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. . . we are the victims of picture-thinking*

A goal of this article is to show explicitly that the “geometric” language used in the

classical General Theory of Relativity (GR) does not usually correspond to configurations

as geometrically described by Riemannian Geometry (RG). The geometric language used

in RG often corresponds to but an analogue model for behavior and mostly does not, in its

actual form, directly correspond to reality. In GR, what such terms as space, space-time

(spacetime), time-dilation and the expansion of space actually signify is discussed. It is

shown how these terms relate to physical entities. Some mathematical expressions are used.

However, any deep comprehension is not necessary. For the more complex expressions,

simply ignore their appearance since their basic significance is intuitively discussed.

Physical Space

For this theory, the actual notion of “physical space” is not as it is often pictured in

the popular literature.

The further implication is, therefore, that physical space is not simply a

mathematical abstraction which it is convenient to employ when consid-

ering distance relations between bodies, but exists in its own right as a

separate entity with sufficient internal structure to permit the definition

of inertial frames. However, all available evidence suggests that space

cannot be defined except in terms of distance measures between physical

bodies. . . . Physical space is then, nothing more than the aggregate of

all possible coordinate frames [7, p. 127]

The notion of coordinate frames (i.e. systems) is a pure imaginary concept. They do

not exist as nature-systems. Hence, “space,” in this definition, is not composed of real

physical entities. Lawden’s definition of space is adequate for many applications but needs

revision when the notion of an “expanding space” is considered. This revision does not alter

the basic model-theoretic facts discussed. Indeed, as quoted below, world authorities in

GR agree that various notions used within GR only yield an analogue model for behavior.

(I have underlined and marked with numbers, which are not in the original, a few portions

for further discussion.)

If “physical space” is not composed of some sort of known physical entities under the

Lawden’s definition, how does “geometry” enter into this subject? One way of explaining

this is also given by Lawden when he “defines” a “very general type of frame.”

* C. S. Lewis, Miracles, Macmillan Publishing, N. Y. (1978), p. 31.
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(1) Imagine that the whole of the cosmos is filled by a fluid whose mo-

tion is arbitrary but non-turbulent (i.e. particles of the fluid which

are initially close together, remain in proximity to one another). Let

(2) each molecule of fluid be a clock which runs smoothly, but not neces-

sarily at a constant rate as judged by a standard atomic clock. . . .

Each clock will be allocated three spatial coordinates ξ1, ξ2, ξ3 according

to any scheme which ensures that the coordinates of adjacent clocks only

(3) differ infinitesimally. These coordinates ξα of a clock will be supposed

never to change. Any event taking place anywhere in the cosmos can now

be allocated unique space-time coordinate ξi (i = 1, 2, 3, 4) as follows:

(ξ1, ξ2, ξ3) are spatial coordinates belonging to the clock which happens

to be adjacent to the event when it occurs, and ξ4 is the time shown on

this clock at this instant [7, pp. 131-132].

Thus far, statement (1) should immediately indicate that this is not a true concrete

physical model. Phrase (2) has little physical meaning except for possible alterations in

physical behavior. It is used here to correspond to the notion of a “clock” located at

every “position” within our universe. As will be seen (statements (6) and (8) below), in

(3) Lawden means the actual infinitesimal notion. This is related to the long-standing

problem (solved in more than one way [6]) that attempts to correspond all aspects of

the infinitesimal calculus to actual physical-like objects. However, I point out that this

can be the case for subparticles [3,4,5] as used in the General Grand Unification model.

Please note that the imagined particles of fluid are probably physically contained within

“something” but are only associated with the imagined space-time as defined by Lawden. I

note that there are much more abstract and “modern” definitions for space-time. But, they

tend to confuse the issue via abstractions. For example, to some, space-time is a set of all

events. This definition is then further refined so as to relate these events to objects within

a differential manifold. But, I need not continue this since such abstractions usually come

from combinations of basic and simple notions. Eventually, all such abstractions relative

to the physical behavior must be reduced to the local Euclidean world in which we dwell.

All that is needed for my demonstrations is classical RG and GR.

We shall further generalize the coordinates allocated to an event. Let

xi (i = 1, 2, 3, 4) be (4) functions of the ξi such that, to each set of values

of the ξi there corresponds one set of values xi, and conversely. We shall

write

xi = xi(ξ1, ξ2, ξ3, ξ4) (45.3)(1)

Then the xi, also, will be accepted as coordinates, with respect to a new

frame of reference, of the events whose coordinates where previously taken

to be the ξi. . . . All possible events will now be mapped upon (5) a space
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S4, so that each event is (6) represented by a point of the space and the xi

will be the coordinates of this point with respect to a coordinate frame. S4

will be referred to as the space-time (6) continuum [7, p. 132]. (The term

“mapped,” in this case, can be considered as a mental correspondence

between the events and the “coordinate space” S4. The term can be more

formally defined.)

This last description shows that events that occur in some sort of not defined intuitive

physical space are replaced by a mathematical representation that exists only in an imag-

ined mathematical “space” of coordinates. Of great significance is the fact that the model

only has the ability to describe the behavior of events as this behavior is measured by a

specific set of coordinates S4. The pure mathematical objects in (4) are also called one-to-

one functions and they generate infinitely many such S4. One of these would correspond

to a rectangular coordinate system and, under this definition, each pair of S4 are related,

at least, by a one-to-one correspondence. The word in (5) refers to the pure mathematical

sets S4 characterized by (6). The term “continuum” used in (6) is very important for field

theories. It refers to the values of the coordinates and this property is a classical property

that is needed in RG modeling where the language of infinitesimals is used. In order to use

the classical Calculus and Absolute Calculus (Tensors) as analytical tools, this is required.

However, to be absolutely correct the set S4 should be extended to the infinitesimal world

as the next quotation shows.

If, for one such observer, the events at the points having rectangular

Cartesian coordinate (7) (x, y, z)(x + dx, y + dy, z + dz) occur at the time

(8) t, t + dt respectively, then. . . . The interval between events ds will

be defined by

ds2 = −c2dτ 2 = dx2 + dy2 + dz2 − c2dt2 (45.5)(2)

The coordinate (x, y, z, t). . . will be related to the coordinates xi defined

earlier, by equations

x = x(x1 , x2, x3, x4), etc. (45.6)(3)

and hence

dx =
∂x

∂xi
dxi, etc. (45.7)(4)

Substituting for dx, dy, dz, dt in equation (2), we obtain the result

ds2 = gijdxidxj (45.8)(5)

. . . . The space-time continuum can accordingly be treated as a Rie-

mannian space with the metric given by equation (45.8) [7, p. 132-133].
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(Note: Whenever a term in an equation contains super or subscripts (in-

dexes) that are repeated, then this is taken to mean that you sum these

terms over the entire collection of natural number over which the indexes

independently vary. In this case, i, j vary independently over the numbers

1,2,3,4).

From a simple viewpoint, GR is an interpretation of an RG restricted investigation

of coordinate (or component) space, where classically and intuitively such a term as “n-

dimensions” (n-D) indicates the number of independent slots or positions in the expression

(·, ·, . . . , ·). The equations (3) are coordinate transformations that, under the necessary con-

straints, yield another coordinate space and these two coordinate spaces may be compared

by viewing them from a standard coordinate system. Moreover, throughout this article, I

discuss significant aspects of GR that can be obtained without RG [4]. (Due to the method

used to derive the line-element, the dS2 in [4] is the −ds2 of (2).) Indeed, the basic entities

need not refer to any geometric language whatsoever. This gives additional evidence that

the model is but “analogue in character.” I also point out that the terms line-element and

element of length are used for expressions such as (5). The physics community calls it a

“metric.” The metric (2) is a physical statement that reveals the required electromagnetic

propagation properties as measured by an infinitesimal light-clock not affected by a poten-

tial velocity. The four dimensions are needed due to how velocity is defined. [4, 56-57].

This interval is called the infinitesimal Minkowski or chronotopic interval. The second

coordinate expressions in (7) and (8) show that the model does not correspond to physical

entities within our universe. (Below, I’ll discuss some aspects of the theory of subparticles

[3,4,5], where subparticles should never be viewed in any manner as particles or seriously

imaged in any mental geometric form. Combinations of subparticles within a substratum

world can be associated with infinitesimal coordinate measures.)

Notice that equations (4) state that the functions x are not any function but must

have rather special mathematical properties for ds2 to exist as a mathematical object.

For GR gravitational field theory and our universe, the gij are not, in general, the values

as stated in (4), but rather they must satisfy in one way or another the Hilbert-Einstein

gravitational field equations relative to a specific coordinate system. As mentioned, the

symbols in (5) are an abbreviation for a finite sum of the terms gijdxidxj as the i, j vary

independently over the numbers 1,2,3,4. The language of RG does not, as yet, refer to real

physical stuff. Since space is not defined in terms of any physical material, such expressions

as “the curvature of space-time” can only have meaning for physical behavior - behavior

that is essentially controlled by equations such as (5). For GR, what is often called space-

time is coordinate space S4, where the interpreted physical behavior is controlled by the gij

that appear in a specify metric. Indeed, even expressions like (5) are termed as space-time.
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Riemannian Geometry and Gravitational Fields

I will not discuss what some very imaginative particles physicist consider as the ac-

tually entities that comprise a gravitational field. Since the objects investigated are not

predicted to exist and, apparently, cannot even be indirectly detected, I consider such a

discussion as the rankest form of speculation that displays nothing more than the objec-

tive prideful nature of humankind. It will be shown for gravitational fields that, in many

cases, the geometric notions are substitutions for the still mysterious notion of gravitational

“forces.”

Are there individuals who have specialized in GR and who also more truthfully state

the RG is but an analogue model for behavior?

What is the substance out of which the universe is made? . . . . Rie-

mannian geometry likewise provides a beautiful vision of reality . . . to

see in what ways geometry is inadequate to serve as primordial building

material . . . (1) geometry is as far from giving an understanding of space

as “elasticity” is from giving understanding of a solid [10].

Elasticity is a property of a solid relative to its behavior under certain circumstances.

Thus, Patton and Wheeler admit publicly that RG is but an analogue model for behavior

within a gravitational field. Thus far, the actual GR theory relates abstract mathematical

entities that require interpretation. I firmly believe that great confusion and, indeed, error

occurs when one attempts to picture certain notions such as curvature for a 4-D space-time

via some form of physical diagram. The confusion results from the fact that it does have

intuitive geometric meaning in a 3-D world.

Many of our human experiences are relative to observations via rectangular and equal

interval systems, at least, locally. Intuitively, geometry is defined as the science that stud-

ies the shape and size of things. In technical areas, it is often the study of the invariant

properties of the given elements under specific groups of transformations. The term “cur-

vature” comes from notions in classical RG about 3-D spatial properties of a curve or

surface and such properties do correspond directly to our perceived ideas of shape, size

and measurement. RG is also known as differential geometry where the differential calcu-

lus or even the tensor calculus is used to study general properties of curves and surfaces. I

have published in nonstandard differential geometry and the Special and General theories

of relativity, but the results of these researches are beyond the scope of this article.

Within RG, a surface is defined by three equations xi = f i(u1, u2), i = 1, 2, 3, with

certain additional properties. The coordinates (x1, x2, x3) are considered as representing

points in a 3-D rectangular (Cartesian) coordinate system. (Such a purely 3-D view,

usually, should not be used when RG is applied to GR.) The (u1, u2) are usually restricted

to a region R that is viewed in an u1u2-rectangular coordinate system for comparison
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purposes. Intuitively, the “mapping” (i.e. the three equations) takes the region R and

maps it into the 3-D space (i.e. corresponds each point in R with a point in 3-D space

(x1, x2, x3)) so that it now takes the form of a surface. A curve on the surface is defined

by two equations u1 = g1(w), u2 = g2(w), where w might vary over an interval I of real

numbers [1, p. 123]. Notice that in the 2-D region R, these two equations can be graphed

as a curve in the region (i.e. the interval I has been mapped or changed into a curve in

R). By substitution, the curve can be viewed from 3-D space as a curve, restricted to a

surface. Indeed, the curve is but the result of two mappings that start with I and yield

a restricted 3-D space curve. The maps simply take the interval and distort it into a 3-D

curve.

But, how does this relate to the gravitational field equations? Although known by very

few, these equations “need to be viewed” from a 5-D coordinate system and, usually, this

fact is never mentioned. Below I discuss why, basically, this extra dimension is needed.

When classically discussing the idea of an expanding universe an additional “surface”

coordinate is used. To view this space, one would need a 6-D space. One reason for

not mentioning this is that, when dealing with a 2-D surface, certain defined geometric

properties that characterize a specific surface are first viewed from a 3-D space and then

expressed in terms of the u1, u2-coordinate values. However, for geometry, the f i are needed

in order to obtain the actual gij which will be expressed in terms of the u1 and u2 values.

Only in the case that these metrical coefficients gij can be found by other means will the

original equations f i be unnecessary for their determination. However, this does not alter

the original and required geometric definitions. It is becoming clear that using notions

from RG to discuss behavior within a gravitational field may be but an re-interpretation

for the original geometric notions and appears to yield a mere analogue model for behavior.

Although geometric language may be maintained, usually with additional prefixes such as

“hyper,” any physical meanings given to most of the geometric terms do not refer to the

originally defined geometric notions. (Terms such as “volume,” that use the Euclidian

units, usually have their ordinary intuitive meanings.)

Recall, that, in what follows, one need not know what the symbol signifies mathemat-

ically. If the mathematical space and the functions used are of a specific type, you may

have points on a 2-D surface, in 3-D space, connected by a curve called a geodesic. In RG,

an expression that governs the behavior of this curve is that the curves intrinsic equations

(i.e. in terms of “s”) satisfy

d2ui

ds2
+

{

i
jk

}

duj

ds

duk

ds
= 0, i, j, k ∈ {1, 2} (6)

where the Christoffel symbol of the second kind

{

i
jk

}

is totally determined by the gij
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expression for the surface in which the curve is contained. The gij can be expressed as the

coefficients of an expression that takes the same form as (5).

How is RG used to model behavior in a gravitational field? A test particle is supposed

to be an actual physical object with an extremely small mass. This very small mass has

an associated gravitational field. However, this field is assumed to be of such a minis-

cule strength that it will not measurably affect the gravitational field that generates the

particle’s motion. The particle’s behavior is modeled by relations between coordinates

(x1, x2, x3, x4). The following is an example of how the model is constructed for a gravita-

tional field, where the field affects events. (Note: ds is the “interval” in what follows.)

Let (x1, x2, x3, x4) be the coordinates of an event in this frame. The in-

terval between to contiguous events will then be given by equation (45.8).

If an observer using this frame releases a test particle and observes its

motion relative to the frame, he will note it is not uniform or even rectan-

gular and will be able to account for this fact by assuming the presence of

a gravitational field. He will find that the particle’s equations of motion

are

d2xi

ds2
+

{

i
jk

}

dxj

ds

dxk

ds
= 0 (46.5)(7)

[7,p. 134].

Equations (7) are of the exact same form as (6) but i, j, k ∈ {1, 2, 3, 4}. Further,

Lawden gives the usual argument relative to such metrics as (2) and neighborhoods of

a point that the quantities gij can be taken as satisfying the gravitational field equa-

tions. As Lawden states, “This means that the gij determine, and are determined

by, the gravitational field” [7, p. 134]. Solutions for (7) require the constant initial

conditions dxi/ds, xi(s), i = 1, . . . , 4. If you consider (6) where there is no gravita-

tional field present, then (7) reduces to the constant linear-type motion characterized by

d2xi/ds2 = 0, i = 1, . . . , 4. Hence, (7) states how, under these constant initial conditions, a

test particle’s behavior is altered from this linear-type behavior only be a gravitational field.

This is the meaning of the expression freely falling. Technically, comprehension of paths

of motion requires graphing the paths as viewed from a 5-D coordinate system, a rather

difficult thing to do. On the other hand, holding one parameter as a constant, one might

consider them as they would be graphed in a 4-D coordinate system, still a difficult thing

to do, unless one holds other parameters as constant. This is exactly what is done. One

or more parameters are held constant or, at least, not considered as part of the coordinate

system. When we graph a path of motion in 3-D space and it varies in time, then the

mappings are used and the time “interval” is often considered as part of an auxiliary 1-D

system.
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In RG, when viewed from a 3-D space, the geodesics on a right cylinder are helices.

But, geodesics on this “curved” surface have the same metric properties as lines in a plane.

One might say that when viewed from the 2-D surface, they appear to be lines. For higher

dimensions, the same conclusions hold. Thus, one must be careful when describing such

behavior. The fact that the language of “curvature” is used comes from the mathematically

rigorous notion that a 4-D surface may have the same metrical properties that characterize

curvature for a 2-D surface viewed from 3-D space. In particular, if one such numerically

valued expression is identical to zero, then the surface has the metrical characteristics

for a plane. Thus has developed the misguided terminology that gravitational fields and

“curved space-time” depict exactly the same physical notions. But, at least for Lawden,

space-time is not a physical entity. Indeed, even for subparticle theory space-time is not

curved. For physical behavior, such notions should be expressed in physical terms. Can

this be convincingly demonstrated?

What I briefly discuss was will known and accepted in the 1920s and 1930s. This was

before society was inundated by the mental pollution fostered by modern science-fiction

enterprises. The notion of the curvature of space-time produced by a gravitational field is

a substitution for gravitational forces. Simply take expression (7) and multiply it by the

actual small mass, m, of the test particle. One gets

m
d2xi

ds2
+ m

{

i
jk

}

dxj

ds

dxk

ds
= 0

or

m
d2xi

ds2
= −m

{

i
jk

}

dxj

ds

dxk

ds
= Fi, (8)

where it should be mentioned that one of the forces is related to x4. However, if x4 is

interpreted as “time,” then, as well be shown, this can be interpreted as but a “force” that

alters devices that measure “time.” Recall, that the actual reason that the measurements

of both time and distance are required is due to the methods used to measure speed or

velocity as it is affected by a gravitational field.

In 1915, David Hilbert presented his derived gravitational field equations - equations

that include a type of unification for gravity and electromagnetism. This was followed

five days later when Einstein presented essentially the same gravitational portion of these

Hilbert equations without derivation but rather through the “guess” process [8, pp. 24-

34]. At that time, geodesic equations were usually derived by a different method using the

famous Euler equations in terms of a type of time parameter ξ. When such a derivation

is completed [1, pp. 177-178, where ξ = t] a unique path for a freely following particle

satisfies the equations

m
d2xi

dξ2
= F ′

i . (9)
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The F ′

i components are generated by a slightly different expression than the Fi. Obvi-

ously, (9) can be interpreted in terms of forces (i.e. F = ma). In the force interpretation,

these particle paths are similar to the lines of force surrounding various magnetic sources.

Indeed, when gravitational fields are illustrated for a material body, what is usually il-

lustrated are specially selected geodesics. Hence, rather than stating that particles follow

curved paths due to the curvature of space-time, when viewed from a local coordinate sys-

tem, one can state that gravitational forces cause the particle’s behavior. The same force

notion is also used for other behavior stated in terms of curvature such as the Riemann-

Christoffel “curvature” tensor. These results are extended to all physical entities including

any massless ones, where they are analyzed using expressions different from (7). Although

what actually produces such force effects may, at present, not be fully known, the differ-

ence between a space-time curvature statement and the force statement is that humankind

does “feel” and have experiences with gravitational forces as well as many others. Much

physical behavior that is altered by gravitational fields can be correctly described in terms of

the ordinary physical language of forces, stresses and the like. It should be clear that such

notions as the curvature of space-time have no physical meaning in terms of the geomet-

ric definition unless one physically interprets the notion in terms of how physical entities

behave as compared to their behavior in a local space, say characterized by (2), a space

without gravitational fields. Indeed, modifying (2) in order to obtain gravitational field

properties, yields direct evidence that gravity and electromagnetic propagation properties

are inseparably related.

RG and GR Interpretation Methods

Suppose that in 1600 AD human beings on planet Earth were not capable of mathe-

matically modeling gravitational behavior but they did have a language that they used to

describe physical behavior. A scientist lets a small object drop unimpeded from various

windows in a tower so that the object lands in a pan of loose soil. He makes notes that the

further the object falls the more dust is kicked-up when the object hits the soil. He knows

from other experiments that he gets the same changes in the dust patterns by throwing the

same object from a fixed position but “faster” and “faster.” He knows that almost all indi-

viduals with whom he cares to communicate have a common understanding of terms such

as “further,” “faster,” “towards,” “falls,” and the like. He describes the object’s behavior

in terms of his observations. He states, “The object seems to fall faster and faster towards

the pan of soil the further and further it is from the pan when it is dropped.” He then

allows 150 other individuals observe the same motion and the additionally needed experi-

ment and 148 agree that his description is correct. He then generalizes and states that all

individuals that have the same observational abilities as the 148 that agreed with him will

observe this same behavior. Empirical physical science associates with such experiments

a basic rule that, even in the absence of such observations, the object will behave in the
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same described manner. He, of course, does use intuitive modes of measurement to arrive

at his description.

To be more “scientific,” the scientist constructs a “clock” and uses a ruler to measure

the distance the body falls via the window heights. He uses his clock to measure the time

of fall. He spends twenty or more years trying to find a relation between the different

window heights and his clock measurements. Finally, he changes the rules he is supposed

to use and concludes that the distance the object falls approximately varies directly as

the square of the time and interestingly he contradicts the basic physical science of his

time for objects of different weights (masses) and shows that the weight of the object does

not alter this relation significantly. (Of course, the constant of proportionality balances

the units.) Using the Merton rules for speed determination, he shows that the square

of the speed is approximately proportional to the distance the body falls. But, then a

clever inventor builds another clock called a differential clock, a clock that although not

appearing obvious is related to the distance as marked on the tower. The scientist then

measures the time and now discovers that the distance the object falls approximately varies

directly as the time and calculates that the speed is approximately constant. This second

set of measurements contradicts the basic description for the object’s behavior. The basic

description was not dependent upon the so-called scientific measurements. Probably, his

observation should not change simply because he has “changed his mind” by using the

differential clock. Indeed, he might conclude that the differential clock is the wrong clock

to use to measure local basic physical behavior. The scientist is further invigorated by his

revolutionary discovery that time can be considered as an independent parameter since

this is how he developed the mathematical model that predicts the observation. This

embellished partially true story is significant for what follows.

It is instructive to investigate more deeply the relation between RG and its appli-

cation to GR. The actual methods used within GR to investigate test particle behavior

are not equivalent to those used within classical tensor analysis as applied to RG. Due

to the restricted types of coordinate transformations required, one aspect of RG states

that a tensor equation does not change its form when transformed by any member of this

collection of coordinate transformations. All tensor equations can be rewritten as a tensor

expression that equals a zero tensor. For a zero tensor, all of the tensor components must

be zero. When using a proper transformation, the actual transformed components of any

zero tensor satisfy theorem [18.1] in [1, p. 91]. This theorem states that if all of the com-

ponents are zero for one coordinate space, then they will also be zero when calculated for

any proper coordinate transformation. (The term “proper” refers to a specific technical

requirement called “regularity.”) This is a mathematical fact. From the 3-D geometry

view, let xi = f i(u1, u2), i = 1, 2, 3 be the surface equations with their special partial

derivative properties at each point (u1, u2) of a domain. To obtain a graph for the curve
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in 3-D space, we have u1 = g1(w), u2 = g2(w). The Euclidean metric in 3-D space is

ds2 = (dx1)2 + (dx2)2 + (dx3)2. Then dxi = ∂xi

∂u1 du1 + ∂xi

∂u2 du2, i = 1, 2, 3. (You don’t

need to remember how this expression is obtained or even what it means.) Now if you

substitute this last expression into the ds2 and us a little algebraic manipulation, you get

the following expression that is exactly the same as (5)

ds2 = g11(du1)2 + g12du1du2 + g21du2du1 + g22(du2)2. (10)

In this case, the

gαβ =
∂xi

duα

dxi

uβ

(

=
3
∑

i=1

∂xi

duα

dxi

duβ

)

, α, β ∈ {1, 2}, g12 = g21. (11)

As introduced by Gauss, (10) is called the first fundamental form. The ds is used as a mea-

sure of distance on the surface. Distance, angles between surface curves viewed as angles

between tangents, and elements of area can be expressed in terms of the gαβ . (However,

technically, distance, the angles and the like are as they would be measured in terms of

3-D space and Euclidean units.) Now if you make a proper surface coordinate transfor-

mation and transform the formula and the coordinate names used, then you get the same

numerical values. From this point of view, basic geometric information that characterizes

the surface remains fixed. Is it necessary to investigate these surface properties from the

3-D viewpoint?

“However, once the formulas for the measurements of length, angles, and area have

been found in terms of the first fundamental form (equation (10)) of the surface, thereafter

these metric formulas may be used without considering the surface as embedded in space”

[1, p. 146]. Yes, you may do so. But, this does not eliminate the original geometric

definitions. These properties are called intrinsic since they can be expressed in terms

of the coefficients in (10). If for a specific coordinate system, the form (10) is identical

for two surfaces (they are isometric), then as far as the measurements of these intrinsic

properties are concerned there is no difference in these two surfaces from the differential

geometry viewpoint although physically there may be other factors that make the surfaces

very different. Indeed, “a cylinder and a cone are isometric to a plane” [1, p. 147]. One

important result relative to this is that two surfaces are isometric to a plane if and only

if the Riemann curvature tensor Rijkl = 0, where 0 denotes a zero tensor. No proper

coordinate transformation will alter the form of this equation.

But, distinct from the geometry, GR tensor equations, in a general manner, state

relations between physical properties that, when interpreted, are not merely geometric.

These properties are hidden within the tensor expressions and, based upon the methods

used to interpret physical behavior, it appears that different behaviors are exhibited by
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different coordinate transformations. There is a reason for this, but unfortunately in

applications to physical behavior it has been claimed that the invariance of these geometric

measures under coordinate transformations must hold for all physical behavior as well. This

claim is used to establish some significant results (i.e. Birkhoff’s Theorem for example).

A few examples that show that this claim is false, in general, is all that is needed.

Transform the spatial part of (2) using the standard spherical coordinate transforma-

tions and obtain the expression for ds2 without the presence of a gravitational field. If a

potential velocity vp influences behavior in a direct and simple manner, then (2) reduces

to

dS2 = −ds2 = c2dτ 2 = (1 − (vp/c)2)c2dt2 −

[

dr2

(1 − (vp/c)2)
+ r2(dθ2 + sin2(θ)dφ2

]

, (12)

where the spatial spherical coordinates are r, θ, φ, the t is not transformed. For a very

simple spheroid where the matter that produces the gravitational field is distributed in

a perfectly homogeneous, spherically symmetric manner that does not varying in t, then

(12) is the Schwarzschild solution. In this case, (vp/c)2 = rs/r, where rs = 2MG/c2, M

is the mass, and G is assumed to be a universal constant. Until changed, this special case

is assumed in what follows. As used in [4,A,B,C], the measures considered in (12) and

required to make the left-hand and right-hand sides equal are infinitesimal-light clock and

Einstein measures. However, as I have always stressed, these measures are but analogue

models for real world measuring devices. In particular, due to the results in [B] relative to

subatomic behavior, probably any reliable clock such as an atomic-clock and even a digital

watch will suffice. Then we have the notion of Einstein measures needed to measure

distance such as r. This is a form of radar measurement and seems to yield a dynamic

coordinate system. However, in the actual derivation in [4,C], it is argued that such

distance measures, r, for this coordinate system need only be done in the same manner as

a standard ruler measurement. Even if the distance measures remained dynamic, the notion

of slow transport still yields a fixed unaltered measurement for distance r. This corresponds

to the Lawden statement about the Fitzgerald length contraction in that it “can have no

physical consequences” [7, p. 12]. Independent from any required measurement schemes,

the metric does not exist for points on the Schwarzschild boundary (i.e. the spherical

surface where r = rs).

It is claimed that another transformation, the Kruskal-Szekeres transformation (KST)

[7, p. 167], eliminates this problem for r = rs even though the KST does not seem to satisfy

the RG requirement of regularity at the points where r = rs. Regularity is an important

property in RG that, in general, needs to be satisfied at the coordinate points investigated.

I point out, that for the Schwarzschild metric rs is also called an event horizon. There is

another surface called the infinite redshift surface. For electromagnetic signals, the event
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horizon is like a “one-way membrane.” The infinite redshift surface appears to an observer

at a distance r > rs to shift the photons wave-length λr so that limr→rs+ λr = +∞.

These surfaces need not correspond [3]. For the Schwarzschild solution, these surfaces do

correspond.

After taking the KST, when test particle behavior is analyzed, a great deal of new

physical behavior is exhibited. This physical behavior is used to strengthen many a science-

fiction story. There is yet another transformation that leads to physical behavior that

contradicts behavior exhibited by KST and other accepted transformations [3]. But, how

is this possible? An explanation for this is related to how one physically interprets the new

transformed metric where the interpretation is not related to the rules of RG. GR uses

many RG rules but adjoins additional physical interpretations to obtain the GR theory.

For one simple example, Lawden [7,pp. 156-158] transforms the Schwarzschild metric

(12) by the Eddington-Finkelstein transformation. In RG, you can consider a geodesic at a

regular point in any direction. First, consider the Schwarzschild metric and a freely falling

test particle for a fixed θ, φ. The initial conditions state that we have “a particle falling

freely along a radius towards the center of attraction in the region” r > rs. “Taking the

initial conditions for t = 0, r = R, dr/dt = 0” [7, p. 156], Lawden calculates from the

geodesic equations that the equation of motion is

(

dr

dt

)2

= rsc
2

(

1 −
rs

R

)

−1 (

1 −
rs

r

)2
(

1

r
−

1

R

)

. (57.2)(13)

Notice that the initial conditions are that at r = R the t-clock is set at 0 and the particle’s

directed speed (velocity) dr/dt = 0 and all are measured by a standard coordinate system

that is fixed in the gravitational field at R, where the coordinates are all independent from

one another. Apparently, the negative root for (13) is taken so that dr/dt < 0, t > 0.

However, I point out that using the RG language these coordinates are really 4-D “surface”

coordinates. From this, solving for t, the geodesic equation of motion is

ct =

(

R

rs
− 1

)1/2 ∫ R

r

x3/2 dx

(x − rs)(R − x)1/2
. (57.3)(14)

The expressions (13) and (14) are not obtained in [7] from (7) but are obtained from an

equivalent expression. In this case, the t and the r are still the same measurable notions

and one can view the r measures from a spatial rectangular 3-D space with time t as

an additional parameter since, technically, r is also a function of t. Since only r and t

are related, this behavior can also be “viewed” alone r from R. A general experiential

description states, “particle is moving towards the center of attraction.” Classical GR

reduces to solutions for differential equations. These can have unique solutions if one
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considers specific initial conditions like those stated above. But, notice that for the dr/dt

and the time coordinate t, the particle has the properties that

lim
r→rs+

dr

dt
=

dr

dt
|r=rs

= 0, lim
r→rs+

t = +∞. (15)

This is rather unusual behavior. And, there is more. The test particle has a nonzero

absolute maximum speed at some r′ such that rs < r′ < R. Why is this not part of our

experience with gravitational fields? The reason is that for such a spheroid of the mass of

the Earth, rs = 9mm.

In RG, a path of motion on a surface is determined by an auxiliary parameter w = t.

Now in GR, if one can view the path of motion from a 5-D space, then 4-D (r, θ, φ, t) do

not form a mathematically linear path. In order to confuse the matter, one might apply

RG geometric terms and state that this gravitational field “curves“ or “warps” space-time.

But, this geometric language has no actual physical meaning since it can be re-expressed

in terms of “forces.” Indeed, as properly viewed from local 3-D rectangular space, the

path of motion is linear and its physical behavior is determined by the auxiliary 1-D time

interval. There is nothing mysterious about any of this when interpreted correctly. Unless

one is willing to accept a logical contradiction, other theoretical interpretations for such

quantities as the Riemann-Christoffel tensor tend to imply that this interpreted view of

particle’s behavior does not yield its complete behavior. Here is where the rules for RG

and GR differ greatly.

Eddington, and then many years later Finkelstein, suggested a transformation (EFT)

for the “time” coordinate. When such transformations are made, care must be taken

when one suggests that “time,” as we experience it, is being changed. In particular,

u = t + (1/c)(r + rs ln |r − rs|. With this substitution made, then one gets for Lawden’s

form of ds2,

ds2 = r2(dθ2 + sin2(θ)dφ2) + 2cdr du − c2(1 − rs/r)du2. (57.13)(16)

For the same restriction that θ and φ are constant, the geodesic satisfies

dr

du
= rsc

(

1

R
−

1

r

)

− c

(

rs

(

1 −
rs

R

)

(

1

r
−

1

R

))1/2

, (57.18)(16.5)

where dr/du(R) = 0, dr/du(rs) = nonzero real number, and for the directed speed

(velocity) limr→0+(dr/du) = −∞ as “viewed” from R. The paths of motion are solutions

to differential equations and require initial conditions. In this case, they include that “r

must decrease initially” [7, p. 158] meaning that near to but less than R, dr/du < 0. This

leads to the negative directed speed dr/du. For the identical initial conditions u = 0, when

r = R, solving for u, the u-time will be finite when r = rs.
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What is actually obtained physically by this transformation? The gij that appear in

(16) must satisfy the Hilbert-Einstein tensor expression for a gravitational field. But, as

described by geodesics and other actual physical behavior, this represents a new gravita-

tional field. This is why the theory is called the General Theory of Relativity. The term

General means that there are infinitely many different fields that satisfy the tensor expres-

sion. (If an actual gravitational field is not Schwarzschild, then this would imply that the

simple non-reversible P-process used in [4] is either much more complex or the P-process is

further altered when it is realized as part of the natural world.) Lawden analyzes the freely

falling particle and uses the same general and intuitive notions we associate with space

and time measurements and states, “passage through the Schwarzschild radius (surface)

being unremarkable” [7, p. 158] for, by (16.5), dr
du |r=rs

is finite and 6= 0. However, from

the RG viewpoint, the transformation does not have the required regularity at any of the

points where r = rs. Since this test particle is really not a mathematical point, then this

fact need not be significant.

Although, from RG, if all of the formulas for geometric measures are transformed you

will get the same numerical measures, this is not what is done for the physical interpreta-

tion for the real local Euclidean-like world in which we live. Physically, even though the

“times” t and u do not behave in a similar manner, general statements are made relative

to the EFT and the behavior being exhibited in terms of our usual intuitive and standard

comprehension of time, distance, directed speeds, etc. Our experiences and intuition have

not been transformed since we are making comparative statements. (The theory of corre-

spondence has not been transformed.) From this view, using a descriptive approach, we

do have that the particle crosses the Schwarzschild surface; and, when it passes the sur-

face, it moves faster and faster towards the center of attraction. Also, the infinite redshift

surface and event horizon are still both located at r = rs. Notice that equations (14) and

(16.5) when solved for u, are actually flight-time expressions that present these forms only

because of the selected initial conditions for t = 0 and u = 0.

These interpretation methods are not the only GR rules that are not part of RG.

This is also relative to the 1600s experiment. In that experiment, the scientist had the

gravitational field with which to experiment. He lived in it, as do we. The clever inventor

made a clock that was distorted so that it gave different results than the observed ones.

This is why the scientist knew that the differential clock was faulty. One could do the

same thing here and make a distorted u-clock. The problem is that we don’t know how the

gravitational field behaves near to rs. We are trying to find the correct field expression so

that particles will behave, not just appear to behave, in an “acceptable” manner. This GR

rule does not correspond to any of the classical RG rules. The accepted methods and actual

words and thoughts about how moving bodies are to be described have not been transformed.

The behavior is still compared to a local rectangular 3-D space, where the time u varies
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over an auxiliary 1-D interval.

In order to select what may be the “correct” gravitational field behavior, the complete-

ness or maximal properly is often added. Essentially, this non-RG rule requires physical

entities to appear or disappear only at singularities such as at r = 0 in the Schwarzschild

case. The KST for the Schwarzschild metric appears to be just such a maximum transfor-

mation.

Somehow, by means of the coordinate transformation that leads to the

Kruskal-Szekeres coordinates, one has analytically extended the limited

Schwarzschild solution for the metric to cover all (or more nearly all) of

the manifold [9, p. 833].

But, what is material reality? One might define local material reality relative to a

collection of common human senses and comprehension; that is, those defined senses the

vast majority use to observe local evidence.

Though Kruskal’s work is undoubtedly of high theoretical interest, does

it have any practical application? At present, perhaps not. Kruskal space

would have to be created in toto. . . . There is no evidence that full

Kruskal space exists in nature [11, p. 164].

In [4,B,C], it is shown how all of the time-dilation results follow from comparing

behavior with a local standard. From the viewpoint of clocks and the language of GR,

one considers freely falling local light-clocks momentarily at rest and orientated along the

radius r. The phrase momentarily at rest means that dr = dR = 0. But this fact holds if

you simply consider r and R as fixed, for ∆r = ∆R = 0 implies that dr = dR = 0. The

infinitesimal requirements will shortly be obtained by a different means. All time-dilation

results obtained in [4] are obtained by using a fixed method, one part of which is this exact

observational and comparison technique.

There are two approaches to time-dilation concept. One is via gravitational potentials

and proper time. The other is found in [4,B,C]. There it is done from the viewpoint of

coordinate time, where ts is infinitesimal light-clock determined time that is not affected

by a gravitational field and, by comparison, tm is an affected and altered infinitesimal

light-clock. Since the entire time-dilation notion in [4,B,C] is based upon rates of change,

comparison and not the actual time measures, the alterations in tm should have an appro-

priate interpretation. As shown below, the “slowing down” of physical behavior is relative

to the digital counts of approximating real light-clocks or equivalent devices like atomic-

clocks. The proper interpretation appears on page 48 of [4]. The unit of time T is the

“tick” that can be emitted when the digital output changes by one digit. If rs ≤ r ≤ R, r

and R are fixed positions and the ts is eliminated, then the actual time-dilation expression
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(*) [4, pp. 62] yields

(

1 −
rs

r

)1/2
∫ tr

1

tr

0

dtr =
(

1 −
rs

r

)1/2

∆tr =
(

1 −
rs

R

)1/2
∫ tR

1

tR

0

dtr =
(

1 −
rs

R

)1/2

∆tR.

Substituting into this expression, one obtains (1−rs/r)1/2∆qr = (1−rs/R)1/2∆pR, where

∆qr,∆pR are the differences in the observed number of atomic-clock ticks at r and R,

respectively. These numbers are independent from the observer. The result only has

meaning in the sense of comparison. This equation must be properly interpreted. When

it is applied to a specific problem, it applies locally to objects at each instant for the field

at r and R that behave like test particles with respect to the mass M. This interpretation

has been experimental verified since it corresponds to the one needed in order to predict

the gravitational redshift [4, p. 66]. Let (1−rs/r)1/2 = 1/4, (1−rs/R)1/2 = 1/2. Suppose

that from your position R, two almost identical atomic-clocks are constructed and within

all forms of observation the clock’s tick at the same rate at R (i.e. one tick length with

acceptable error is the same as the other tick). One of the clocks is slowly moved to the

position r. The field separately affects each clock, which using the language of GR may be

considered to be in free fall but momentary at rest. From r, you observe via a telescope

the atomic-clock at R. You display the observed tR counter numbers at the top of a screen

and the counter numbers for your atomic-clock tr at the bottom.

You observe, that the tR-counter reads tR0 = 12955 ticks at R and this approximately

corresponds to your tr0 = 2345666 ticks at r. Then you wait until your tr-counter number

reads tr1 = 2345667 ticks at r and note, immediately, that the tR-counter number is very

nearly tR1 = 12957 ticks at R. From observation, the number of ticks, 1, at r corresponds

to the number of ticks, 2, at R. These values satisfy the prediction that (1/4)∆pr =

(1/2)∆pR. Or, 1 tick at r corresponds to 2 ticks at R. So, arbitrarily using the one r-tick

at r as your time unit, you can state that the atomic-clock at R is “speeding-up,” at R,

at the rate of 2 r-ticks for each 1 r-tick. But, this can also be stated in terms of the R-tick

units of time for the atomic-clock at R. In this case, an R observer can state that the

atomic-clock at r is “slowing-down” at the rate of 1/2 R-tick for each one R-tick.

However, the time units selected are not relevant for the calculus. Since the calculus is

being used, both of these atomic-clocks should be correlated to an ideal “continuum clock”

represented by the usual moving hands on a clock-face. We need to “infinitesimalize”

time, which is formally done by infinitesimal light-clocks. This allows the atomic-clock

digit changes to be measured in terms of a single time unit µ that is not affected by any

relativistic alterations, say at ≈ +∞. This µ can be correlated to the terms sec., min., hrs,

etc. which all represent universal units that are not altered by relativistic alterations. Let

sec. mean the unit “a second” for an unaltered clock. Hence, at r, 1 sec. is equivalent to 2

sec.s at R. Suppose that an unaltered light-clock tick takes 2 sec.s, then it might be stated
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that 2 sec.s at r correspond to 4 sec.s at R. Obviously, this leads to a misunderstanding as

to what is actually being altered - the atomic-clocks. (See the Hawking’s description [E]).

The results are simply that the behavior of the atomic-clocks is altered by the gravita-

tional field and this alteration is observed by noting the different counter numbers. Taking

into account how “light” behaves when moving radially, it seems that these alterations are

real and not an illusion. Moreover, there is a deeper physical reason for these alterations.

For the Schwarzschild field and rs, r1s
, if energy changes obey the time-dependent

Schrödinger equation and GR generally applies, then as shown in [4,B] if ∆Es is the change

without a gravitational field, then at position r the change is (1 − rs/r)1/2∆Es = ∆Er.

This yields the relation (1−r1s
/R1)

1/2∆ER = (1−rs/R)1/2∆ER1. To measure relativistic

alterations in vibrational rates of change via frequencies, experimental evidence requires

that you use a fixed universal unit of measure at one observational location [4, p. 66 implies

p. 43]. There are additional GR field requirements. The frequency must be associated

with an object that behaves like a test particle at R, R1 and, as previously, the language

of GR might state this as the particle being momentarily at rest at R, R1 during radial

free fall. Hence, for any electromagnetic radiation produced by such energy changes,

(

1 − r1s/R1

1 − rs/R

)1/2

=
νR1

1

νR
. (17)

Equation (17) predicts gravitational redshifts [4,B,C]. Consider M1 > M. Hence,

r1s
> rs implies that νR

1 < νR, where the standard for a specific form of radiation is

determine for the mass M. For the Sun and the Earth and frequencies measured at the same

distance R from the centers of attraction, νR
1 = 0.9999979νR. There are other derivations

for these gravitational effects [7, p. 152 - 153]. But, this one gives an actual physical bases

for this behavior rather than some type of general time-dilation. After this derivation was

obtained, it was discovered that Einstein conjectured that gravitational redshifts are some-

how-or-other associated with the atomic structures. I also point out that the exact same

approach yields the Special Theory redshift evidence that is claimed to be but general time-

dilation. This behavioral approach is based totally upon comparing what science actually

measures - real observed physical behavior. Due to how the line-elements are obtained

via electromagnetic propagation theory, one can rationally assume that all alterations in

physical behavior due to both the Special and General theories is primarily caused by an

electromagnetic interaction which is mediated by the NSP-world entities discussed below.

This appears to be enough information to justify, for the behavior of objects affected

by a gravitational field, that RG, with its geometric language, is mainly an analogue model

for the behavior of entities that are affected by a gravitational field. What this means is

that all such predicted behavior needs to be translated into a meaningful physical language

that has meaning for our “real” local Euclidean-like world.
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An Expanding Universe Without RG

Considerable effort has been and is being expended in further examining an “expand-

ing universe” in the sense that there is some sort of entity that comprises space that is

not merely a coordinate frame. For the basic expansion notion using the RG approach,

the device of a 4-D spatial “space” with the time coordinate as a separate parameter is

employed [7, pp. 176-179]. Technically, this is a 5-D space; and if you wish to “view” what

is going on, you need a 6-D space in which to embed it. There is also the Copernicus or

Cosmological principle. This is known to be a philosophic idea that is forced upon the

model. Indeed, using the 4-D spatial approach the Robinson-Walker metric is obtained

after some clever substitutions [7, p. 177- 181]. By applying this metric at every location,

one can “see” aspects of the Copernicus principle with the famous balloon analogy. Pen-

nies pasted on the surface of a rubber balloon will all appear to recede, one from another,

as the balloon is inflated. Of course, one could also made little black ink-marks on the

balloon, and then the ink-marks will not only seem to recede from the other ink-marks

but probably the ink-marks will also expand. Anyway, the balloon’s rubber material is

supposed to represent the unknown entities of which the universe is composed.

There is only one problem with the RG approach. It is totally not necessary. As

shown in [4], using the exact same method that predicts, without RG, metrics such as the

Schwarzschild metric, an equivalent Robinson-Walker metric is derived. These derivation

methods are not varied and use simple physical-like behavior as viewed from the predicated

“subparticle field” as discussed below. The derivation yields an apparent radial expansion

of a realized universe from either a single location, a collection of locations or, for those that

simply must accept the not verified Copernicus principle, for every standard location within

our universe. This expansion is isotropic when “viewed” from each point of application,

but need not be related to a homogeneous matter density. The metric obtained in [4] is

dS2
e = (cdts)2 −

(dRs)2

1 − (Rs)2/(ca)2
− (Rs)2(sin2 θs(dφs)2 + (dφs)2) (18),

where equation (18) is (29) in [4, p. 68]. In the derivation [4, p. 60], we establish that

θm = θs, φm = φs, Rm = Rs, where the superscript s indicates that no gravitational field

is as yet introduced.

This metric relates a subparticle component potential velocity Rs/a to the standard

world without any gravitational field present. (For comprehension, you can view this as

a type of subparticle (substratum) expansion.) This corresponds to the Robinson-Walker

(RW) metric (60.13) as it appears in Lawden [7, p. 179], where Lawden’s σ = Rs/S

and a = S/c. After introducing a special smoothed-out form of matter for homogeneity,

applying (18) at every location and the Hilbert-Einstein equations, this yields the closed

Friedmann model. If Rs/a is zero, then you get Euclidean space. Now many are not aware
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of the fact that if one just does not accept the metric with the negative term such as in (2)

but rather requires that this comes from a coordinate system applied to a Euclidean-like

process, then the time coordinate would actually be a pure complex number ti [7, p. 8].

Coordinate systems that use complex numbers are used throughout physical science to

model a great deal of behavior. With this in mind, if you replace Rs/a with (Rs/a)i, then

the metric you get is for the open Friedmann model. One the other hand, if one is not

concerned with “units” being conserved, then an RW type metric can be obtained for an

open Friedmann model by a coordinate transformation [7, p. 197]. If you had a photon

emitted from a location at a distance Rs 6= 0 from your origin Rs = 0, then using photon

wave properties the exact same derivation used to generated the cosmic redshift for the

RW metric [7, p. 182] yields the same redshift evidence for (18). Note that you can do

various things with Rs/a, by ad hoc choice, at any moment in the expansion. For example,

make it dRs/dts 6= 0 or Rs/a a constant. But, I wrote the phrase “subparticle field” and

this expansion is relative to such a “field.” What is a subparticle field?

The mathematical structure constructed in [5] is the only one of which I am aware

that can actually type-out on a computer-like screen part of its own theory predictions.

Photons, although they seem to interact via quanta of energy, also appear to have a

continuous energy spectrum. This further corresponds to particles that are said to be free

in space. Even if this spectrum is slightly granulated, the set of statements {A photon

with energy measured as 1/n}, where n is considered as varying over the set of natural

numbers, characterizes actual different photon behavior within our universe. If you encode

these statements and embed them into the mathematical structure constructed in [5], them

Theorem 9.3.1 [5, p. 83] rationally predicts the existence of an entity that is characterized

as actually having an infinitesimal amount of energy. How it predicts this is that the

resulting statements are decode and many of them read “A photon with energy measure

1/ .” but where the symbol “n” should be is now a blank space. The reason it is blank

is because there is no symbol in the set of symbols used to represent the natural numbers

that fits into the blank space. So, we use a new symbol, say ε, and insert it since we do

know how the ε behaves. This infinitesimal quantity ε is an actual “number” with basic

properties described within Nonstandard Analysis. Since first suggested in the late 1600s,

these are the numbers it took 300 years to discovery mathematically.

Although diagrams may aid in comprehending particle behavior within the subatomic

regions, the facts are that such particles are only differentiated one from another by their

described characteristics. Subparticles take this notion to the most extreme in that they

are only operational defined via characterizing components. I will not discuss them in

this article in any detail since their properties are formally discussed throughout many

articles, monographs [3,5] and books. But, as an example, certain subparticles are taken

as objects that model infinitesimal statements like (x + dx, y + dy, x + dz). Relative to a
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coordinate system within the nonstandard physical world (NSP-world), these coordinates

can be perfectly represented by infinitesimal light-clock counts and there is a subparticle

that has these representative position coordinates. When the significant standard part

operator is applied to this subparticle, the result has the position coordinate measure of

(x, y, z). This is considered as the position coordinate of an entity within the material world

in which we dwell. Using this approach but in a somewhat more complex manner, every

entity within our universe can be produced by combinations of but one type of subparticle

termed the ultimate subparticle. To apply this to (18), one simply considers a potential

velocity subparticle component associated with the measure Rs/a. All material entities

would require this additional subparticle effect when they are realized as actual physical

entities via the standard part operator. All entities that exist within our universe appear

to recede from the NSP-world positions of application. The effect is most easily understood

if one considers a universe that expands from but one or a small collection of NSP-world

locations.

Subparticles are considered as physical-like entities that correspond directly to the

infinitesimal part of the infinitesimal calculus. Should we take their existence seriously?

Many years ago, there was a discussion about certain quantum quantities that are not

preserved during certain physical scenarios. There were two choices. Either accept that,

for specific scenarios, these quantities are not preserved or to postulate the existence of

the neutrino that would acquire the “missing” quantum data. The physics community

decided to accept the neutrino hypothesis. But, the mathematics of quantum theory did

not postulate the neutrino. It was human intervention that rejected the scenario related

non-conservation notion and accepted the neutrino. In the case of subparticles, based upon

directly observed evidence, the mathematical structure automatically contains the basic

information about these objects and the only human intervention is to locate statements

that describe their behavior. These assumed objects do seem to “explain,” in a rather

simple and even better manner, much physical behavior. Indeed, the major mathematical

tool used by science, engineering, etc. is the infinitesimal calculus. This is extraordinary

evidence for the acceptance of subparticles. There is the question as to how the Rs, which

is a measure of distance from the position(s) where the expansion “starts,” is controlled

within the NSP-world. There is a reason for excluding any detailed speculations. This is

what Theorem 7.3.4. [5, p. 68] implies. There must always exist within the NSP-world for

various developing universes, the ultranatural events. We slightly know, in general, how

these ultranatural events behavior relative to each other and natural events; but, using

any language developed within our universe, we can not describe in detail what each event

comprises.
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