
A Language Supporting Direct Manipulation of Component-based Object
Construction and Deconstruction in Collaborative Croquet Spaces

Howard Stearns, Joshua Gargus, Martin Schuetze
Division of Information Technology
University of Wisconsin-Madison

[hstearns, gargus]@wisc.edu, martin.schuetze@gmail.com
and

Julian Lombardi
Office of Information Technology

Duke University
julian@duke.edu

Abstract

We describe the language architecture of Brie, a
framework for authoring 3D spaces and user
interfaces. Brie is designed to take advantage of the
unique social characteristics of the Croquet
collaboration architecture, in particular by lowering
the bar for content creation, thus greatly expanding the
community of content developers. This is achieved
through a 3D direct-manipulation interface to objects.
To support this, the Brie architecture consists of a
prototype-based language extension to Squeak with
flexible inheritance, demand-driven evaluation,
dependency-directed backtracking, and a special copy
algorithm that conditionally copies dependent
references.

1. Introduction

The Croquet platform [1] enables new dimensions
of online collaboration by allowing users to create their
own virtual environments, and to spontaneously meet
with groups of users in these spaces. An obstacle to
fully realizing this vision is the prohibitive cost of
developing 3D content using the tools currently
available. As described more fully elsewhere [2],
Brie’s solution to this problem is to empower users
who would like to develop worlds, but are dissuaded
by various limitations of current development tools.

The companion paper [2] provides the motivation
and use case for Brie, and is a prerequisite to this
paper. The other paper describes the four types of
Brie/Croquet users:

• Consumers

• Authors
• Programmers
• Wizards

This paper describes the architecture and
implementation of Brie, and will be of interest mostly
to Programmers and Wizards. Although our strategy is
to focus on Consumers and Authors, Brie’s design
makes some effort to insulate Programmers from the
complexity of the core Croquet architecture.

Like “Smalltalk”, “Brie” denotes both a
programming language and the environment that
language exists in. Brie implements a prototype-based
language extension to Squeak, and a 3D direct-
manipulation interface to objects created using this
language. The 3D interface is designed to support
content creation and reuse through interactive
deconstruction and construction in a persistent,
collaborative setting [2]. In order to support the direct
manipulation of all kinds of objects, including
behaviors, we must make them concrete. Thus the
language is designed to support the reification of the
primary aspects that a user might want to operate on.
We say that such aspects are "Brieified," and the
language is designed to shield Consumers, Authors,
and even Programmers from bookkeeping tasks arising
from interactions between Brieified components.

We describe the core characteristics of the Brie
language, as well as an outline of its implementation.
One key feature is the transparent integration of
dependency-directed backtracking with Brie/Squeak
syntax, so that state invalidation and recomputation
occurs automatically without explicit direction from
the programmer. Brie does not attempt to be a general-
purpose wholly graphical language. For example, there

are no primitive behaviors for sequencing other
behaviors, nor for conditionals. Only nullary "getter"
and unary "setter" methods are provided for. If a
Programmer wishes to create a new behavior from
scratch, they must do so by writing text-based source
code. Nonetheless, we will show that Brie achieves its
goals.

2. The Brie Language

This section describes the major features of the Brie
language, and how its implementation is integrated
with the Squeak language. Although Brie is
conceptually a pure prototype-based language, we
create class hierarchies in order bootstrap the system
and to utilize the programming tools available in
Squeak. Hence, new types of objects are implemented
as subclasses of BrieObject, new states as subclasses of
BrieState, and so on.

2.1. Objects (BrieObject)

BrieObject is the fundamental Brie object type. It
has two main responsibilities: implementing a
customizable behavior-dispatch mechanism, and
defining appropriate semantics for deep-copying.
Copying will be described in a later section, once the
requisite material has been covered.

Brie overrides the #doesNotUnderstand:
method, which the virtual machine sends to the
receiver of a message when Smalltalk method lookup
fails to find a method matching the message selector.
Rather than opening an error window, Brie uses the
original message as input to its own behavior-dispatch
algorithm. Each BrieObject maintains a dictionary of
behaviors, keyed by selector name. If a BrieObject
cannot find a matching behavior in its own dictionary,
it can delegate the message to another BrieObject. If
there is no object to delegate to, an error message is
raised. For example, the programmer might arrange
delegation to follow a chain of parents in Croquet's 3D
scene graph. Thus Brie supports "Part-Whole" (aka
"Has-A" or "Containment") inheritance, as well as the
usual "Kind-Of" (aka "Is-A" or "Superclass")
inheritance. In the default 3D interface application of
the language, BrieObjects inherit from the assembly
they are part of, then from the space that the object is
in, and ultimately from the "interactor" or UI that the
user is looking through [3]. The interactors described
in [4] are an example of the latter. This allows
BrieObject behavior dictionaries to be fairly small,
with much of their behavior being provided by context.

We would like to emphasize that that this is but one
possible implementation of the Brie semantics. It is

conceivable to instead use Uniclasses, as done for
EToys. However, such an approach would require
more effort to implement. As we develop the Brie
semantics, we value a design that is flexible and easy
to implement.

2.2. Behaviors (Briehavior)

Brie behaviors, or Briehaviors, implement the
methods #invoke and #invoke:. One of these is
sent when the Briehavior is found by the dispatch
algorithm described above; the one chosen depends on
whether the original message has zero or one
arguments. (Recall that only setter- and getter-like
messages are supported. See "Introduction", above.)

Briehavior is a subclass of BrieObject. This implies
a metacircularity, where each behavior has its own
behavior dictionary, and therefore can utilize other
behaviors attached to it. One consequence of this
metacircularity is that initialization of the behavior
dictionary must be demand-driven; otherwise it would
recurse infinitely as each behavior has its behavior
dictionary filled with behaviors that must then have
their behavior dictionaries filled. To avoid this, the
behavior dictionary of a newly instantiated BrieObject
is initially empty, and is initialized on a per-behavior
basis: when the behavior lookup mechanism fails to
find a behavior in the dictionary, if first consults a
prototype dictionary that contains the default behaviors
for that type of BrieObject. If no behavior is found, the
message is delegated to the next object in the chain.
Since Briehaviors may have state, a Briehavior found
in the prototype is copied before being inserted into the
normal BrieObject dictionary, and then invoked.

The code examples in the next section show that
once a behavior has been added to an object, invoking
it looks just like a Squeak message send.

2.3. States (BrieState and BrieComputedState)

States are a type of behavior that plays a central role
for Brie programmers. By integrating dependency-
directed backtracking [5], we ease the bookkeeping
required for creating highly interactive applications. In
this section, we use a series of code examples to show
the utility of this technique before outlining our
implementation.

Note that this paper is about Brie internals. A
typical interactive user would work only with graphical
objects – including, perhaps, behaviors reified as
buttons, menu items, or name/value pairs in an
information-panel.

2.3.1. Getting and Setting State.
Our first look at Brie code shows how to add states to
an object, and how to get and set the values of these
states.

“Create a new BrieObject.”
box := BrieObject new.
“Add new states to behavior dictionary.”
lengthState := BrieState named: #length.
widthState := BrieState named: #width.
lengthState attachTo: box.
widthState attachTo: box.
“Typically, state is set this way...”
box length: 5.
“But we can also set it like this (as
is done by the dispatch machinery):”
widthState invoke: 7.

2.3.2. Computed States.
The purpose of computed states is to compute and
cache some value based on the values of other states.
This is done by creating a subclass of
BrieComputedState, and overriding its
#computeState method to compute the value to
cache. Continuing with our example, we introduce a
state to compute the side area of the rectangle.

BrieStateArea>>computeState
 “Compute area. ‘receiver’ is a pseudo-
variable that is bound to the object that
received the message.”
 ^ receiver width * receiver length

Now, we add an instance of this state to our box.

areaState := BrieStateArea named: #area.
areaState attachTo: box.
“Computes, caches, and answers 35.”
box area.
“Answers cached value of 35.”
box area.

BrieComputedStates do not compute and cache a value
until they are invoked; nil is stored in the cache to
denote that #computeState must be invoked before
returning a value. This "demand-driven evaluation" is
important in dependency-directed backtracking.

2.3.3. Evaluation Context.
As in Self [6], behaviors may be found in other Brie
objects. (See "2.1 Objects (BrieObject)," above). It is
often necessary for the behavior invocation to know
who the original receiver of the message is. The
behavior dispatch mechanism provides this
information by managing the binding of the receiver
pseudo-variable (which we implement as an instance
variable of Briehavior).

In addition, since behaviors are first-class objects,
they may have their own state, methods, and behaviors.

The computation for a behavior may need to reference
these locally. Thus self designates the behavior
object itself, not the receiver of the message. Both
bindings are available to methods that implement a
behavior. In the example above, within the body of
BrieStateArea>>computeState, receiver is
bound to box, while self refers to areaState.

2.3.4. Dependency-Directed Backtracking.
Given the ordinary-looking Smalltalk code above, how
does setting the length of the rectangle invalidate the
cached area? We have integrated dependency-directed
backtracking into our behavior invocation mechanism
[5]. The general idea is that invoking the length and
width states during computation of the area causes
them to record that the area depends on them. When
they change, they invalidate all dependent states. This
invalidation can propagate. For example, if some other
state depended on the rectangle’s area, then it would
also have been invalidated when the rectangle’s length
changed.

BrieStateVolume>>computeState
 ^receiver area * receiver height.

(BrieStateVolume named: #volume)attachTo: box.
(BrieState named: #height) attachTo: box.
box height: 2.
box volume. "Computes and caches 70."
"Setting length invalidates area and volume.”
box length: 6.
box area. "answers 42"
box volume. "answers 84"

Note that the system handles dependency fanout in
both directions: area is dependent on and invalidated
by a change to either length or width, and a change to
length will cause both area and volume to be
invalidated. This automatic updating makes the
elements of an application act like a spreadsheet that is
not limited to a 2D grid of cells.

In order to support dependency-directed
backtracking, each BrieState has two bookkeeping
fields, usedBy and requires that are used to
represent a bidirectional dependency relationship
between a pair of states. We maintain the following
invariant: a state is usedBy another state if and only if
the second state requires the first.

The usedBy field records all of the other states that
used this state to compute their values. Above,
BrieStateVolume>>computeState causes itself to
be recorded in the usedBy field of both the area and
height. Note that Programmers do not have to do this
explicitly because Wizards have arranged for the
behavior invocation process to do this bookkeeping.
Whenever a BrieState is set, it invalidates all states that

it is usedBy so that they will be recomputed when next
accessed. This process is recursive, since each
invalidated state must similarly reset all states that it is
usedBy (as in our example, where setting the length
resets the area, which resets the volume).

The requires field points in the other direction, at
all states that were used by this state to compute its
value. When the state is explicitly set or reset, it
removes itself from the usedBy field of each state that
it requires; it will not later be invalidated by changes
to these states. For example, consider a button that has
a BrieComputedState that computes its color to be a
shade lighter than the color of the window it is
embedded in. When the color of the window changes,
the button color will be invalidated and recomputed the
next time it is needed. However, if we explicitly set the
button’s color to be red, the button will be removed
from the window’s usedBy field; changes to the
window’s color will no longer affect the button’s color.
If we then reset the button’s color, the next use of it
will again compute a value based on the window’s
color, which will reestablish the dependency of the
button upon the window.

Invalidating a BrieComputedState is equivalent to
setting its value to nil; the usedBy and requires
fields are updated just as if the state had been set to any
other value. As we described, BrieComputedState is
demand-driven: the new value will not be computed
(and cached) until some other object requests the value.
Once the state has been reset, subsequent invalidations
are cheap, since usedBy and requires are empty,
and therefore no recursive invalidations are triggered.

There exist some “Wizards-only” subclasses of
BrieState in which #computeState is eagerly
evaluated immediately upon reset. Their
implementations of #computeState include side-
effects that are used for interfacing Brie to non-Brie
objects. (For example, this is used in rendering.)

The current implementation does not detect cycles
among the dependencies, although the information is
available in the model and it would be useful for non-
programmers if presented in the right way. We do
intend for casual users to pull copies of computed
behaviors out of one object and place them in another
object. Circularities will happen.

Neither do we yet have language-level support for
groups of mutually dependent values, of which one is
expected to be supplied directly by user activity. For
example, a sphere size could be specified by either one
of radius or diameter, or a right triangle can be
specified by any two of its side lengths.

3. Copying BrieObjects

Since Croquet allows objects to be copied into a
world that is replicated on a completely different set of
computers than it originally resided on, copying an
object must recursively copy all references that the
object needs to function properly. To accomplish this
goal, Brie implements a dictionary-based 2-pass copy
algorithm.

3.1. Motivation

Two passes are necessary because it is not always
possible to determine when a variable should be left
alone and when it should be rebound to a copy of its
referent. As the following example shows, sometimes a
variable should be rebound only if its referent has
already been copied during the copying process.

Consider a device with a button that, when clicked,
changes the device to a random color. If we copy the
device, we would expect that clicking on the copied
device's button would change the copied device’s
color. But if we only copy the button, then we would
expect the copied button to act on the original device.
In Brie, we implement this by only copying the
button’s device in the first case (when it needed to be
copied anyway). We call this a “dependent copy
variable”, as opposed a “forced copy variable” which
must always be copied.

3.2. Algorithm

Before starting to copy an object, a dictionary (the
“copy map”) is initialized; its role is to map each
original object to its copy. In the first pass, an object
told to copy itself first checks the copy map; if it has
already been copied, the copy is immediately returned.
Otherwise it copies itself (recursively performing any
forced copies), adds the copy to the copy map, and
returns the copy.

The second pass iterates over all copies in the copy
map. For each object, it checks all dependent copy
variables to see if a corresponding copy exists in the
map; if so, the copy is assigned to the variable.

3.3. Interaction with Backtracking

When a BrieState is copied, we must maintain the

requires/usedBy invariant (described in section
2.3.4) in a manner consistent with the desired
semantics.

Consider two states U and V, such that U requires

V, and therefore V is usedBy U.

3.3.1. Only Value Copied
If a value V is copied but its user U is not, then the

copy V’ is not used by U. A change in V’ will have
no effect on the original U that required the original V.
The dependency relationship between U and V is
unchanged, and the new copy V’ is independent.

3.3.2. Only User Copied

If U is copied but V is not, then the copy U’ has its
own dependency relationship with the original V. A
change in the original V will effect the copy U’. U’
requires V, and V is usedBy both U and U’.

3.3.3. Value and User Copied

If both the V and U are copied, then U’ requires
V’ and V’ is usedBy U’. A change in V will effect U
but not U’, and a change in V’ will effect U’ but not
U. The copies are independent (dependency-wise) from
the originals.

4. Mobile Code

In the larger vision of the Croquet Architecture,
code is just another form of media [1]; this is known as
mobile code. While the current version of Croquet does
not yet support mobile code, Brie provides a
workaround. Although new Squeak classes cannot be
created and shared among members of a collaboration,
instances of existing classes can be created and
manipulated. Therefore, as long as we use existing
types of Briehaviors and other BrieObjects, we can
compose them as we see fit to gain the benefits of
mobile code.

5. Even Later Binding

Smalltalk is a late-bound language because it is only
during method dispatch that it is known whether a
message is understood. However, a typical Smalltalk
program does not create new code or change the
structure of code in an application. In this sense, Brie is
later-bound, since it is intended for code to be
interactively changed through direct manipulation

6. Related Work

Brie’s prototype-based approach is inspired by Self
[6]. Dependency-directed backtracking was drawn
from experience with high-end, rule-based CAD
systems.

7. Conclusion

We have explained the technical details of the Brie
platform, and described the motivation behind the
design decisions that we have made. Brie is both a
programming language as well as a framework for
direct manipulation UIs.

8. Future work

We are currently developing "Open
Implementation" protocols [7] for method dispatch and
for multiple instance inheritance (including
bidirectional inheritance).

Brie is intended to support the construction of new
objects by assembling (e.g., dragging) objects and
behaviors onto one another. It will be important to
recognize when such operations are allowed, or what
must happen to an object or behavior before it can
fulfill its proper role in its new home. We plan to
examine the use of behaviors on behaviors to define a
protocol template that specifies what a Brie object
must have in order to function in a given relationship.
This template can be used to either add new
functionality to the new component to ensure its
success, or to indicate how the change is not
appropriate.

In addition to the language-level constructs
described here, we are using the Brie architecture to
create a 3D, collaborative, direct-manipulation user
interface [2]. It remains to be seen what other
language-level features are needed to support this.

9. Acknowledgements

This work was undertaken under the direction of the
Division of Information Technology of the University
of Wisconsin-Madison. It was funded in part under a
contract with the National Institute of Information and
Communications Technology (http://www.nict.go.jp).

10. References

 [1] Smith, David A., Alan Kay, Andreas Raab, and David P.
Reed, “Croquet – A Collaboration System Architecture.”
Proceedings of the First Conference on Creating,
Connecting, and Collaborating through Computing (C5 ’03),
IEEE Computer Society Press, 2003.

 [2] Stearns, Howard, Joshua Gargus, Martin Schuetze, and
Julian Lombardi. “Simplified Distributed Authoring Via
Component-based Object Construction and Deconstruction in
Collaborative Croquet Spaces”, Proceedings of the Fourth
Conference on Creating, Connecting, and Collaborating
through Computing (C5 ’06), IEEE Computer Society Press,
2006.

[3] Smith, David A., Andreas Raab, Yoshiki Ohshima, David
P. Reed, and Alan Kay. “Filters and Tasks in Croquet”,
Proceedings of the Third Conference on Creating,
Connecting, and Collaborating through Computing (C5 ’05),
IEEE Computer Society Press, 2005.

[4] Kadobayashi, Rieko, Julian Lombardi, Mark McCahill,
Howard Stearns, Katsumi Tanaka, and Alan Kay. “3D Model
Annotation from Multiple Viewpoints for Croquet”,
Proceedings of the Fourth Conference on Creating,
Connecting, and Collaborating through Computing (C5 ’06),
IEEE Computer Society Press, 2006.

[5] Stallman, Richard and Gerald J. Sussman. "Forward

Reasoning and Dependency-Directed Backtracking in a
System For Computer-Aided Circuit Analysis." Artificial
Intelligence, 9:135-196, 1977.

[6] Smith, Randall B. and David Ungar. "Programming as an
Experience, The Inspiration for Self." in J. Noble, A
Taivalsaari & I. Moore, eds, "Prototype-Based Programming:
Concepts, Languages, Applications." Springer-Verlag, 1997.

[7] Kiczales, Gregor, Jim des Reivieres and Daniel G.
Bobrow. "The Art of the Metaobject Protocol." MIT Press,
1991.

