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Outline

 Motivation

 What are Fibers?

 How to implement them?

 Why put them in the core?



A Common Problem

 Say you write a binary tree (ex. Parse tree)

 You want to provide some traversal operations

Post-Order, Pre-Order, In-Order

 Also want to support algorithms on top of 

streams

Sum, sort, min, max, etc.

 How do we do this?



Iterators

 Most common solution in today's libraries

C++ STL [SGI]

Java's Standard Library [Sun]

 Nice interface for manipulating data

 Algorithms are (relatively) easy to write



Interfacing with Iterators

//Convert to prefix

foreach(x ; tree.preorder)

Stdout.formatln(x);

//Split stream and swap order

auto iter = tree.inorder;

for(int i=0; i<10; i++)

{

auto x = iter();

auto y = iter();

Stdout.formatln(y);

Stdout.formatln(x);

}



Iterator Control Flow
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Implementing Iterators

 At best, it is tricky

Pre-Order/Post-Order require parent pointers

 At worst, it is really ugly

In-Order is tough

Can re-do traversal each iteration 

 O(n^2) traversal cost

Can store extra stack of nodes, but gets ugly

 Clearly iterators have some issues!



Visitors

 Writing the implementation code for iterators is 

a mess, surely there is a better way?

 Can use “iteration by first class functions” 

 Also known as the Visitor pattern [GoF94]

 Same idea as foreach/opApply



Visitor In-Order Traversal

//In-order tree traversal
void traverse(void delegate(Node) visitor)
{

if(left !is null)
left.traverse(visitor);

visitor(this);

if(right !is null)
right.traverse(visitor);

}



Visitor Control Flow
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The Problem with Visitors

 The user code is not so simple

How do we do 'split'?

 Must translate everything to 'map/reduce'

 This requires complex state machines

 Complex Code => Buggy Code



An Overview

 Iterators:

Easy algorithms, Hard Traversals

Algorithm controls stack

 Visitors:

Hard algorithms, Easy Traversals

Traversal controls stack

 Can we have it both ways?

Yes!



The Solution: Fibers

 Give both sides a stack!

 Algorithm code looks like an iterator

 Traversal code looks like a visitor

 Result is a 'generator' [Liskov76]

 What does this look like?



Generator Example (hypothetical)

//In-order tree traversal
Node traverse()
{

if(left !is null)
left.traverse();

yield(this);

if(right !is null)
right.traverse();

}

//Split nodes
void split()
{

for(int i=0; i<100; i++)
{

auto a = traverse();
auto b = traverse();
Stdout.formatln(b);
Stdout.formatln(a);

}
}



Generator Control Flow
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Generators Continued

 Generators have all benefits of iterators/visitors

Trivial to turn any visitor/iterator into a generator

 “Can have our cake and eat it too.”

 How do we implement them?

Coroutines!



What is a Coroutine?

 COncurrent ROUTINES vs. SUBROUTINES

 Functions with independent stacks

 Example:

auto a = new Fiber({
Stdout.formatln(“a”);
Fiber.yield();
Stdout.formatln(“b”);

});

a.call();
Stdout.formatln(“c”);
a.call();

Will Print:
a
c
b



Coroutine Diagram
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Previous Work: Coroutines

 Term due to [Knuth68]

Has been rediscovered many times

 Really old [Landin65]

Used on UNIVAC!!!

 Necessary for several paradigms

Actor Model Concurrency

Object Oriented Programming (SIMULA style)

Process Based Programming



Coroutine Awareness

 Uncommon feature

 Only 1 of top 10 TIOBE languages

Python (as of 2007)

 ...and even then limited users...

Only 7000 hits for 'stackless' out of 1.4 million 

Python sources [Google Code Search]

 Must educate users!



Related D Projects

 StackThreads 

Basis for Tango's Fibers

 Daniel Keep's Coroutine Library

 PyD – Kirk McDonald

Python bindings for D

 MiniD – Jarrett Billingsley

D-like scripting language with coroutine support



Further Uses for Coroutines

 Fibers provide a low-level mechanism for 

implementing coroutine like behavior

 Also useful for simplifying state machines:

Network Servers

Game Logic

Operating Systems



Game AI Example

 Games are concurrent simulations

 Typically event driven

 FSM style code

Difficult to write, debug and maintain

 Game logic eats up >90% of game code 

[based on Quake 2, Arianne RPG, experience]

 Who knows how much development time?



A Simple AI State Machine

START
PATROL

HP >= 10?

No

Yes
ATTACK

Enemy spotted!

Nothing to see

Victory?

HP < 10?

No

Yes

No

FLEE

Yes

HP >= 10?

No

Yes



State Machine
switch(state)
{ case PATROL:

foreach(n ; room.actors)
{ if(n.is_hostile(this))

{ enemy = n;
if(hp > 10)

state = ATTACK;
else

state = FLEE;
break;

}
}

break;

case ATTACK:
if(!n.alive)
{ state = PATROL;

break;
}
else if(hp >= 10)
{ attack(enemy);

break;
}
else

state = FLEE;

case FLEE:
if(hp >= 10)

state = PATROL;
else

flee();
break;

default: assert(false);
}

 Difficult control flow

Spaghetti code

 What about later 

modifications?

Suppose you need to 

put more states in?



Coroutine Version

while(true)
{

foreach(n ; room.actors)
{

if(n.is_hostile(this))
{

while(n.alive && hp >= 10)
attack(n);

while(hp < 10)
flee();

break;
}

}�
yield;

}

 Same result!

 State variables are 

implicit

No enemy, state etc.

 Easy to add more 

states



Game AI Conclusion

 Coroutines eliminate software engineering 

problems

 Make agent behavior part of language

States + Switch Statements => Global vars / GOTO

Coroutines => Structured Programming

 Why haven't we been using this all along?!



D MUD: A Case Study

 Build a MUD using Fibers for controlling agents

Developed by Matt Watkins (fellow MTU alum)

 Written entirely in D

3k LoC

Full network support

GtkD GUI

 Developed in 1 week

 Very Flexible AI



How to support coroutines?

 Can coroutines be implemented in D without 

modifying the language?

Let's not bother Walter if we don't have to

 If so, what are the minimal features we need?

Need to define interface

Implementation

Where they fit in the language/library environment



The Need for Fibers in Tango

 Runtime has to know about Fibers

Garbage collection

Threads

Exceptions

 Fiber implementation needs to know about 

system specific data structures

 Conclusion: Must implement in core library!



The Big Picture
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The Fiber Interface

class Fiber

{

//Creates a Fiber

this(void delegate() func);

//Calls a Fiber

void call();

//Yields active Fiber

static void yield();

}

 Minimalist interface: 3 main functions



Implementation Requirements

 Fast

Switching contexts is going to happen a lot

 Low Overhead

Need to easily support thousands of processes

 Compatible with existing C/C++/D code

Must have a stack

 As portable as possible



Bad Idea #1: Threads

 This actually works and has been done:

See [Welch 2002] for a Java implementation

 Slow context switches

 Scalability Problems

Uses up scarce system resources (max 400 thread)

 Requires complex locking / synchronization



Bad Idea #2: Win32 Fibers

 Win2k/XP API for microthreads [Shankar2003]

 Not much faster than regular Threads

 Awkward Interface

Eats control of main thread, breaks GC, etc.

 Windows Only

 Officially Deprecated



The sigalt() Stack Trick

 Clever Unix hack [Engelschall 2000]

Uses sigalt to replace stack

Works in any C compiler

 In D, must port/reverse low-level syscalls & 

structures structures

(jmbuf_t, signal, etc.)

 Does not work on Windows!!!!!



Inline Assembler

 High Performance

Only 10 instructions per context switch

 C calling convention is standardized across x86

This includes Win32, Linux and Intel Macs!

 D inline assembler syntax is also standard

Works on both GDC and DMD

 ASM is most portable!



Some Final Thoughts

 Exceptions are tricky

Linux uses vectored exceptions, (easy)

Win32 uses SEH, must reverse engineer API (hard)

 Page faults/stack overflow

Can potentially implement dynamic stack

 (in practice not yet…)

 Have to port for each platform

But then we’d have to do the same for 
sigalt/ucontext



Conclusion

 Enable concurrent programming

 Necessary part of the Tango runtime

Major advantage over Phobos

 Tango implementation is close to optimal

Without direct language support

 Can be implemented efficiently within 



Future Directions

 More advanced models of concurrency

Actors

Communicating Sequential Processes

Pi-Calculus

 Deeper language integration

Can theoretically improve performance with context 

aware register allocation

 More awareness in programming communities
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