
Filters and Tasks in Croquet

David A. Smith
Croquet Project

104 So. Tamilynn Cr.
Cary NC, 27513 USA

davidasmith@bellsouth.net

Andreas Raab
Hewlett Packard Laboratories

1501 Page Mill Rd.
Palo Alto, CA 94304 USA

andreas.raab@hp.com

Yoshiki Ohshima
Twin Sun, Inc.

360 N. Sepulveda Blvd. S. 1040
El Segundo, CA 90245 USA

yoshiki@squeakland.org

David P. Reed
HP Fellow

Hewlett Packard Laboratories
One Cambridge Center, 12th floor

Cambridge, MA 02139 USA
dpreed@reed.com

Alan Kay
HP Senior Fellow
Hewlett Packard

1209 Grand Central Ave.
Glendale, CA 91201 USA

alan.kay@hp.com

Abstract

Croquet [11,12] is a collaborative 3D platform that
allows users to work together to create and share
ideas. From the beginning we have worked to ensure
that the Croquet interface remain as modeless as
possible. This allows the user to be most productive
with the fewest errors. This is even more important in
a collaborative 3D environment. The modeless nature
of Croquet has allowed us a great deal of flexibility in
how the user is able to both move around the
environment while easily manipulating it. Certain
kinds of applications, however, require some degree of
intelligent pseudo-modal behavior. An example is
using a CAD system to create new objects. This
process forces the user into an object-
creation/modification "mode" that can take control of
the interface for a short duration. E.g. we might be in
the "line drawing" mode. Clearly this is not a problem,
but we also need to ensure that we do not get trapped
by the CAD application itself. In a sense, it should
have the same degree of "mode" as drawing the line.
Our approach to ensuring that Croquet remains
modeless is to utilize filter portals that modify both the
views of the data in the 3D space and the actions that
the user makes through these filter portals.

We are developing an architecture that
incorporates the ideas of filters and controls for 3D to
solve this problem. Our model uses the Croquet 2D
portals [11] as view filters that can modify the nature
of the content displayed on the other side of the filter.

It also uses these view portals to act to translate the
users actions and maintain the editing mode. This
allows "through the 3D window" editing of shared
content.

Another problem is that this collaborative sharing
of interfaces tends to be complex. A new approach to
this, an extension of the model-view-controller
approach pioneered in Smalltalk [3,4,8], is described.
This extension of MVC to collaborative 3D user
interface design consists of interactors, tasks, and
replicants. This architecture solves the collaboration
UI problem in a way that makes it quite easy for the
designer to create robust multi-user applications
without having to manage the divergent states and
goals of each user. The programmer can focus on the
design of an extensible system as if he is dealing with a
single user.

1. Introduction

As we begin to develop larger scale collaborative
applications in Croquet, we find that traditional
approaches to design, especially of the user interface,
often do not scale to the needs of collaborative 3D
environments. The two areas of particular interest are
that Croquet has been designed from the start as a
modeless environment, which we wish to maintain, and
all actions are performed in a shared environment,
which means that the interface is also designed to be
shared to a large extent.

As an example and test bed for how we see these
applications working, we are developing a
collaborative CAD system in Croquet called
"Wicket"[14] that is powerful, but extremely easy to
use. This CAD system is the first major application in
Croquet in that it has a significant degree of
functionality, but is designed to work in a relatively
modeless way. The Wicket interface is designed around
a 2D portal acting as both a visual filter that can
enhance and modify the image behind it, and can act as
an action translator that both maintains the ongoing
state of the user actions and can modify the meaning of
the pointer as the user moves it through the portal. This
translation of the users actions, and maintaining these
actions is called a task.

Another aspect of this interface is that though these
editing portals may share identical capabilities, they do
not necessarily share the same local states. Each user
may be focused on a different aspect of the design
process. Their own states may not be replicated in the
shared worlds, though their resulting tasks and the
replicated target objects certainly are. This allows the
user interface designer to focus on developing a rich
capability for a single user, but still allowing this same
system to be simultaneously used by multiple users.

For the user, this "through the window" editing
capability gives him an easily accessible semi-modal
interface that is easily manipulated and positioned, that
is easy to utilize in a semi-modeless way, and is easy to
disengage from and remove.

For the developer, this editing capability easily
extends the functionality of the shared environment
without having to add these capabilities to the
environment itself. It also allows the developer to focus
on designing for a single user and makes it quite easy
to dynamically extend the capabilities of the system.

Another simple example of this kind of behavior is
the 3D window in Croquet [11]. The buttons and
frame of the window respond when the user drags his
pointer over them with the button up, but this action is
not replicated. Only the local user sees this change in
how the window looks. However, any significant action
such as dragging, resizing, or rotating the window are
replicated. What is more, these actions are orthogonal,
in that any number of users can modify the state of the
window in this way without any problem. This means
that the designer of the window system need not be
concerned about managing multiple users. This is done
automatically simply by the nature of the design. In this
case, the tasks are simply messages.

In a sense, the window was an accidental success in
this regard. The early architecture of Croquet allowed
us to experiment with asymmetrical systems like this,
which in turn lead to the realization that there was a
need to formalize this approach as a more robust
collaboration framework becomes available. This

formalization is called an interactor-task-replicant
architecture. It is somewhat similar to the model-view-
controller architecture used in Smalltalk.

2. Related Work

Perhaps Engelbart showed one of the first
demonstrations of windowed filtering of data in 1968
[2]. More generalized versions of this idea appeared in
the work on Sutherland's head mounted display [16]
and the Flex Machine. [5]

A more formalized description of filters and task
translators applied to 2D editing was developed at
Xerox PARC by Bier et.al. [1] They named these
models of interaction Toolglasses and Magic Lenses.
The Toolglass widget is an interface tool that appears
as a transparent sheet of glass over the users work area.
It translates the users actions when he manipulates his
cursor over it, essentially turning the cursor into a
dynamic tool that is applied to the content below the
Toolglass. Magic Lenses are visual filters that can
change the presentation of the object to reveal hidden
information, or enhance or modify the underlying
object. A virtual magnifying glass is an example of this
kind of interface. The actual magnified image is an
example of a Magic Lens, while the ability to properly
interact with the magnified object with the appropriate
scaling of the cursor interactions is an example of a
Toolglass.

This work on Magic Lenses was extended into 3D
by Viega et al.[15]. They modified the idea to include
bounding volumes as well as flat planes. These
bounding boxes are used to render the information
contained inside them in a different way, just as the
image rendered through the Magic Lens can be
different. Stoakley et al's [14] "world in miniature" are
also examples of this kind of lens. Ropinski et al [9]
extended the 3D Magic Glass work to enable arbitrary
3D convex shapes as a bounding space.

We are extending the concept of view filters like 3D
Magic Lenses to enable their use in a collaborative
space and we are adding the concept of task translators
like 3D Toolglasses in a way that makes this approach
a central part of a 3D application in Croquet. This
requires a new approach to how we manage the
individual users input and how it is applied to the
resulting replicated model. We refer to this architecture
as interactor-task-replicant.

This interactor-tasks-replicant approach is similar in
many respects to the model-view-controller or MVC
architecture originally pioneered at Xerox PARC in
Smalltalk [3,4,8]. The MVC breaks an application into
three different parts. The model is basically a smart
database containing the core data of the application.
The view is a particular interpretation of this data. The

controller is an object that interprets the users actions
to modify the model. In this approach, there is only one
model, but there can be any number of views and
controllers.

The actual invention of modeless interface design
with its modern meaning was also done at Xerox
PARC. This definition was that a mode was something
you had to issue a command to get out of to do what
you wanted to do, "modeless" meant you could always
do the next thing you wanted to do regardless of the
state of the system. For example, windows were
"modeless" even though they gave you a kind of
pseudo-mode, because you could always go to anything
else on the screen and issue a new command (and the
system would automatically clean up after you). The
Smalltalk style of text-editing was "modeless", because
you weren't trapped in an "insert" or "replace" - the
insight was that selecting between characters would
always give you a "gap" of some size, from 0 to n, that
would be "replaced" by type-in followed by the cursor
- hence "modeless".[5]

3. Wicket

Wicket is the exemplar collaborative CAD
application we are building in Croquet to test out the
ideas of the interactors-tasks-replicants. Many of the
ideas behind "Wicket" came from earlier work on
Virtus Walkthrough[10], as well as more recent efforts
inside of Croquet itself[13]. The first attempts at
Wicket utilized some simple drawing and extrusion
capabilities, but this required an intelligent object
already in the space, and forced all users of the system
into the same mode of interaction. The advantage was
that this mode was localized to that object, but we were
extremely limited in the capabilities and extensibility of
these tools.

Further, it was difficult to create a simple and
accessible framework for changing modes to access
additional toolsets. We certainly did not want to have
an entire editing suite as part of the users main
interface everywhere he went. Nor did we want to
complicate the object itself with a complex editing
framework. What we needed was a dynamically
extensible toolkit for creation and editing of these
objects that would allow for any level of complex
interactions without overcomplicating the rest of the
system. Further, we wanted to easily be able to "put
away" the editing mode. Finally, we needed a way of
visually packaging these tools so that the user would
immediately recognize their role and would be able to
utilize them without having to memorize how they
would be used. In short, we needed the equivalent of a
discrete application inside of a seamless shared 3D
environment.

Figure 1. A typical portal.

We will use the Wicket CAD system to ground this
discussion in an actual user interface problem, and how
this approach solves it.

4. Wicket Overview

Wicket is a modified Croquet portal filter that is
carried inside of a 3D window. This portal displays an
enhanced view of the content on the other side. The
user can select an action button from a palette overlaid
on the window that determines the task that is executed
when the user clicks the pointer through the window.
The user can see and interact with the replicated editing
surfaces and objects that are created because of these
actions through the portal filter, though they are not
visible outside of this view. Of course, the user can
easily carry around the filter, even with it filling the
entire screen, allowing him to reposition the interface
as necessary. Here, the buttons and the portal filter are
interactors - objects that the user can see and interact
with, but which do where the state of these objects is
not replicated. The actions are tasks -replicated objects
that have a relatively short life span that are used to
communicate and modify other replicated objects. The
replicated surfaces and objects that are created in the
space are replicants.

5. Filters

The development of the 3D portal in Croquet has
proven to be extremely useful. Originally, it was
intended to act as a gateway between environments.
Croquet allows fully dynamic connections between
worlds via spatial portals. Portals are simply a 3D
spatial connection between spaces. If you place one
portal in one space, and a second portal in a second

space and link them, then you can view from one space
into the other.

Figure 1 shows an example of a typical portal
linking one space to another. Note that users actions
are directly transferred to the other space with no
translation of the actions into tasks in this case. The
user can pick and move remote objects as if they are
local.

We discussed the idea of utilizing the portals as
view filters, and the Japanese National Institute of with
one of us, implemented a system where notations on
3D models of archeological artifacts can either be
made visible or removed when viewed through the
portal filter. This was essentially a 3D Magic Lens
described above.

Figure 2. A portal as information filter.

Figure 2 is an architectural artifact that has a note
attached to it. In this case, the filter acts to turn off
unwanted annotations, though it can easily be used to
add them.

Other examples are displaying the environment in
wireframe mode. A global render flag is set when we
traverse the portal, which forces everything through it
to render as a wireframe image.

Figure 3. A filter Displays a wire frame View

The filter in Figure 3 displays the content through
the portal as a wireframe image.

These filters are also composable. In this example,
when two wireframe portals co-exist in the same space,
the first wireframe portal will render the world as a
wireframe image, where the second one, when viewed
through the first, will render it as a normal image again.

Figure 4. A view with composed two filters.

In Figure 4, we see two wireframe portals, one in
front of the other. Notice that when viewing the second
portal through the first, it changes back to normal
rendering.

Croquet filters are created by subclassing the portal
class. The portal can modify the way the content on the
other side is rendered, or it can set a flag that is used to
turn objects rendering on and off. It can also be used to
scale object, as in the case of the Croquet 3D scrolling
portals.

Figure 5. A scrollable 3D portal.

This is an example of a scrollable 3D portal, or
"World in Miniature"

6. Interactors

Interactors are local non-replicated objects that exist
in a world. There may be, and usually are duplicates of
these objects in all of the shared spaces, but each of
these acts independently so they are not full replicants
as described below. Note that interactors can be fully
replicated as well. If that occurs, then all users would
share the same state.

In the case of Wicket, the interactor is the 2D filter
portal and it's associated interface. The filter portal is
used to display the additional controls, editing surfaces,
and incomplete objects that the user is constructing in
the space.

Figure 6 shows a prototype of the Wicket interface.
The user is selecting one of the buttons that will trigger
the creation of a replicated task.

When viewed from outside of the Wicket portal, all
that the user sees are the completed objects without the
associated editing framework.

As shown in Figure 7, the editing controls and
surfaces are only visible through the Wicket portal.

The Wicket portal can even be used in full-screen
mode and act as if it is the entire scope of the interface.
This allows the user to have a more standard kind of
interface while still maintaining the ability to "walk
away" at any time. Further, the user can even "lock" the
interface to his own frame and carry it around the
environment so that he can easily change the viewpoint
from which he is working while still having his entire
CAD interface with him.

Figure 6. A prototype of wicket interface.

Figure 7. Editing controls and surfaces.

Figure 8 shows the view the user has when the user
zooms to the window and it takes up the entire screen.
This interface can even follow the user as he moves
around his designs.

In some ways, an interactor is similar to the view in
the model-view-controller architecture. In a sense, it
acts as a costume for the CAD system, giving the user a
system that he can view and can manipulate. Further,
just as there can be multiple views with the MVC
architecture, there can be multiple interactors focused
on the same replicated objects (the replicants).
However, a replicant can also be a visual object and
itself can act as an interface to another replicant. This is
a generalization of the MVC model.

Figure 8. Wicket interface in full screen.

7. Tasks

Tasks are replicated action objects that are
generated by the users actions interpreted by the
interactor. In the case of the Wicket system, a task is
generated when the user clicks through the Wicket
portal. The actual task that is generated is determined
by which pseudo mode has been selected by the user
view the button interface.

As seen in Figure 9, the action of the user (in gray)
is captured by the Wicket portal and the action is
modified to generate a new replicated task object (in
black) whose actions are applied to the target replicated
object. Tasks can be as simple as a message send to an
appropriate object. For example, sending a message
such as #removeSelf will cause the object to itself
from the scene graph. Tasks may also be far more
complex allowing for the generation of complex 3D
objects based upon parameters and extrusion methods
specified by the user in the Wicket interactor. The task
may be as involved as a pointer-down on a surface
followed by tracking the drag of the pointer across the
surface to generate a rectangular solid, followed by an
up-pointer event which terminates the construction
sequence.

Note that the image in Figure 9 shows the CAD
surfaces displayed outside of the window. This is for
illustrative purposes only. In fact, these surfaces are
clipped to the view portal.

Here we see the user manipulating the surface object
that controls the path of how the newly created object
will be extruded.

Figure 9. A view of modified task.

8. Replicants

The final member of our triad is the replicant. This
serves the same niche as the model in the MVC, except
it is typically a replicated object and of course will
most often have its own very visible representation.
Further, the replicant may itself act as an interactor. In
fact, this is one of the major ways we see the Croquet
infrastructure developing over time. The interactor
suite is used to create replicated content which in turn
is scripted to make it into a useful tool which can be
used to create even more content.

9. Future Work

Many of these interfaces are still preliminary
designs. In particular, Wicket has only scratched the
surface of the potential of this approach to CAD. The
goal is to develop an industrial quality system that will
allow teams of users to work together in the design
process. In a sense, Wicket is the ultimate example of
the power of deep collaboration in Croquet.

We are currently developing a more formal structure
for using the interactor-task-replicant architecture. One
of our goals is to avoid the complexity trap that made
the MVC model so difficult to work with, yet also
avoid the unstructured complexity that Morphic [5]
developed into in Squeak.

The concept of the interactor can also be applied to
the entire interface. Currently, the user moves through
the space utilizing the mouse cursor position relative to
the center of the screen. Alternative models of
interaction are the "mouse-look" interface favored by
many first person computer games, and of course there
are many other approaches. We can use this interactor
model to translate the mouse position into changes in
the users position in the same way we translate the
meaning of the pointer interactions.

10. Conclusion

Croquet has been designed from the ground up with
a focus on enabling large scale peer-to-peer
collaboration inside of a compelling shared 3D
environment. The interactor-task-replicant extension to
the model-view-controller architecture is a powerful
and easy way to develop complex applications that
scale nicely with multiple users.

This architecture makes it straightforward to to
create orthogonal tools that can operate on the same
data without interfering with each other, and allows us
to have a powerful system without either making the
objects themselves more complicated or by adding
complexity to the user's standard capabilities. In short,
this approach gives the user the capabilities he needs
when he needs them, and allows a great degree of
control over the replicated objects without having to
modify their inherent capabilities.

We also hope that Wicket can act as a centerpiece
for the Croquet user community, not just as an
exemplar application like MacPaint and MacWrite
were for the original Macintosh, but as a focus of open
source development in its own right.

Acknowledgements

We would like to thank Kim Rose, Patrick McGeer,
and Patrick Scaglia for their help and insight. The
Croquet project is generously supported by Hewlett
Packard Corporation, and Applied Minds, Inc.

References

[1] Bier, E.A., M. Stone, K. Pier, W. Buxton, T. DeRose.
Toolglass and Magic Lenses: The See-Through
Interface. Preoceedings of SIGGRAPH ’93. 73-80.

[2] Engelbart, Douglas, 1968 NLS Demonstration Video:
http://sloan.stanford.edu/mousesite/1968Demo.html.

[3] Goldberg, Adele, David Robson. A Metaphor for User
Interface Design, Proceedings of the University of

Hawaii Twelfth Annual Symposium on System Sciences,
Honolulu, January 4-6, (1979) pp. 148-157.

[4] Goldberg, Adele, David Robson. Smalltalk-80: The
Language and its Implementation. Addison-Wesley.
1983.

[5] Kay, Alan. “The Early History of Smalltalk”, in Bergin,
Jr.,T.J. and R.G. Gibson. History of Programming
Languages – II, ACM Press, New York, NY, and
Addison-Wesley. 1996. pp. 511-578.

[6] Krasner, Glenn E., Stephen T. Pope. A Description of
the Model-View-Controller User Interface Paradigm in
Smalltalk-80. ParcPlace Systems. 1988.

[7] Maloney, J. The Morphic User-Interface Framework.
Squeak: Open Personal Computing and Multimedia. Ed.
M. Guzdial, K.Rose.Prentice-Hall. 2001.

[8] Reenskaug, Trygve. Thing-Model-View-Editor. Internal
Xerox Note. 1979.
http://heim.ifi.uio.no/~trygver/mvc/mvc-index.html.

[9] Ropinski, T., K. Hinrichs. Real-Time Rendering of 3D
Magic Lenses having arbitrary convex shapes. Journal of
WSCG. 2004.

[10] Smith, David A. Virtus WalkThrough. Virtus
Corporation. 1990.

[11] Smith, David A., Andreas Raab, David P. Reed, Alan
Kay. Croquet User Manual v.0.01 Web site:
http://www.croquetproject.org.

[12] Smith, David A., Alan Kay, Andreas Raab, David P.
Reed. Croquet – A Collaboration System Architecture.
C5: Conference on Creating, Connecting and
Collaborating through Computing. 2003.

[13] Smith, David A., Alan Kay, Andreas Raab, David P.
Reed. Croquet: A Menagerie of New User Interfaces.
C5: Conference on Creating, Connecting and
Collaborating through Computing. 2004.

[14] Stoakley, R., M. Conway, R. Pausch. Virtual Reality on
a WIM: Interactive Worlds in Miniature. CHI ’95. ACM
Press, 265-272.

[15] Viega, J., M. Conway, G. Williams, R. Pausch. 3D
Magic Lenses. UIST ’96.

[16] Sutherland, I. “The Ultimate Display”. Proceedings of
IFIPS Congress 1965, New York, NY. May 1965, Vol 2.
pp 506-508.

