and, for j = 1, . . . , n, consider Yj ∈ D and the corresponding Xj ⊂ L.
Let Xk =

⋃
{Xj | j = 1, . . . , n} ∈ F(Xi). Then Yk =

⋂
{Y | Y ∈ A′(Xk)} ∈ D. If

Y ∈ A′(Xk), then Y ∈ A′(Xj), j = 1, . . . , n. Hence, Yj ⊂ Yk, j = 1, . . . , n implies
that Y1∪· · ·∪Yn ⊂ Yk. Tarski’s Theorem 12 (1956, p. 71) implies that Y∗ =

⋃
{Yj |

Xj ∈ F(Xi)} ∈ S(C1) ∩ S(C2). Also, by definition, for all Xj ⊂ L, Yj ∈ A′′(Xj)
implies that C1(Xj) ⊂ Yj. The fact that C1 is finitary yields C1(Xi) ⊂ Y∗. Hence,
Y∗ ∈ A′′(Xi). Since C1(Xj) ⊂ C1(Xi), Xj ∈ F(Xi), then A′′(Xi) ⊂ A′′(Xj). Thus
Yj ⊂ Yi, Xj ∈ F(Xi). Therefore, Y∗ ⊂ Yi. But, Y∗ ∈ A′′(Xi) implies that Y∗ = Yi.
Re-stating this last result,

⋃
{(C1 ∨w C2)(Xj) | Xj ∈ F(Xi)} = (C1 ∨w C2)(Xi) and,

therefore, axiom (3) holds for the binary relation ∨w and 〈Cf ,∨w,∧, I, U〉 is a lattice.
This completes the proof.

Corollary 2.10.1. Let each member of Cf be defined on L. The structure

〈Cf ,∨w,∧, I, U〉 is a join-complete lattice.

Proof. Let ∅ 6= A ⊂ Cf . Now simply modify the second part of the proof of
Theorem 2.10 by substituting

⋂
{S(C) | C ∈ A} for S(C1)∩S(C2) and this complete

the proof.

Remark 2.11. Tarski’s Theorem 12 used above requires his Theorem 4 and
Theorem 4 requires that the consequence operators be finitary. Corollary 2.10.1
should be identical with Corollary 2.11 in Herrmann (2004). Unfortunately, various
corrections to this published version were not made by the editor. It is known,
since I is a lower bound for any A ⊂ Cf , that 〈Cf ,∨w, I, U〉 is actually a complete
lattice with a meet operator generated by the ∨w-operator. It appears that the
meet operator ∧ for infinite A need not correspond, in general, to the ∨w defined
meet operator. Wójcicki [10] has constructed, for a set of consequence operators
C′, an infinite A ⊂ C′ of finitary consequence operators, with some very special
properties. However, the general consequence operator defined for each X ⊂ L by⋂
{C(X) | C ∈ A} is not a finitary operator. Thus, in general, 〈Cf ,∨w,∧, I, U〉 need

not meet-complete lattice. This behavior is not unusual. For example, let infinite
X have an infinite topology T . Then 〈T ,∪,∩, ∅, X〉 is a join-complete sublattice of
the lattice 〈P(X),∪,∩, ∅, X〉. The structure 〈T ,∪, ∅, X〉 is actually complete, but
it is not a meet-complete sublattice of complete 〈P(X),∪,∩, ∅, X〉.
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3. System Consistent Logic-systems

Let Σ be a non-empty set of science-community logic-systems and let | · | denote
cardinality. In practice, |Σ| ≤ ℵ0. Each logic-system Si ∈ Σ, i ∈ |Σ|, is defined on
a countable language Li and each Si determines a specific finitary consequence
operator Ci defined on a language Li. At the least, by application of the insertion
of hypotheses rule (Herrmann, 2001a/b, p. 94/2) for nonempty cardinal ∆ ≤ |Σ|,
each member of {Ci | i ∈ ∆} is defined on the language

⋃
{Li | i ∈ ∆}. In all that

follows, a specific set of logic-system generated consequence operators {Ci | i ∈ ∆}
defined on a specific set of languages {Li | i ∈ ∆} will always be considered as

trivially extended and, hence, defined by the insertion of hypotheses rule on the set⋃
{Li | i ∈ ∆}. In general, such a specific set of consequence operators is contained

in the lattice of all finitary operators defined on
⋃
{Li | i ∈ ∆}. A logic-system S′

and its corresponding consequence operator is a trivial extension of a logic-system’s
S defined on L where, for a language L′ ⊃ L, S′ is the same as S except that only the
hypotheses insertion rule is applied to L′ −L. The system S′ and its corresponding
consequence operator C′ is a non-trivial extension if it is extended to L′ by insertion
and some other n-ary relations that contain members of L′−L are adjoined to those
in S or various original n-ary relations in S are extended by adding n-tuples that
contain members from L′ − L. For both the trivial and non-trivial cases and with
respect to the language L′, it follows that C ≤ C′. In the trivial case, if X ⊂ L′,
then C′(X) = C(X ∩ L) ∪ (X − L).

In practice, a practical logic-system is a logic-system defined for the subsets of
a finite language Lf . When a specific deduction is made from a set of hypotheses X,
the set X is finite. If the logic-system also includes 1-ary sets, such as the logical or
physical axioms, the actual set of axioms that might be used for a deduction is also
finite. Indeed, the actual set of all deductions obtained at any moment in human
history and used by a science-community form a finite set of statements that are
contained in a finite language Lf . (Finite languages, the associated consequence
operators and the like will usually be denoted by a f superscript.) The finitely
many n-ary relations that model the rules of inference for a practical logic-system
are finite sets. Practical logic-systems generate practical consequence operators and
practical consequence operators generate effectively practical logic-systems, in many
ways. For example, the method found in  Loś, J. and R. Suszko (1958), when ap-
plied to a Cf , will generate effectively a finite set of rules of inference. The practical
logic-system obtained from such rules generates the original practical consequence
operator. Hence, a consequence operator Cf defined on Lf is considered a practi-

cal consequence operator although it may not correspond to a previously defined
scientific practical logic-system; nevertheless, it does correspond to an equivalent
practical logic-system.

Our definition of a physical theory is a refinement of the usual definition. Given
a set of physical hypotheses, general scientific statements are deduced. If accepted
by a science-community, these statements become natural laws. These natural laws
then become part of a science-community’s logic-system. In Herrmann (2001a, b,
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a), a consequence operator generated by such a logic-system is denoted by SN. From
collections of such logic-systems, the SN they generate are then applied to specific
natural-system descriptions X. For scientific practical logic-systems, the language
and rules of inference need not be completely determinate in that, in practice, the
language and rules of inference are extended.

The complete Tarski definition for a consequence operator includes finite lan-
guages (1956, p. 63) and all of the Tarski results used in this paper apply to such
finite languages. Theorem 2.10 holds for any language finite or not. In the lattice of
finitary consequence operators defined on Lf , ∨w determines the least upper bound
for a finite set of such operators. However, it is certainly possible that this least
upper bound is the upper unit U.

Definition 3.1. Let C be a general consequence operator defined in L. Let
X ⊂ L.

(i) The set X is C-consistent if C(X) 6= L.

(ii) The set X is C-complete if for each x ∈ L, either x ∈ X or C(X ∪ {x}) = L.

(iii) A set X ⊂ L is maximally C-consistent if X is C-consistent and whenever
a set Y 6= X and X ⊂ Y ⊂ L, then C(Y) = L.

Notice that if X ⊂ L is C-consistent, then C(X) is a C-consistent extension of X
which is also a C-system. Further, C-consistent W is C-consistent with respect to
any trivial extension of C to a language L′ ⊃ L.

Theorem 3.2 Let general consequence operator C be defined on L.

(i) The set X ⊂ L is C-complete and C-consistent if and only if X is a maximally

C-consistent.

(ii) If X is maximally C-consistent, then X is a C-system.

Proof. (i) Let X be maximally C-consistent. Then X is C-consistent and, hence,
C(X) 6= L. Hence, let x ∈ L and x /∈ X. Then X ⊂ X∪{x} implies that X∪{x} is not
C-consistent. Thus C(X ∪ {x}) = L. Hence, X is C-complete. Conversely, assume
that X is C-consistent and C-complete. Then X 6= L. Let X ⊂ Y ⊂ L and X 6= Y.
Hence, there is some y ∈ Y − X and from C-completeness L = C(X ∪ {y}) ⊂ C(Y).
Thus, Y is not C-consistent. Hence, X is maximally C-consistent and the result
follows.

(ii) From C-consistency, C(X) 6= L. If x ∈ C(X) − X, then maximally C-
consistent implies that L = C(X ∪ {x}) ⊂ C(C(X)) = C(X). This contradiction
yields that X is a C-system.

The following easily obtained result holds for many types of languages (Tarski,
1956, p. 98. Mendelson, 1979, p. 66) but these “Lindenbaum” constructions,
for infinite languages, are not considered as effective. For finite languages, such
constructions are obviously effective.

Theorem 3.3. Let practical consequence operator Cf be defined on arbitrary

Lf . If X ⊂ Lf is Cf -consistent, then there exists an effectively constructed Y ⊂ Lf

such that Cf(X) ⊂ Y, Y is Cf-consistent and Cf -complete.

6



Proof. This is rather trivial for a practical consequence operator and all of
the construction processes are effective. Consider an enumeration for Lf such that
Lf = {x1, x2, . . .xk}. Let X ⊂ Lf be Cf -consistent and define X = X0. We now
simply construct in a completely effective manner a partial sequence of subsets of
Lf . Simply consider X0 ∪ {x1}. Since X0 is Cf -consistent, we have two possibilities.
Effectively determine whether Cf(X0 ∪ {x1}) = Lf . If so, let X1 = X0. On the other
hand, if Cf(X0 ∪ {x1}) 6= Lf , then define X1 = X0 ∪ {x1}. Repeat this construction
finitely many times. (Usually, if the language is denumerable, this is expressed in
an induction format.) Let Y = Xk. By definition, Y is Cf -consistent. Suppose that
x ∈ Lf . Then there is some Xi such that either (a) x ∈ Xi or (b) Cf(Xi ∪ {x}) = Lf .
For (a), since Xi ⊂ Y, x ∈ Y. For (b), Xi ⊂ Y, implies that L = Cf(Xi ∪ {x}) ⊂
Cf(Y ∪ {x}) = Lf . Hence, Y is Cf -complete and Xi ⊂ Y, for each i = 1, . . . , k. By
Theorem 3.2, Y is a Cf -system. Thus X0 ⊂ Y implies that Cf(X0) ⊂ Cf(Y) = Y,
and this completes the proof.

Corollary 3.3.1. Let practical consequence operator Cf be defined on Lf and

X ⊂ Lf be Cf-consistent. Then there exists an effectively constructed Y ⊂ Lf that is

an extension of Cf(X) and, hence, also an extension of X, where Y is a maximally

Cf-consistent Cf-system.

Let the set Σp ⊂ Σ consist of all of science-community practical logic-systems
defined on languages Lf

i . Each member of Σp corresponds to i ∈ |Σp| and to a
practical consequence operator Cf

i defined on Lf
i . In general, the members of a set

of science-community logic-systems are related by a consistency notion relative to
an extended language.

Definition 3.4. A set of consequence operators C defined on L is system

consistent if there exists a Y ⊂ L, Y 6= L and Y is a C-system for each C ∈ C.

Example 3.5. Let C be a set of axiomless consequence operators where
each C ∈ C is define on L. In Herrmann (2001a, b), the set of science-community
consequence operators is redefined by relativization to produce a set of axiomless
consequence operators, the SV

N, each defined on the same language. Any such col-
lection C is system consistent since for each C ∈ C, C(∅) = ∅ 6= L.

Example 3.6. One of the major goals of certain science-communities is to
find what is called a “grand unification theory.” This is actually a theory that will
unify only the four fundamental interactions (forces). It is then claimed that this
will somehow lead to a unification of all physical theories. Undoubtedly, if this type
of grand unification is achieved, all other physical science theories would require
some type of re-structuring. The simplest way this can be done is to use informally
the logic-system expansion technique. This will lead to associated consequence
operators defined on “larger” language sets.

Let a practical logic-system S0, be defined on Lf
0, and L =

⋃
{Lf

i | i ∈ IN}, IN
the set of natural numbers. Let L0 ⊂ L1, L0 6= L1. [Note: the remaining members of
{Lf

i | i ∈ IN} need not be distinct.] Expand S0 to S1 6= S0 defined on L by adjoining
to the logic-system S0 finitely many practical logic-system n-ary relations or finitely

7



many additional n-tuples to the original S0, but where all of these additions only
contain members from nonempty L − Lf

0. Although S1 need only be considered as
non-trivially defined on Lf

1, if L 6= L1, then the S1 so obtained corresponds to C1, a
consequence operator trivially extended to L. This process can be repeated in order
to produce, at the least, finitely many distinct logic-systems Si, i > 1, that extend
S0 and a set C1 of distinct corresponding consequence operators Ci. Since these
are science-community logic-systems, there is an X0 ⊂ Lf

0 that is Cf
0-consistent. By

Corollary 3.3.1, there is an effectively defined set Y ⊂ Lf
0 such that X0 ⊂ Y and Y is

maximally Cf
0-consistent with respect to the language Lf

0. Hence, Cf
0(Y) = Y ⊂ Lf

0

and Cf
0(Y) 6= Lf

0. Further, Cf
0 is consider trivially extended to L. Let Y′ = Y ∪ (L−

Lf
0). It follows that for each Ci, L−Lf

0 ⊂ Ci(L−Lf
0) ⊂ L−Lf

0 6= L. By construction,
for each Ci, Ci(Y) = Y; and for each X ⊂ L, Ci(X) = C0(X∩Lf

0)∪Ci(X∩(L−Lf
0)).

So, let X = Y′. Then for each Ci, Ci(Y
′) = C0(Y)∪(L−Lf

0) = Y∪(L−Lf
0) = Y′ 6= L.

Hence, the set of all Ci is system consistent.

Example 3.7. Consider a denumerable language L and Example 3.2 in Her-
rmann (1987). [Note: There is a typographical error in this 1987 example. The
expression x /∈ U should read x /∈ U.] Let U be a free-ultrafilter on L and let x ∈ L.
Then there exists some U ∈ U such that x /∈ U since

⋂
U = ∅ and ∅ /∈ U . Let

B = {x} and C = {P(U, B) | U ∈ U}, where P(U, B) is the finitary consequence
operator defined by P(U, B)(X) = U ∪ X, if x ∈ X; and P(U, B)(X) = X, if x /∈ X.
[Note: this is the same operator P that appears in the proof of Theorem 6.4 in
Herrmann (2001a, b).] There, at the least, exists a sequence S = {Ui | i ∈ IN} such
that U0 = U and Ui+1 ⊂ Ui, Ui+1 6= Ui. It follows immediately from the defini-
tion that P(Ui+1, B) ≤ P(Ui, B) and P(Ui+1, B)(B) = Ui+1 ∪ B ⊂ Ui ∪ B, for each
i ∈ IN. Hence, in general, P(Ui+1, B) < P(Ui, B) for each i ∈ IN. Let Y = L − {x}.
Then P(Ui, B)(Y) = Ui ∪ (L − {x}) = L − {x} = Y, i ∈ IN. Thus, the collection
{P(Ui, B) | i ∈ IN} is system consistent.

Theorem 3.8. Consider A ⊂ Cf defined on L and the (≤) least upper bound∨
w A. Then

∨
w A ∈ Cf and if A is system consistent, then there exists some Y ⊂ L

such that Y =
∨

w A(Y) = C(Y) 6= L for each C ∈ A and
∨

w A 6= U. Further, if

X ⊂ L, X 6= L, is a C-system for each C ∈ A, then X =
∨

w A(X) = C(X) 6= L for

each C ∈ A.

Proof. Corollary 2.10.1 yields the first conclusion. From the definition of system
consistent, there exists some Y ⊂ L such that C(Y) = Y 6= L for each C ∈ A. From
Lemma 2.6, for each C ∈ A,

∨
w A(Y) = C(Y) 6= L. Hence,

∨
w A 6= U. The last part

of this theorem follows from Lemma 2.6 and the fact that X is also a
∨

w A-system.
This completes the proof.

4. Applications

In Herrmann (2001a,b), the relativized set {SV
Ni

(X) | i ∈ IN}, when |{SV
Ni

(X) |
i ∈ IN}| = ℵ0, is introduced. This set is system consistent and is unified through
application of Theorem 3.8. Assuming system consistency, this also applies to the
unrelativized case where each relativized consequence operator SV

Ni
is replaced with
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the physical theory consequence operator SNi
. Also note that SNi

and SV
Ni

are
usually considered practical consequence operators.

Depending upon the set C of consequence operators employed, there are usually
many X ⊂ L, X 6= L such that X is a C-system for each C ∈ C. For example, we
assumed in Herrmann (2001a, b) that there are two 1-ary relations for the science-
community logic-systems. One of these contains the logical axioms and the other
contains a set of physical axioms; a set of natural laws. Let {S′

Ni
| i ∈ IN} be the

set of science-community corresponding consequence operators relativized so as to
remove the set of logical theorems. Each member of a properly stated set of natural
laws, Nj, used to generate the consequence operators {S′

Ni
| i ∈ IN} should be a C-

system for each member of {S′
Ni

| i ∈ IN}. As mentioned, the physical theories being
considered here are not theories that produce new “natural laws.” The argument
that the Einstein-Hilbert equations characterize gravitation fields, in general, leads
to the acceptance by many science-communities of these equations as a “natural
law” that is then applied to actual physical objects. Newton’s Second Law of motion
is a statement about the notion of inertia within our universe. It can now be derived
from basic laboratory observation and has been shown to hold for other physical
models distinct from its standard usage (Herrmann, 1998). The logic-systems that
generate the members of {S′

Ni
| i ∈ IN} have as a 1-ary relation a set of natural laws.

Then one takes a set of specific physical hypotheses X that describes the behavior
of a natural-system and applies the logic-system to X. This gives a statement as to
how these natural laws affect, if at all, the behavior being described by X. It is this
approach that implies that each properly described Nj 6= L is a C-system for each
C ∈ {SNi

| i ∈ IN}. Hence, Theorem 3.8 applies to C = {S′
Ni

| i ∈ IN}.

At any moment in human history, one can assume, due to the parameters
present, that there is, at the least, a denumerable set of science-community logic-
systems or that there exist only a finite collection of practical logic-systems defined
on finite Lf . The corresponding set Cf = {Cf

i | i = 1, . . . , n} ⊂ Cf
f of practical

consequence operators would tend to vary in cardinality at different moments in
human history. For the corresponding finite set of practical consequence operators,
by Theorem 2.10, there is a standard (least upper bound) practical consequence
operator U , and hence “the best” practical logic-system, that unifies such a finite
set. The following result is a restatement of Theorem 3.8 for such a finite set of
practical consequence operators.

Theorem 4.1. Let Lf and Cf be defined as above. Suppose that Cf is system

consistent.

(i) Then there exists a practical consequence operator U1 ∈ Cf
f defined on

the set of all subsets of Lf such that U1 6= U, and a W ⊂ L such that, for each

Cf
i ∈ Cf , Cf

i (W) = U1(W) = W 6= Lf , where U1(W) ⊂ Lf .

(ii) For each X ⊂ Lf ,
⋃
{Cf

i (X) | i = 1, . . . , n} ⊂ U1(X) ⊂ Lf and U1 is the

least upper bound in 〈Cf
f ,∨w,∧, I, U〉 for Cf .

(iii) Let X ⊂ Lf and X 6= Lf be a Cf
i -system for each Cf

i ∈ Cf . Then

X = Cf
i (X) = U1(X) 6= Lf , for each i = 1, . . . , n.
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Letting finite Cf contain practical consequence operators either of the type SNi
,

SV
Ni

or S′

Ni
, exclusively, then U1 would have the appropriate additional properties

and would generate a practical logic-system. Corollary 2.10.1 and Theorem 3.8 yield
a more general unification

∨
w A, A ⊂ Cf , as represented by a least upper bound in

〈Cf ,∨w,∧, I, U〉, with the same properties as stated in Theorem 4.1. Thus depending
upon how physical theories are presented and assuming system consistency, there
are nontrivial standard unifications for such physical theories. Further, system
consistency is used only so that one statement in Theorem 3.8, Theorem 4.1 and
this paragraph will hold. This one fact is that each of the standard unifications
of a collection A ⊂ Cf is not the same as the upper unit if and only if the A
is system consistent. Further, if an X ⊂ Lf [resp. X ⊂ L] is U1-consistent [resp∨

w A-consistent], then X is C-consistent for each C ∈ C [resp. C ∈ A].

For General Intelligent Design Theory, the unification
∨

w
A can be considered

as a restriction of the ultralogic ∗
∨

w
A and can, obviously, be interpreted as an

intelligence that designs and controls the combined behavior exhibited by members
of C = {S′

Ni
| i ∈ IN}, as they are simultaneously applied to a natural-system.
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