
… will save you from the darkness of DLL Hell

by Tomasz “h3r3tic” Stachowiak

 Everyone knows what they are…
 Widely useful in extensible applications
 Supported to varying degrees by OSes

 SO on Unix is quite nice

 DLL on Windows not so much

▪ Most problems discussed here are about Windows DLLs

 Many potential uses

 But the APIs are archaic

 API
 Very raw and low-level interfaces to dynamic

libs

 Nothing beyond simple symbol iteration

 Usually extern(C) or extern(Windows) must be
applied

 No easy way to access classes

 Memory “boundaries”

 Allocate GC memory on one side, store only on
the other -> unexpected garbage collections

 Allocate memory on one side, free on the other ->
crash

▪ Partially fixed with a shared GC handle

 Bloat
 All symbols have to be strong …

 Multiple runtimes

 Multiple globals

▪ Singletons that aren’t

 Cannot reference symbols from the host

▪ Cannot use the same ModuleInfo, TypeInfo or ClassInfo
▪ … more on that later

// Symbol - A name that represents a code, data or metadata address at runtime

Host Host

DLL SO / lib / obj

 Locking
 The DLL file is locked while the library is

loaded by the application

 May sound reasonable at first, but…

 Can’t recompile and quickly reload the DLL

 The host must resort to complex locking schemes

 Casting
 cast doesn’t work anymore…

 Seriously… cast(Object)dllObject executed inside
the host will yield null

 Apps have to cast though void* and do
classinfo.name – based type checking

▪ But classinfo.name doesn’t work well for class templates

 Exceptions don’t work across DLL
boundaries

 Exception hooks are not shared

 Even if it could, exception types are detected
though ClassInfo …

 Unloading

 The app doesn’t have any idea when it’s safe to
unload the DLL

 Unloading a library whose class instances still
exist will yield finalizer calls into nothingness

 Access Violations on seemingly innocent
pointer/reference access

 … But we can’t hold onto the lib for long, since it’s
huge and we need to unload it to unlock the file…

 Not available on Windows

 Security, please take out the *nix zealots

 DMD-Linux can’t do SO
 The GC can’t track dependencies in the kernel
 “DLL” has not enough ‘D’ in it, “SO” the

worse

 A heroic coder, Eric “pragma” Anderton went
into the deepest levels of DLL hell

 He was looking for a legendary artifact he
could use in the DSP project

 D Server Pages

 Mixed D/HTML pages compiled on-demand into
dynamic libs

 But the artifact could not be found in the
depths of DLL. Thus pragma crafted his own.

 Parsers for intermediate files
 Dynamic Modules
 Dynamic Libraries
 Dynamic Library Loaders
 Loader Registries
 Linkers

 Tools

 Parsers for intermediate files

 Only OMF complete at the moment

▪ Read: DMD-Win

 ELF and COFF partially done

 DynamicModule (and subclasses)

 Wraps data from a Binary

 Does relocation

 Interface for symbol, namespace and attrib access

 DynamicLibrary

 May contain multiple DynamicModules

 Can accelerate symbol lookup by creating a cross-
reference

 May implement custom symbol lookup
mechanisms

▪ PathLibrary

▪ LazyLibrary

 LoaderRegistry

 Matches loaders for specific formats to binary files

 DefaultRegistry

 Linker

 Takes multiple libraries / modules and binds them
together

 Runs module ctors

 Will turn unresolved libs into working binary code

 Notice lack of extern(C/Windows)
 Plugins must be built with –g, host with –L/M
 Symbol sharing is being used already
 “unresolved ModuleInfo.__vtbl” in the plugin

auto linker = new Linker(new DefaultRegistry);
linker.loadAndRegister("Host.map");
auto plugin = linker.loadAndLink("Plugin.obj");
auto helloWorld = plugin.getDExport!(char[] function(),"Plugin.helloWorld")();
Stdout(helloWorld()).newline;

char[] helloWorld() {
return "Hello from DDL";

}

 That was pretty trivial, but DDL has worked
on a larger scale…

 … in Deadlock

 Plugins

▪ Acquisition of subclasses

 Rendering kernels

▪ Runtime compilation and loading

 Stable …

 … but required a messy build system

 insitu

 Wraps .map files in an optimized, portable format

 bless

 May contain any DDL-loadable binaries

 Additionally: attributes

▪ e.g., version info

 ddlinfo

 Can tell you everything

> ddlinfo Plugin.obj

filename: 'Plugin.obj'
type: 'OMF'
attributes:
omf.filename - Plugin.obj

Modules (1):

Plugin.d

Symbols (3):
weak char[] Plugin.helloWorld()
unresolved ModuleInfo.__vtbl
strong Plugin.__ModuleInfo

 TangoTrace provides stack traces upon program
crashes
 Forked off the Phobos backtrace hack

by Shinichiro Hamaji

 DDL + TangoTrace = stack traces within dynamic
libs
 Currently only in my experimental DDL branch

 Demo!

 Loading of D symbols via simple function
templates

 Class iteration, constructor acquisition
 foreach (cl; dynamicLib.getSubclasses!(Plugin))

 cl.newObject(foo, bar, mudkip);

 Libraries can have unresolved symbols
 No more bloat

 Global sharing
 Singletons that truly are

 Casting across binary boundaries works again

 It has to, ClassInfo is shared

 Exception handling works too

 The light… it’s almost blinding me…

 Libraries can be re-compiled in-place

 No file locking

 Unloading can be left to the GC

 Modules will not be unloaded while something is
referencing the code within them

 Yet, manual unloading is possible as well

 Custom linker
 Flexible library “providers”
 On-demand compilation

 Object (.obj) and dependency caching

 Dependency management

 User-defined link order
 Config file – driven

 Extension over DDL’s binary Loaders:
 Provider

▪ Loads and returns a DynamicLibrary given its path

 ProviderRegistry
▪ Matches Providers by rules

▪ type plugin regex plugin/.*

 ObjProvider
 Simply uses DDL’s LoaderRegistry in order to load

standard DDL files (.map, .obj, .lib, .ddl, .situ, …)

 DProvider

 Compiles D modules with DMD

 Uses Bu[il]d’s –uses option to find dependencies
between modules

 Caches Object files and dependency info

▪ Compares file times

▪ Future work: store options used to compile as well

 Returns one DynamicLibrary per module

 LazyLinker

 Resolves symbols in the user-defined order

 Doesn’t load libraries unless necessary

 Recognizes different types of libraries

▪ Each may define its own link order

▪ Some plugins should not get symbols from other plugins
▪ Might result in unloading problems

 Can be told to unload libraries

import xf.linker.DefaultLinker;
import tango.io.Stdout;

void main() {
auto linker = createDefaultLinker(`Host.link`);
auto plugin = linker.load("Plugin.d", ".");
auto helloWorld = plugin.getDExport!(

char[]
function(),"Plugin.helloWorld")();

Stdout(helloWorld()).newline;
}

module Plugin;

char[] helloWorld() {
return "Hello from DDL";

}

std-include import

type host regex .*\.map
type plugin regex .*\.d

order host self
order plugin host self

load Host.map .

 Host
 Creates an OpenGL window

 Calls the plugin’s rendering function in a loop

 Checks the plugin’s source file for modifications
▪ Unloads, recompiles and reloads the plugin on the fly

 Leaves the old plugin for the GC

 Plugin
 Renders a simple scene to an OpenGL texture using

ray tracing

 Rendering quarks managed by the same
mechanism

 We don’t want symbol sharing between
quarks

 Custom link order does the trick

 Quarks may pull symbols from plugins

 Worst case – reload all quarks

 Everything pulls symbols from the host

 D code plus extra constructs

 preprocessing

 D code

 compilation

 Obj files

 loading

 Lazy linking

 ELF support

 Read: Unix

 Linker enhancements

 Hopefully influenced by LazyLinker

 Reflection Lib

 Access classes / methods / fields within the libs
and the host app

 Runtime High-Level Assembler

 Create new functions, objects and data at runtime

 http://dsource.org/projects/ddl/
 http://dsource.org/forums/viewforum.php?f=70
 http://team0xf.com:1024/linker
 http://team0xf.com:1024/ext -> ddl

 Eric “pragma” Anderton

 Still alive!

 Reachable!

 eric.t.anderton@gmail.com

http://dsource.org/projects/ddl/
http://dsource.org/forums/viewforum.php?f=70
http://team0xf.com:1024/linker
http://team0xf.com:1024/ext

Questions ?

