DDL

... will save you from the darkness of DLL Hell

by Tomasz “h3r3tic” Stachowiak

Dynamic Link Libraries

Everyone knows what they are...
Widely useful in extensible applications
Supported to varying degrees by OSes
SO on Unix is quite nice
DLL on Windows not so much

Most problems discussed here are about Windows DLLs
Many potential uses

But the APIs are archaic

DLL Hell

D’s own DLL hell - circle o

API
Very raw and low-level interfaces to dynamic
libs
Nothing beyond simple symbol iteration
Usually extern(C) or extern(Windows) must be
applied
No easy way to access classes

D’s own DLL hell —circle 1

Memory "boundaries”

Allocate GC memory on one side, store only on
the other -> unexpected garbage collections

Allocate memory on one side, free on the other ->
crash
Partially fixed with a shared GC handle

D’s own DLL hell —circle 2

Bloat
All symbols have to be strong ...

Multiple runtimes

Multiple globals

Singletons that aren't

Cannot reference symbols from the host

Cannot use the same Modulelnfo, Typelnfo or Classinfo
... more on that later

/| Symbol - A name that represents a code, data or metadata address at runtime

Strong vs weak/unresolved symbols

SO /lib /[obj

i
3

Host Host

D’s own DLL hell —circle 3

Locking
The DLL file is locked while the library is
loaded by the application

May sound reasonable at first, but...

Can’t recompile and quickly reload the DLL

The host must resort to complex locking schemes

D’s own DLL hell -circle 4

Casting
cast doesn’t work anymore...

Seriously... cast(Object)dllObject executed inside
the host will yield null

Apps have to cast though void* and do
classinfo.name — based type checking

But classinfo.name doesn’t work well for class templates

D’s own DLL hell —circle 5

Exceptions don't work across DLL
boundaries

Exception hooks are not shared
Even if it could, exception types are detected

though ClassInfo ... @3

D’s own DLL hell - circle 6

Unloading

The app doesn’t have any idea when it's safe to
unload the DLL

Unloading a library whose class instances still
exist will yield finalizer calls into nothingness

Access Violations on seemingly innocent
pointer/reference access

... But we can't hold onto the lib for long, since it's
huge and we need to unload it to unlock the file...

Problems with SO

Not available on Windows
Security, please take out the *nix zealots

DMD-Linux can‘tdo SO
The GC can‘t track dependencies in the kernel
"DLL" has not enough ‘D’ init, "SO" the

WOrse

The origins of DDL

A heroic coder, Eric "pragma” Anderton went
into the deepest levels of DLL hell

He was looking for a legendary artifact he
could use in the DSP project

D Server Pages

Mixed D/HTML pages compiled on-demand into
dynamic libs

But the artifact could not be found in the
depths of DLL. Thus pragma crafted his own.

DDL - overview

Parsers for intermediate files
Dynamic Modules

Dynamic Libraries

Dynamic Library Loaders
_oader Regjistries

_inkers

Tools

D Dynamic Libraries - structure

Parsers for intermediate files
Only OMF complete at the moment

Read: DMD-Win DDL ;_.‘L

ELF and COFF partially done D Dynamic Libraries

DynamicModule (and subclasses)
Wraps data from a Binary
Does relocation
Interface for symbol, namespace and attrib access

D Dynamic Libraries — structure (2)

DynamicLibrary
May contain multiple DynamicModules

Can accelerate symbol lookup by creating a cross-
reference

May implement custom symbol lookup
mechanisms

PathLibrary
LazyLibrary

D Dynamic Libraries — structure (3)

LoaderRegistry
Matches loaders for specific formats to binary files
DefaultRegistry

Linker

Takes multiple libraries / modules and binds them
together

Runs module ctors
Will turn unresolved libs into working binary code

DDL - simple demo

char[] helloWorld() §
return "Hello from DDL";

5

auto linker = new Linker(new DefaultRegistry);
linker.loadAndRegister("Host.map");
auto plugin = linker.load AndLink("Plugin.obj");

auto helloWorld = plugin.getDExport!(char[] function(),"Plugin.helloWorld")();
Stdout(helloWorld()).newline;

Notice lack of extern(C/Windows)
Plugins must be built with —g, host with —L/M
Symbol sharing is being used already

“unresolved Modulelnfo.__vtbl" in the plugin

Can it really save us from

damnation?

That was pretty trivial, but DDL has worked
on a larger scale...
.. in Deadlock
Plugins

Acquisition of subclasses

Rendering kernels
Runtime compilation and loading

Stable ...
.. but required a messy build system

Does this hero work alone?

Insitu
Wraps .map files in an optimized, portable format
bless

May contain any DDL-loadable binaries
Additionally: attributes

e.g., version info

ddlinfo
Can tell you everything

ddlinfo

> ddlinfo Plugin.obj

filename: 'Plugin.obj'
type: 'OMF’

attributes:

omf.filename - Plugin.obj

Modules (1):
Plugin.d

Symbols (3):

weak char[] Plugin.helloWorld()
unresolved ModuleInfo._ vtbhl
strong Plugin.__ModuleInfo

The light 1s getting brighter...

TangoTrace provides stack traces upon program
crashes

Forked off the Phobos backtrace hack
by Shinichiro Hamaji

DDL + TangoTrace = stack traces within dynamic
libs

Currently only in my experimental DDL branch

Demo!

DDL Heaven

DDL heaven

Loading of D symbols via simple function
templates
Class iteration, constructor acquisition

foreach (cl; dynamicLib.getSubclasses!(Plugin))
cl.newObject(foo, bar, mudkip);

Libraries can have unresolved symbols
No more bloat

Global sharing
Singletons that truly are

DDL heaven (2)

Casting across binary boundaries works again

It has to, ClassInfo is shared .
Exception handling works too OAQDM

9)

_J

The light... it's almost blinding me...

DDL heaven (7)

Libraries can be re-compiled in-place
No file locking

Unloading can be left to the GC

Modules will not be unloaded while something is
referencing the code within them

Yet, manual unloading is possible as well

My experimental branch

Custom linker
Flexible library “providers”
On-demand compilation

Object (.obj) and dependency caching

Dependency management
User-defined link order
Config file — driven

Experimental architecture

Extension over DDL's binary Loaders:
Provider
Loads and returns a DynamicLibrary given its path
ProviderRegistry
Matches Providers by rules
type plugin regex plugin/.*

ObjProvider

Simply uses DDL's LoaderRegistry in order to load
standard DDL files (.map, .obj, .lib, .ddl, .sity, ...)

Experimental architecture (2)

DProvider
Compiles D modules with DMD

Uses Bulil]ld's —uses option to find dependencies
between modules

Caches Obiject files and dependency info
Compares file times
Future work: store options used to compile as well

Returns one DynamicLibrary per module

Experimental architecture (3)

LazyLinker
Resolves symbols in the user-defined order
Doesn’t load libraries unless necessary

Recognizes different types of libraries
Each may define its own link order

Some plugins should not get symbols from other plugins
Might result in unloading problems

Can be told to unload libraries

| have no idea what you're talking about... so
here's a bunny with a pancake on its head

4 - 1 >
d 287 e
™,

Z

- .\I. -

) Y
2

(.

s ."’ .

Simple example

import xf.linker.DefaultLinker;
import tango.io.Stdout;

void main() §
auto linker = createDefaultLinker(Host.link");
auto plugin = linker.load("Plugin.d", ".");
auto helloWorld = plugin.getDExport!(
char(]
function(),"Plugin.helloWorld")();

std-include
Stdout(helloWorld()).newline;
} type host
type plugin
module Plugin;
order host
char[] helloWorld() § order plugin

return "Hello from DDL";
} load Host.map

import

regex *\.map
regex *\.d
self

host self

More interesting example

Host
Creates an OpenGL window
Calls the plugin’s rendering function in a loop

Checks the plugin’s source file for modifications
Unloads, recompiles and reloads the plugin on the fly

Leaves the old plugin for the GC

Plugin
Renders a simple scene to an OpenGL texture using
ray tracing

The linker inside Nucleus

Rendering quarks managed by the same

mechanism

We don’t want symbol sharing between

quarks

Custom link orc
Quarks may pu

er does the trick

| sym

Worst case —re

oad al

Everything pulls sym

ools from plugins
quarks

nols from the host

Nucleus’ linking mechanism

D code plus extra constructs
preprocessing

D code
compilation

Obj files
loading

Lazy linking

The future of DDL

ELF support

Read: Unix
Linker enhancements

Hopefully influenced by LazyLinker
Reflection Lib

Access classes | methods / fields within the libs
and the host app

Runtime High-Level Assembler
Create new functions, objects and data at runtime

References

nttp://dsource.org/projects/ddl/
nttp://dsource.org/forums/viewforum.php?f=70
nttp://teamoxf.com:1024/linker
nttp://teamoxf.com:1024/ext -> ddl

Eric "“pragma” Anderton
Still alive!
Reachable!

eric.t.anderton@gmail.com

http://dsource.org/projects/ddl/
http://dsource.org/forums/viewforum.php?f=70
http://team0xf.com:1024/linker
http://team0xf.com:1024/ext

Thanks for listening!

Questions 7
' I

i L]

J'|III-

