
Get some Fibers in your diet!

Mikola Lysenko

University of Wisconsin-Madison,

Spatial Automation Lab

Outline

 Motivation

 What are Fibers?

 How to implement them?

 Why put them in the core?

A Common Problem

 Say you write a binary tree (ex. Parse tree)

 You want to provide some traversal operations

Post-Order, Pre-Order, In-Order

 Also want to support algorithms on top of

streams

Sum, sort, min, max, etc.

 How do we do this?

Iterators

 Most common solution in today's libraries

C++ STL [SGI]

Java's Standard Library [Sun]

 Nice interface for manipulating data

 Algorithms are (relatively) easy to write

Interfacing with Iterators

//Convert to prefix

foreach(x ; tree.preorder)

Stdout.formatln(x);

//Split stream and swap order

auto iter = tree.inorder;

for(int i=0; i<10; i++)

{

auto x = iter();

auto y = iter();

Stdout.formatln(y);

Stdout.formatln(x);

}

Iterator Control Flow

ALGORITHM

ALGORITHM

ALGORITHM

ITERATOR

ITERATOR

Implementing Iterators

 At best, it is tricky

Pre-Order/Post-Order require parent pointers

 At worst, it is really ugly

In-Order is tough

Can re-do traversal each iteration

 O(n^2) traversal cost

Can store extra stack of nodes, but gets ugly

 Clearly iterators have some issues!

Visitors

 Writing the implementation code for iterators is

a mess, surely there is a better way?

 Can use “iteration by first class functions”

 Also known as the Visitor pattern [GoF94]

 Same idea as foreach/opApply

Visitor In-Order Traversal

//In-order tree traversal
void traverse(void delegate(Node) visitor)
{

if(left !is null)
left.traverse(visitor);

visitor(this);

if(right !is null)
right.traverse(visitor);

}

Visitor Control Flow

TRAVERSAL

TRAVERSAL

TRAVERSAL

VISITOR

VISITOR

The Problem with Visitors

 The user code is not so simple

How do we do 'split'?

 Must translate everything to 'map/reduce'

 This requires complex state machines

 Complex Code => Buggy Code

An Overview

 Iterators:

Easy algorithms, Hard Traversals

Algorithm controls stack

 Visitors:

Hard algorithms, Easy Traversals

Traversal controls stack

 Can we have it both ways?

Yes!

The Solution: Fibers

 Give both sides a stack!

 Algorithm code looks like an iterator

 Traversal code looks like a visitor

 Result is a 'generator' [Liskov76]

 What does this look like?

Generator Example (hypothetical)

//In-order tree traversal
Node traverse()
{

if(left !is null)
left.traverse();

yield(this);

if(right !is null)
right.traverse();

}

//Split nodes
void split()
{

for(int i=0; i<100; i++)
{

auto a = traverse();
auto b = traverse();
Stdout.formatln(b);
Stdout.formatln(a);

}
}

Generator Control Flow

TRAVERSAL

TRAVERSAL

TRAVERSAL

ALGORITHM

ALGORITHM

ALGORITHM

Generators Continued

 Generators have all benefits of iterators/visitors

Trivial to turn any visitor/iterator into a generator

 “Can have our cake and eat it too.”

 How do we implement them?

Coroutines!

What is a Coroutine?

 COncurrent ROUTINES vs. SUBROUTINES

 Functions with independent stacks

 Example:

auto a = new Fiber({
Stdout.formatln(“a”);
Fiber.yield();
Stdout.formatln(“b”);

});

a.call();
Stdout.formatln(“c”);
a.call();

Will Print:
a
c
b

Coroutine Diagram

Sub A

Sub B

Sub C

Sub 1

Sub 2

Sub A

Sub B

Sub 1

Sub 2Sub C

Subroutines Coroutines

Previous Work: Coroutines

 Term due to [Knuth68]

Has been rediscovered many times

 Really old [Landin65]

Used on UNIVAC!!!

 Necessary for several paradigms

Actor Model Concurrency

Object Oriented Programming (SIMULA style)

Process Based Programming

Coroutine Awareness

 Uncommon feature

 Only 1 of top 10 TIOBE languages

Python (as of 2007)

 ...and even then limited users...

Only 7000 hits for 'stackless' out of 1.4 million

Python sources [Google Code Search]

 Must educate users!

Related D Projects

 StackThreads

Basis for Tango's Fibers

 Daniel Keep's Coroutine Library

 PyD – Kirk McDonald

Python bindings for D

 MiniD – Jarrett Billingsley

D-like scripting language with coroutine support

Further Uses for Coroutines

 Fibers provide a low-level mechanism for

implementing coroutine like behavior

 Also useful for simplifying state machines:

Network Servers

Game Logic

Operating Systems

Game AI Example

 Games are concurrent simulations

 Typically event driven

 FSM style code

Difficult to write, debug and maintain

 Game logic eats up >90% of game code

[based on Quake 2, Arianne RPG, experience]

 Who knows how much development time?

A Simple AI State Machine

START
PATROL

HP >= 10?

No

Yes
ATTACK

Enemy spotted!

Nothing to see

Victory?

HP < 10?

No

Yes

No

FLEE

Yes

HP >= 10?

No

Yes

State Machine
switch(state)
{ case PATROL:

foreach(n ; room.actors)
{ if(n.is_hostile(this))

{ enemy = n;
if(hp > 10)

state = ATTACK;
else

state = FLEE;
break;

}
}

break;

case ATTACK:
if(!n.alive)
{ state = PATROL;

break;
}
else if(hp >= 10)
{ attack(enemy);

break;
}
else

state = FLEE;

case FLEE:
if(hp >= 10)

state = PATROL;
else

flee();
break;

default: assert(false);
}

 Difficult control flow

Spaghetti code

 What about later

modifications?

Suppose you need to

put more states in?

Coroutine Version

while(true)
{

foreach(n ; room.actors)
{

if(n.is_hostile(this))
{

while(n.alive && hp >= 10)
attack(n);

while(hp < 10)
flee();

break;
}

}�
yield;

}

 Same result!

 State variables are

implicit

No enemy, state etc.

 Easy to add more

states

Game AI Conclusion

 Coroutines eliminate software engineering

problems

 Make agent behavior part of language

States + Switch Statements => Global vars / GOTO

Coroutines => Structured Programming

 Why haven't we been using this all along?!

D MUD: A Case Study

 Build a MUD using Fibers for controlling agents

Developed by Matt Watkins (fellow MTU alum)

 Written entirely in D

3k LoC

Full network support

GtkD GUI

 Developed in 1 week

 Very Flexible AI

How to support coroutines?

 Can coroutines be implemented in D without

modifying the language?

Let's not bother Walter if we don't have to

 If so, what are the minimal features we need?

Need to define interface

Implementation

Where they fit in the language/library environment

The Need for Fibers in Tango

 Runtime has to know about Fibers

Garbage collection

Threads

Exceptions

 Fiber implementation needs to know about

system specific data structures

 Conclusion: Must implement in core library!

The Big Picture

Process

Thread Thread Thread

Fiber Fiber

Fiber

Fiber

Fiber

Func Func

Func

Func

Func

Func

Fiber

Func

Func

Fiber

Func

The Fiber Interface

class Fiber

{

//Creates a Fiber

this(void delegate() func);

//Calls a Fiber

void call();

//Yields active Fiber

static void yield();

}

 Minimalist interface: 3 main functions

Implementation Requirements

 Fast

Switching contexts is going to happen a lot

 Low Overhead

Need to easily support thousands of processes

 Compatible with existing C/C++/D code

Must have a stack

 As portable as possible

Bad Idea #1: Threads

 This actually works and has been done:

See [Welch 2002] for a Java implementation

 Slow context switches

 Scalability Problems

Uses up scarce system resources (max 400 thread)

 Requires complex locking / synchronization

Bad Idea #2: Win32 Fibers

 Win2k/XP API for microthreads [Shankar2003]

 Not much faster than regular Threads

 Awkward Interface

Eats control of main thread, breaks GC, etc.

 Windows Only

 Officially Deprecated

The sigalt() Stack Trick

 Clever Unix hack [Engelschall 2000]

Uses sigalt to replace stack

Works in any C compiler

 In D, must port/reverse low-level syscalls &

structures structures

(jmbuf_t, signal, etc.)

 Does not work on Windows!!!!!

Inline Assembler

 High Performance

Only 10 instructions per context switch

 C calling convention is standardized across x86

This includes Win32, Linux and Intel Macs!

 D inline assembler syntax is also standard

Works on both GDC and DMD

 ASM is most portable!

Some Final Thoughts

 Exceptions are tricky

Linux uses vectored exceptions, (easy)

Win32 uses SEH, must reverse engineer API (hard)

 Page faults/stack overflow

Can potentially implement dynamic stack

 (in practice not yet…)

 Have to port for each platform

But then we’d have to do the same for
sigalt/ucontext

Conclusion

 Enable concurrent programming

 Necessary part of the Tango runtime

Major advantage over Phobos

 Tango implementation is close to optimal

Without direct language support

 Can be implemented efficiently within

Future Directions

 More advanced models of concurrency

Actors

Communicating Sequential Processes

Pi-Calculus

 Deeper language integration

Can theoretically improve performance with context

aware register allocation

 More awareness in programming communities

References
 Landin P. (1965) A Generalization of Jumps and Labels.

UNIVAC Systems Programming Research

 Knuth D.E. (1968) The Art of Computer Programming Vol. 1.

Addison-Wesley

 Liskov B. (1976) Introduction to CLU. MIT Press

 Gamma E., Helm R., Johnson R., Vlissides J. (1994) Design

Patterns. Addison-Wesley

 Welch P. (2002) CSP Networking for Java. ICCS 2002

 Shankar A. (2003) Implementing Coroutines for .NET by

Wrapping the Unmanaged Fiber API. MSDN.net

 Engelschall R.S. (2000) Portable Multithreading. USENIX 2000

 Stackless Python (2008) www.stackless.com

http://www.stackless.com/
http://www.stackless.com/

Acknowledgments

 Lars Ivar Igesund

 Sean Kelly

 Kris Bell

 Daniel Keep

 Matt Watkins

 CK Shene

