
Get some Fibers in your diet!

Mikola Lysenko

University of Wisconsin-Madison,

Spatial Automation Lab

Outline

 Motivation

 What are Fibers?

 How to implement them?

 Why put them in the core?

A Common Problem

 Say you write a binary tree (ex. Parse tree)

 You want to provide some traversal operations

Post-Order, Pre-Order, In-Order

 Also want to support algorithms on top of

streams

Sum, sort, min, max, etc.

 How do we do this?

Iterators

 Most common solution in today's libraries

C++ STL [SGI]

Java's Standard Library [Sun]

 Nice interface for manipulating data

 Algorithms are (relatively) easy to write

Interfacing with Iterators

//Convert to prefix

foreach(x ; tree.preorder)

Stdout.formatln(x);

//Split stream and swap order

auto iter = tree.inorder;

for(int i=0; i<10; i++)

{

auto x = iter();

auto y = iter();

Stdout.formatln(y);

Stdout.formatln(x);

}

Iterator Control Flow

ALGORITHM

ALGORITHM

ALGORITHM

ITERATOR

ITERATOR

Implementing Iterators

 At best, it is tricky

Pre-Order/Post-Order require parent pointers

 At worst, it is really ugly

In-Order is tough

Can re-do traversal each iteration

 O(n^2) traversal cost

Can store extra stack of nodes, but gets ugly

 Clearly iterators have some issues!

Visitors

 Writing the implementation code for iterators is

a mess, surely there is a better way?

 Can use “iteration by first class functions”

 Also known as the Visitor pattern [GoF94]

 Same idea as foreach/opApply

Visitor In-Order Traversal

//In-order tree traversal
void traverse(void delegate(Node) visitor)
{

if(left !is null)
left.traverse(visitor);

visitor(this);

if(right !is null)
right.traverse(visitor);

}

Visitor Control Flow

TRAVERSAL

TRAVERSAL

TRAVERSAL

VISITOR

VISITOR

The Problem with Visitors

 The user code is not so simple

How do we do 'split'?

 Must translate everything to 'map/reduce'

 This requires complex state machines

 Complex Code => Buggy Code

An Overview

 Iterators:

Easy algorithms, Hard Traversals

Algorithm controls stack

 Visitors:

Hard algorithms, Easy Traversals

Traversal controls stack

 Can we have it both ways?

Yes!

The Solution: Fibers

 Give both sides a stack!

 Algorithm code looks like an iterator

 Traversal code looks like a visitor

 Result is a 'generator' [Liskov76]

 What does this look like?

Generator Example (hypothetical)

//In-order tree traversal
Node traverse()
{

if(left !is null)
left.traverse();

yield(this);

if(right !is null)
right.traverse();

}

//Split nodes
void split()
{

for(int i=0; i<100; i++)
{

auto a = traverse();
auto b = traverse();
Stdout.formatln(b);
Stdout.formatln(a);

}
}

Generator Control Flow

TRAVERSAL

TRAVERSAL

TRAVERSAL

ALGORITHM

ALGORITHM

ALGORITHM

Generators Continued

 Generators have all benefits of iterators/visitors

Trivial to turn any visitor/iterator into a generator

 “Can have our cake and eat it too.”

 How do we implement them?

Coroutines!

What is a Coroutine?

 COncurrent ROUTINES vs. SUBROUTINES

 Functions with independent stacks

 Example:

auto a = new Fiber({
Stdout.formatln(“a”);
Fiber.yield();
Stdout.formatln(“b”);

});

a.call();
Stdout.formatln(“c”);
a.call();

Will Print:
a
c
b

Coroutine Diagram

Sub A

Sub B

Sub C

Sub 1

Sub 2

Sub A

Sub B

Sub 1

Sub 2Sub C

Subroutines Coroutines

Previous Work: Coroutines

 Term due to [Knuth68]

Has been rediscovered many times

 Really old [Landin65]

Used on UNIVAC!!!

 Necessary for several paradigms

Actor Model Concurrency

Object Oriented Programming (SIMULA style)

Process Based Programming

Coroutine Awareness

 Uncommon feature

 Only 1 of top 10 TIOBE languages

Python (as of 2007)

 ...and even then limited users...

Only 7000 hits for 'stackless' out of 1.4 million

Python sources [Google Code Search]

 Must educate users!

Related D Projects

 StackThreads

Basis for Tango's Fibers

 Daniel Keep's Coroutine Library

 PyD – Kirk McDonald

Python bindings for D

 MiniD – Jarrett Billingsley

D-like scripting language with coroutine support

Further Uses for Coroutines

 Fibers provide a low-level mechanism for

implementing coroutine like behavior

 Also useful for simplifying state machines:

Network Servers

Game Logic

Operating Systems

Game AI Example

 Games are concurrent simulations

 Typically event driven

 FSM style code

Difficult to write, debug and maintain

 Game logic eats up >90% of game code

[based on Quake 2, Arianne RPG, experience]

 Who knows how much development time?

A Simple AI State Machine

START
PATROL

HP >= 10?

No

Yes
ATTACK

Enemy spotted!

Nothing to see

Victory?

HP < 10?

No

Yes

No

FLEE

Yes

HP >= 10?

No

Yes

State Machine
switch(state)
{ case PATROL:

foreach(n ; room.actors)
{ if(n.is_hostile(this))

{ enemy = n;
if(hp > 10)

state = ATTACK;
else

state = FLEE;
break;

}
}

break;

case ATTACK:
if(!n.alive)
{ state = PATROL;

break;
}
else if(hp >= 10)
{ attack(enemy);

break;
}
else

state = FLEE;

case FLEE:
if(hp >= 10)

state = PATROL;
else

flee();
break;

default: assert(false);
}

 Difficult control flow

Spaghetti code

 What about later

modifications?

Suppose you need to

put more states in?

Coroutine Version

while(true)
{

foreach(n ; room.actors)
{

if(n.is_hostile(this))
{

while(n.alive && hp >= 10)
attack(n);

while(hp < 10)
flee();

break;
}

}�
yield;

}

 Same result!

 State variables are

implicit

No enemy, state etc.

 Easy to add more

states

Game AI Conclusion

 Coroutines eliminate software engineering

problems

 Make agent behavior part of language

States + Switch Statements => Global vars / GOTO

Coroutines => Structured Programming

 Why haven't we been using this all along?!

D MUD: A Case Study

 Build a MUD using Fibers for controlling agents

Developed by Matt Watkins (fellow MTU alum)

 Written entirely in D

3k LoC

Full network support

GtkD GUI

 Developed in 1 week

 Very Flexible AI

How to support coroutines?

 Can coroutines be implemented in D without

modifying the language?

Let's not bother Walter if we don't have to

 If so, what are the minimal features we need?

Need to define interface

Implementation

Where they fit in the language/library environment

The Need for Fibers in Tango

 Runtime has to know about Fibers

Garbage collection

Threads

Exceptions

 Fiber implementation needs to know about

system specific data structures

 Conclusion: Must implement in core library!

The Big Picture

Process

Thread Thread Thread

Fiber Fiber

Fiber

Fiber

Fiber

Func Func

Func

Func

Func

Func

Fiber

Func

Func

Fiber

Func

The Fiber Interface

class Fiber

{

//Creates a Fiber

this(void delegate() func);

//Calls a Fiber

void call();

//Yields active Fiber

static void yield();

}

 Minimalist interface: 3 main functions

Implementation Requirements

 Fast

Switching contexts is going to happen a lot

 Low Overhead

Need to easily support thousands of processes

 Compatible with existing C/C++/D code

Must have a stack

 As portable as possible

Bad Idea #1: Threads

 This actually works and has been done:

See [Welch 2002] for a Java implementation

 Slow context switches

 Scalability Problems

Uses up scarce system resources (max 400 thread)

 Requires complex locking / synchronization

Bad Idea #2: Win32 Fibers

 Win2k/XP API for microthreads [Shankar2003]

 Not much faster than regular Threads

 Awkward Interface

Eats control of main thread, breaks GC, etc.

 Windows Only

 Officially Deprecated

The sigalt() Stack Trick

 Clever Unix hack [Engelschall 2000]

Uses sigalt to replace stack

Works in any C compiler

 In D, must port/reverse low-level syscalls &

structures structures

(jmbuf_t, signal, etc.)

 Does not work on Windows!!!!!

Inline Assembler

 High Performance

Only 10 instructions per context switch

 C calling convention is standardized across x86

This includes Win32, Linux and Intel Macs!

 D inline assembler syntax is also standard

Works on both GDC and DMD

 ASM is most portable!

Some Final Thoughts

 Exceptions are tricky

Linux uses vectored exceptions, (easy)

Win32 uses SEH, must reverse engineer API (hard)

 Page faults/stack overflow

Can potentially implement dynamic stack

 (in practice not yet…)

 Have to port for each platform

But then we’d have to do the same for
sigalt/ucontext

Conclusion

 Enable concurrent programming

 Necessary part of the Tango runtime

Major advantage over Phobos

 Tango implementation is close to optimal

Without direct language support

 Can be implemented efficiently within

Future Directions

 More advanced models of concurrency

Actors

Communicating Sequential Processes

Pi-Calculus

 Deeper language integration

Can theoretically improve performance with context

aware register allocation

 More awareness in programming communities

References
 Landin P. (1965) A Generalization of Jumps and Labels.

UNIVAC Systems Programming Research

 Knuth D.E. (1968) The Art of Computer Programming Vol. 1.

Addison-Wesley

 Liskov B. (1976) Introduction to CLU. MIT Press

 Gamma E., Helm R., Johnson R., Vlissides J. (1994) Design

Patterns. Addison-Wesley

 Welch P. (2002) CSP Networking for Java. ICCS 2002

 Shankar A. (2003) Implementing Coroutines for .NET by

Wrapping the Unmanaged Fiber API. MSDN.net

 Engelschall R.S. (2000) Portable Multithreading. USENIX 2000

 Stackless Python (2008) www.stackless.com

http://www.stackless.com/
http://www.stackless.com/

Acknowledgments

 Lars Ivar Igesund

 Sean Kelly

 Kris Bell

 Daniel Keep

 Matt Watkins

 CK Shene

