
… will save you from the darkness of DLL Hell

by Tomasz “h3r3tic” Stachowiak

 Everyone knows what they are…
 Widely useful in extensible applications
 Supported to varying degrees by OSes

 SO on Unix is quite nice

 DLL on Windows not so much

▪ Most problems discussed here are about Windows DLLs

 Many potential uses

 But the APIs are archaic

 API
 Very raw and low-level interfaces to dynamic

libs

 Nothing beyond simple symbol iteration

 Usually extern(C) or extern(Windows) must be
applied

 No easy way to access classes

 Memory “boundaries”

 Allocate GC memory on one side, store only on
the other -> unexpected garbage collections

 Allocate memory on one side, free on the other ->
crash

▪ Partially fixed with a shared GC handle

 Bloat
 All symbols have to be strong …

 Multiple runtimes

 Multiple globals

▪ Singletons that aren’t

 Cannot reference symbols from the host

▪ Cannot use the same ModuleInfo, TypeInfo or ClassInfo
▪ … more on that later

// Symbol - A name that represents a code, data or metadata address at runtime

Host Host

DLL SO / lib / obj

 Locking
 The DLL file is locked while the library is

loaded by the application

 May sound reasonable at first, but…

 Can’t recompile and quickly reload the DLL

 The host must resort to complex locking schemes

 Casting
 cast doesn’t work anymore…

 Seriously… cast(Object)dllObject executed inside
the host will yield null

 Apps have to cast though void* and do
classinfo.name – based type checking

▪ But classinfo.name doesn’t work well for class templates

 Exceptions don’t work across DLL
boundaries

 Exception hooks are not shared

 Even if it could, exception types are detected
though ClassInfo …

 Unloading

 The app doesn’t have any idea when it’s safe to
unload the DLL

 Unloading a library whose class instances still
exist will yield finalizer calls into nothingness

 Access Violations on seemingly innocent
pointer/reference access

 … But we can’t hold onto the lib for long, since it’s
huge and we need to unload it to unlock the file…

 Not available on Windows

 Security, please take out the *nix zealots

 DMD-Linux can’t do SO
 The GC can’t track dependencies in the kernel
 “DLL” has not enough ‘D’ in it, “SO” the

worse

 A heroic coder, Eric “pragma” Anderton went
into the deepest levels of DLL hell

 He was looking for a legendary artifact he
could use in the DSP project

 D Server Pages

 Mixed D/HTML pages compiled on-demand into
dynamic libs

 But the artifact could not be found in the
depths of DLL. Thus pragma crafted his own.

 Parsers for intermediate files
 Dynamic Modules
 Dynamic Libraries
 Dynamic Library Loaders
 Loader Registries
 Linkers

 Tools

 Parsers for intermediate files

 Only OMF complete at the moment

▪ Read: DMD-Win

 ELF and COFF partially done

 DynamicModule (and subclasses)

 Wraps data from a Binary

 Does relocation

 Interface for symbol, namespace and attrib access

 DynamicLibrary

 May contain multiple DynamicModules

 Can accelerate symbol lookup by creating a cross-
reference

 May implement custom symbol lookup
mechanisms

▪ PathLibrary

▪ LazyLibrary

 LoaderRegistry

 Matches loaders for specific formats to binary files

 DefaultRegistry

 Linker

 Takes multiple libraries / modules and binds them
together

 Runs module ctors

 Will turn unresolved libs into working binary code

 Notice lack of extern(C/Windows)
 Plugins must be built with –g, host with –L/M
 Symbol sharing is being used already
 “unresolved ModuleInfo.__vtbl” in the plugin

auto linker = new Linker(new DefaultRegistry);
linker.loadAndRegister("Host.map");
auto plugin = linker.loadAndLink("Plugin.obj");
auto helloWorld = plugin.getDExport!(char[] function(),"Plugin.helloWorld")();
Stdout(helloWorld()).newline;

char[] helloWorld() {
return "Hello from DDL";

}

 That was pretty trivial, but DDL has worked
on a larger scale…

 … in Deadlock

 Plugins

▪ Acquisition of subclasses

 Rendering kernels

▪ Runtime compilation and loading

 Stable …

 … but required a messy build system

 insitu

 Wraps .map files in an optimized, portable format

 bless

 May contain any DDL-loadable binaries

 Additionally: attributes

▪ e.g., version info

 ddlinfo

 Can tell you everything

> ddlinfo Plugin.obj

filename: 'Plugin.obj'
type: 'OMF'
attributes:
omf.filename - Plugin.obj

Modules (1):

Plugin.d

Symbols (3):
weak char[] Plugin.helloWorld()
unresolved ModuleInfo.__vtbl
strong Plugin.__ModuleInfo

 TangoTrace provides stack traces upon program
crashes
 Forked off the Phobos backtrace hack

by Shinichiro Hamaji

 DDL + TangoTrace = stack traces within dynamic
libs
 Currently only in my experimental DDL branch

 Demo!

 Loading of D symbols via simple function
templates

 Class iteration, constructor acquisition
 foreach (cl; dynamicLib.getSubclasses!(Plugin))

 cl.newObject(foo, bar, mudkip);

 Libraries can have unresolved symbols
 No more bloat

 Global sharing
 Singletons that truly are

 Casting across binary boundaries works again

 It has to, ClassInfo is shared

 Exception handling works too

 The light… it’s almost blinding me…

 Libraries can be re-compiled in-place

 No file locking

 Unloading can be left to the GC

 Modules will not be unloaded while something is
referencing the code within them

 Yet, manual unloading is possible as well

 Custom linker
 Flexible library “providers”
 On-demand compilation

 Object (.obj) and dependency caching

 Dependency management

 User-defined link order
 Config file – driven

 Extension over DDL’s binary Loaders:
 Provider

▪ Loads and returns a DynamicLibrary given its path

 ProviderRegistry
▪ Matches Providers by rules

▪ type plugin regex plugin/.*

 ObjProvider
 Simply uses DDL’s LoaderRegistry in order to load

standard DDL files (.map, .obj, .lib, .ddl, .situ, …)

 DProvider

 Compiles D modules with DMD

 Uses Bu[il]d’s –uses option to find dependencies
between modules

 Caches Object files and dependency info

▪ Compares file times

▪ Future work: store options used to compile as well

 Returns one DynamicLibrary per module

 LazyLinker

 Resolves symbols in the user-defined order

 Doesn’t load libraries unless necessary

 Recognizes different types of libraries

▪ Each may define its own link order

▪ Some plugins should not get symbols from other plugins
▪ Might result in unloading problems

 Can be told to unload libraries

import xf.linker.DefaultLinker;
import tango.io.Stdout;

void main() {
auto linker = createDefaultLinker(`Host.link`);
auto plugin = linker.load("Plugin.d", ".");
auto helloWorld = plugin.getDExport!(

char[]
function(),"Plugin.helloWorld")();

Stdout(helloWorld()).newline;
}

module Plugin;

char[] helloWorld() {
return "Hello from DDL";

}

std-include import

type host regex .*\.map
type plugin regex .*\.d

order host self
order plugin host self

load Host.map .

 Host
 Creates an OpenGL window

 Calls the plugin’s rendering function in a loop

 Checks the plugin’s source file for modifications
▪ Unloads, recompiles and reloads the plugin on the fly

 Leaves the old plugin for the GC

 Plugin
 Renders a simple scene to an OpenGL texture using

ray tracing

 Rendering quarks managed by the same
mechanism

 We don’t want symbol sharing between
quarks

 Custom link order does the trick

 Quarks may pull symbols from plugins

 Worst case – reload all quarks

 Everything pulls symbols from the host

 D code plus extra constructs

 preprocessing

 D code

 compilation

 Obj files

 loading

 Lazy linking

 ELF support

 Read: Unix

 Linker enhancements

 Hopefully influenced by LazyLinker

 Reflection Lib

 Access classes / methods / fields within the libs
and the host app

 Runtime High-Level Assembler

 Create new functions, objects and data at runtime

 http://dsource.org/projects/ddl/
 http://dsource.org/forums/viewforum.php?f=70
 http://team0xf.com:1024/linker
 http://team0xf.com:1024/ext -> ddl

 Eric “pragma” Anderton

 Still alive!

 Reachable!

 eric.t.anderton@gmail.com

http://dsource.org/projects/ddl/
http://dsource.org/forums/viewforum.php?f=70
http://team0xf.com:1024/linker
http://team0xf.com:1024/ext

Questions ?

