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Abstract 
 

We describe the language architecture of Brie, a 
framework for authoring 3D spaces and user 
interfaces. Brie is designed to take advantage of the 
unique social characteristics of the Croquet 
collaboration architecture, in particular by lowering 
the bar for content creation, thus greatly expanding the 
community of content developers. This is achieved 
through a 3D direct-manipulation interface to objects. 
To support this, the Brie architecture consists of a 
prototype-based language extension to Squeak with 
flexible inheritance, demand-driven evaluation, 
dependency-directed backtracking, and a special copy 
algorithm that conditionally copies dependent 
references. 
 
1. Introduction 
 

The Croquet platform [1] enables new dimensions 
of online collaboration by allowing users to create their 
own virtual environments, and to spontaneously meet 
with groups of users in these spaces. An obstacle to 
fully realizing this vision is the prohibitive cost of 
developing 3D content using the tools currently 
available. As described more fully elsewhere [2], 
Brie’s solution to this problem is to empower users 
who would like to develop worlds, but are dissuaded 
by various limitations of current development tools. 

The companion paper [2] provides the motivation 
and use case for Brie, and is a prerequisite to this 
paper. The other paper describes the four types of 
Brie/Croquet users: 

• Consumers 

• Authors 
• Programmers 
• Wizards 

This paper describes the architecture and 
implementation of Brie, and will be of interest mostly 
to Programmers and Wizards. Although our strategy is 
to focus on Consumers and Authors, Brie’s design 
makes some effort to insulate Programmers from the 
complexity of the core Croquet architecture. 

Like “Smalltalk”, “Brie” denotes both a 
programming language and the environment that 
language exists in.  Brie implements a prototype-based 
language extension to Squeak, and a 3D direct-
manipulation interface to objects created using this 
language. The 3D interface is designed to support 
content creation and reuse through interactive 
deconstruction and construction in a persistent, 
collaborative setting [2]. In order to support the direct 
manipulation of all kinds of objects, including 
behaviors, we must make them concrete. Thus the 
language is designed to support the reification of the 
primary aspects that a user might want to operate on. 
We say that such aspects are "Brieified," and the 
language is designed to shield Consumers, Authors, 
and even Programmers from bookkeeping tasks arising 
from interactions between Brieified components. 

We describe the core characteristics of the Brie 
language, as well as an outline of its implementation.  
One key feature is the transparent integration of 
dependency-directed backtracking with Brie/Squeak 
syntax, so that state invalidation and recomputation 
occurs automatically without explicit direction from 
the programmer. Brie does not attempt to be a general-
purpose wholly graphical language. For example, there 



are no primitive behaviors for sequencing other 
behaviors, nor for conditionals. Only nullary "getter" 
and unary "setter" methods are provided for. If a 
Programmer wishes to create a new behavior from 
scratch, they must do so by writing text-based source 
code. Nonetheless, we will show that Brie achieves its 
goals. 
 
2. The Brie Language 
 

This section describes the major features of the Brie 
language, and how its implementation is integrated 
with the Squeak language.  Although Brie is 
conceptually a pure prototype-based language, we 
create class hierarchies in order bootstrap the system 
and to utilize the programming tools available in 
Squeak. Hence, new types of objects are implemented 
as subclasses of BrieObject, new states as subclasses of 
BrieState, and so on. 

 
2.1. Objects (BrieObject) 
 

BrieObject is the fundamental Brie object type. It 
has two main responsibilities: implementing a 
customizable behavior-dispatch mechanism, and 
defining appropriate semantics for deep-copying.  
Copying will be described in a later section, once the 
requisite material has been covered. 

Brie overrides the #doesNotUnderstand: 
method, which the virtual machine sends to the 
receiver of a message when Smalltalk method lookup 
fails to find a method matching the message selector.  
Rather than opening an error window, Brie uses the 
original message as input to its own behavior-dispatch 
algorithm. Each BrieObject maintains a dictionary of 
behaviors, keyed by selector name. If a BrieObject 
cannot find a matching behavior in its own dictionary, 
it can delegate the message to another BrieObject. If 
there is no object to delegate to, an error message is 
raised. For example, the programmer might arrange 
delegation to follow a chain of parents in Croquet's 3D 
scene graph. Thus Brie supports "Part-Whole" (aka 
"Has-A" or "Containment") inheritance, as well as the 
usual "Kind-Of" (aka "Is-A" or "Superclass") 
inheritance. In the default 3D interface application of 
the language, BrieObjects inherit from the assembly 
they are part of, then from the space that the object is 
in, and ultimately from the "interactor" or UI that the 
user is looking through [3]. The interactors described 
in [4] are an example of the latter. This allows 
BrieObject behavior dictionaries to be fairly small, 
with much of their behavior being provided by context. 

We would like to emphasize that that this is but one 
possible implementation of the Brie semantics. It is 

conceivable to instead use Uniclasses, as done for 
EToys. However, such an approach would require 
more effort to implement. As we develop the Brie 
semantics, we value a design that is flexible and easy 
to implement. 
 
2.2. Behaviors (Briehavior) 
 

Brie behaviors, or Briehaviors, implement the 
methods #invoke and #invoke:.  One of these is 
sent when the Briehavior is found by the dispatch 
algorithm described above; the one chosen depends on 
whether the original message has zero or one 
arguments. (Recall that only setter- and getter-like 
messages are supported. See "Introduction", above.) 

Briehavior is a subclass of BrieObject.  This implies 
a metacircularity, where each behavior has its own 
behavior dictionary, and therefore can utilize other 
behaviors attached to it. One consequence of this 
metacircularity is that initialization of the behavior 
dictionary must be demand-driven; otherwise it would 
recurse infinitely as each behavior has its behavior 
dictionary filled with behaviors that must then have 
their behavior dictionaries filled. To avoid this, the 
behavior dictionary of a newly instantiated BrieObject 
is initially empty, and is initialized on a per-behavior 
basis: when the behavior lookup mechanism fails to 
find a behavior in the dictionary, if first consults a 
prototype dictionary that contains the default behaviors 
for that type of BrieObject. If no behavior is found, the 
message is delegated to the next object in the chain. 
Since Briehaviors may have state, a Briehavior found 
in the prototype is copied before being inserted into the 
normal BrieObject dictionary, and then invoked. 

The code examples in the next section show that 
once a behavior has been added to an object, invoking 
it looks just like a Squeak message send. 

 
2.3. States (BrieState and BrieComputedState) 
 

States are a type of behavior that plays a central role 
for Brie programmers. By integrating dependency-
directed backtracking [5], we ease the bookkeeping 
required for creating highly interactive applications. In 
this section, we use a series of code examples to show 
the utility of this technique before outlining our 
implementation. 

Note that this paper is about Brie internals. A 
typical interactive user would work only with graphical 
objects – including, perhaps, behaviors reified as 
buttons, menu items, or name/value pairs in an 
information-panel. 

 



2.3.1. Getting and Setting State.  
Our first look at Brie code shows how to add states to 
an object, and how to get and set the values of these 
states. 

 
“Create a new BrieObject.” 
box := BrieObject new. 
“Add new states to behavior dictionary.” 
lengthState := BrieState named: #length. 
widthState := BrieState named: #width. 
lengthState attachTo: box. 
widthState attachTo: box.  
“Typically, state is set this way...” 
box length: 5. 
“But we can also set it like this (as 
is done by the dispatch machinery):” 
widthState invoke: 7. 

 
2.3.2. Computed States. 
The purpose of computed states is to compute and 
cache some value based on the values of other states.  
This is done by creating a subclass of 
BrieComputedState, and overriding its 
#computeState method to compute the value to 
cache. Continuing with our example, we introduce a 
state to compute the side area of the rectangle. 
 
BrieStateArea>>computeState 
  “Compute area. ‘receiver’ is a pseudo-
variable that is bound to the object that 
received the message.” 
  ^ receiver width * receiver length 

 
Now, we add an instance of this state to our box. 

 
areaState := BrieStateArea named: #area. 
areaState attachTo: box. 
“Computes, caches, and answers 35.” 
box area. 
“Answers cached value of 35.” 
box area. 

 
BrieComputedStates do not compute and cache a value 
until they are invoked; nil is stored in the cache to 
denote that #computeState must be invoked before 
returning a value. This "demand-driven evaluation" is 
important in dependency-directed backtracking. 
 
2.3.3. Evaluation Context. 
As in Self [6], behaviors may be found in other Brie 
objects. (See "2.1 Objects (BrieObject)," above). It is 
often necessary for the behavior invocation to know 
who the original receiver of the message is.  The 
behavior dispatch mechanism provides this 
information by managing the binding of the receiver  
pseudo-variable (which we implement as an instance 
variable of Briehavior). 

In addition, since behaviors are first-class objects, 
they may have their own state, methods, and behaviors. 

The computation for a behavior may need to reference 
these locally. Thus self designates the behavior 
object itself, not the receiver of the message. Both 
bindings are available to methods that implement a 
behavior. In the example above, within the body of 
BrieStateArea>>computeState, receiver is 
bound to box, while self refers to areaState. 
 
2.3.4. Dependency-Directed Backtracking.  
Given the ordinary-looking Smalltalk code above, how 
does setting the length of the rectangle invalidate the 
cached area? We have integrated dependency-directed 
backtracking into our behavior invocation mechanism 
[5]. The general idea is that invoking the length and 
width states during computation of the area causes 
them to record that the area depends on them. When 
they change, they invalidate all dependent states. This 
invalidation can propagate. For example, if some other 
state depended on the rectangle’s area, then it would 
also have been invalidated when the rectangle’s length 
changed.  
 
BrieStateVolume>>computeState 
   ^receiver area * receiver height. 
 
(BrieStateVolume named: #volume)attachTo: box. 
(BrieState named: #height) attachTo: box. 
box height: 2. 
box volume. "Computes and caches 70." 
"Setting length invalidates area and volume.” 
box length: 6. 
box area. "answers 42" 
box volume. "answers 84"  

 
Note that the system handles dependency fanout in 
both directions: area is dependent on and invalidated 
by a change to either length or width, and a change to 
length will cause both area and volume to be 
invalidated. This automatic updating makes the 
elements of an application act like a spreadsheet that is 
not limited to a 2D grid of cells. 

In order to support dependency-directed 
backtracking, each BrieState has two bookkeeping 
fields, usedBy and requires that are used to 
represent a bidirectional dependency relationship 
between a pair of states.  We maintain the following 
invariant: a state is usedBy another state if and only if 
the second state requires the first. 

The usedBy field records all of the other states that 
used this state to compute their values. Above, 
BrieStateVolume>>computeState causes itself to 
be recorded in the usedBy field of both the area and 
height. Note that Programmers do not have to do this 
explicitly because Wizards have arranged for the 
behavior invocation process to do this bookkeeping.  
Whenever a BrieState is set, it invalidates all states that 



it is usedBy so that they will be recomputed when next 
accessed. This process is recursive, since each 
invalidated state must similarly reset all states that it is 
usedBy (as in our example, where setting the length 
resets the area, which resets the volume). 

The requires field points in the other direction, at 
all states that were used by this state to compute its 
value. When the state is explicitly set or reset, it 
removes itself from the usedBy field of each state that 
it requires; it will not later be invalidated by changes 
to these states. For example, consider a button that has 
a BrieComputedState that computes its color to be a 
shade lighter than the color of the window it is 
embedded in. When the color of the window changes, 
the button color will be invalidated and recomputed the 
next time it is needed. However, if we explicitly set the 
button’s color to be red, the button will be removed 
from the window’s usedBy field; changes to the 
window’s color will no longer affect the button’s color.  
If we then reset the button’s color, the next use of it 
will again compute a value based on the window’s 
color, which will reestablish the dependency of the 
button upon the window. 

Invalidating a BrieComputedState is equivalent to 
setting its value to nil; the usedBy and requires 
fields are updated just as if the state had been set to any 
other value. As we described, BrieComputedState is 
demand-driven: the new value will not be computed 
(and cached) until some other object requests the value.  
Once the state has been reset, subsequent invalidations 
are cheap, since usedBy and requires are empty, 
and therefore no recursive invalidations are triggered. 

There exist some “Wizards-only” subclasses of 
BrieState in which #computeState is eagerly 
evaluated immediately upon reset. Their 
implementations of #computeState include side-
effects that are used for interfacing Brie to non-Brie 
objects. (For example, this is used in rendering.)  

The current implementation does not detect cycles 
among the dependencies, although the information is 
available in the model and it would be useful for non-
programmers if presented in the right way. We do 
intend for casual users to pull copies of computed 
behaviors out of one object and place them in another 
object. Circularities will happen. 

Neither do we yet have language-level support for 
groups of mutually dependent values, of which one is 
expected to be supplied directly by user activity. For 
example, a sphere size could be specified by either one 
of radius or diameter, or a right triangle can be 
specified by any two of its side lengths. 

 
3. Copying BrieObjects 
 

Since Croquet allows objects to be copied into a 
world that is replicated on a completely different set of 
computers than it originally resided on, copying an 
object must recursively copy all references that the 
object needs to function properly. To accomplish this 
goal, Brie implements a dictionary-based 2-pass copy 
algorithm. 

 
3.1. Motivation 
 

Two passes are necessary because it is not always 
possible to determine when a variable should be left 
alone and when it should be rebound to a copy of its 
referent. As the following example shows, sometimes a 
variable should be rebound only if its referent has 
already been copied during the copying process.   

Consider a device with a button that, when clicked, 
changes the device to a random color. If we copy the 
device, we would expect that clicking on the copied 
device's button would change the copied device’s 
color. But if we only copy the button, then we would 
expect the copied button to act on the original device.  
In Brie, we implement this by only copying the 
button’s device in the first case (when it needed to be 
copied anyway). We call this a “dependent copy 
variable”, as opposed a “forced copy variable” which 
must always be copied. 

 
3.2. Algorithm 
 

Before starting to copy an object, a dictionary (the 
“copy map”) is initialized; its role is to map each 
original object to its copy. In the first pass, an object 
told to copy itself first checks the copy map; if it has 
already been copied, the copy is immediately returned.  
Otherwise it copies itself (recursively performing any 
forced copies), adds the copy to the copy map, and 
returns the copy. 

The second pass iterates over all copies in the copy 
map.  For each object, it checks all dependent copy 
variables to see if a corresponding copy exists in the 
map; if so, the copy is assigned to the variable. 

 
3.3. Interaction with Backtracking 

 
When a BrieState is copied, we must maintain the 

requires/usedBy invariant (described in section 
2.3.4) in a manner consistent with the desired 
semantics.  

 
Consider two states U and V, such that U requires 

V, and therefore V is usedBy U. 
 



3.3.1. Only Value Copied 
If a value V is copied but its user U is not, then the 

copy V’ is not used by U. A change in V’ will have 
no effect on the original U that required the original V. 
The dependency relationship between U and V is 
unchanged, and the new copy V’ is independent. 
 
3.3.2. Only User Copied 

If U is copied but V is not, then the copy U’ has its 
own dependency relationship with the original V. A 
change in the original V will effect the copy U’. U’ 
requires V, and V is usedBy both U and U’. 

 
3.3.3. Value and User Copied 

If both the V and U are copied, then U’ requires 
V’ and V’ is usedBy U’. A change in V will effect U 
but not U’, and a change in V’ will effect U’ but not 
U. The copies are independent (dependency-wise) from 
the originals. 

 
 

4. Mobile Code 
 

In the larger vision of the Croquet Architecture, 
code is just another form of media [1]; this is known as 
mobile code. While the current version of Croquet does 
not yet support mobile code, Brie provides a 
workaround. Although new Squeak classes cannot be 
created and shared among members of a collaboration, 
instances of existing classes can be created and 
manipulated. Therefore, as long as we use existing 
types of Briehaviors and other BrieObjects, we can 
compose them as we see fit to gain the benefits of 
mobile code. 
 
5. Even Later Binding 
 

Smalltalk is a late-bound language because it is only 
during method dispatch that it is known whether a 
message is understood. However, a typical Smalltalk 
program does not create new code or change the 
structure of code in an application. In this sense, Brie is 
later-bound, since it is intended for code to be 
interactively changed through direct manipulation 
 
6. Related Work 
 

Brie’s prototype-based approach is inspired by Self 
[6]. Dependency-directed backtracking was drawn 
from experience with high-end, rule-based CAD 
systems.  
 
7. Conclusion 
 

We have explained the technical details of the Brie 
platform, and described the motivation behind the 
design decisions that we have made. Brie is both a 
programming language as well as a framework for 
direct manipulation UIs.  

 
8. Future work 
 

We are currently developing "Open 
Implementation" protocols [7] for method dispatch and 
for multiple instance inheritance (including 
bidirectional inheritance). 

Brie is intended to support the construction of new 
objects by assembling (e.g., dragging) objects and 
behaviors onto one another. It will be important to 
recognize when such operations are allowed, or what 
must happen to an object or behavior before it can 
fulfill its proper role in its new home. We plan to 
examine the use of behaviors on behaviors to define a 
protocol template that specifies what a Brie object 
must have in order to function in a given relationship. 
This template can be used to either add new 
functionality to the new component to ensure its 
success, or to indicate how the change is not 
appropriate.  

In addition to the language-level constructs 
described here, we are using the Brie architecture to 
create a 3D, collaborative, direct-manipulation user 
interface [2]. It remains to be seen what other 
language-level features are needed to support this. 
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