Home Products KnowledgeBase Partners About Us

Executive Summary
Table of Contents
Company Listing
Sample Exhibits
About the Editor
Ordering Info
Optimizing Lead Selection 
(Volume 2)

In Silico Biology

1. Executive Summary 

2. Introduction 

3. In Silico Biology - Virtual Systems and Organs for the Assessment of 
Drug Candidates 

3.1 The Biology Data Chain 
3.2 The Rationale for Biological Modeling 
3.3 Single Cell Models 
3.4 Identification of a Knowledge Gap 
3.5 3-Dimensional Organ Models
3.6 Human Surface ECG 
3.8 Clinical Issues to Detect QT Prolongation 
3.9 Preclinical Issues to Detect QT Prolongation 
3.10 The Challenge - Cardiac Toxicity 
3.11 Computational Approach to Predict Cardiac
        Toxicity 
3.12 Case Study - Ventricular Response to an
        Anti-Arrhythmic Compound 
3.13 Single Cell Analysis 
3.14 More Issues Related To Drug-Induced Cardiac
        Toxicity 
3.15 Conclusion 
3.16 Questions & Answers 

4. High-Performance Computing in Pharmaceutical R&D 

4.1 Integration of High-Performance Computing into
      R&D 
4.2 Using High-Performance Computing to Reduce
      Development Times and Risk 
4.3 Case Studies of Two Anticancer Compounds 
      I. BNP7787 
      II. BNP1350 
4.4 Mechanism-Based Drug Discovery: Role of
      Physics-Based Supercomputer Simulations 
4.5 BioNumerik's Supercomputing Center
4.6 Questions & Answers 

5. Computational Pharmacokinetics for Drug Discovery 

5.1 Interfacing High Throughput Pharmacokinetics
      (HTPkS) and PK-Informatics 
5.2 Discovery and Selection of Small Molecule Drug
      Therapies 
5.3 Revolutionizing Drug Discovery Through Early
      Pharmacokinetic Studies 
5.4 Gains from Early Pharmacokinetic Studies 
5.5 In Vitro Pharmacokinetic Screening 
5.6 Virtual or In Silico Pharmacokinetic Screening 
5.7 In Vitro ADME Screening 
5.8 In Silico Prediction of Pharmacokinetics - The
      IDEA Model 
5.9 A Consortium Approach - The IDEA Consortium 
5.10 The IDEA Model - Benefits of Simulation 
5.11 Questions & Answers 

6. A Consortium Approach to Building a Toxicology Database from Proprietary
Compounds 

6.1 Approaches to Predictive Toxicology 
6.2 Predictive Toxicology Databases 
6.3 Plans for a Shared Industry Database for
      Toxicology 
6.4 The Ideal Database for Predictive Toxicology 
6.5 Globalization and International Harmonization 
6.6 Approaches to Assembling and Sharing the
      Toxicology Database 
6.7 The High Production Volume Chemical Program 
6.8 The IUCLID Candidate Database at the ECB 
6.9 An Accelerated Approach to Predictive
      Toxicology 
6.10 Questions & Answers 

7. Use of FDA Databases and Computational Toxicology to Predict Toxicity 

7.1 FDA-CDER is a Unique Source of Scientific
      Information 
7.2 Mission of the Regulatory Research & Analysis
      Staff (RRAS) 
7.3 The Agency Information Cycle 
7.4 The Carcinogenicity Database - The First
      Database for Computational Toxicology 
7.5 Collaborative R&D Agreement with Multicase 
7.6 Factors Used to Predict Carcinogenicity 
7.7 Validation of the Predictive Carcinogenicity
      Model 
7.8 Computational Toxicology Applications 
7.9 FDA-RRAS Long-Term Objectives 
7.10 Questions & Answers 

8. Using State-of-the Art IT Systems to Integrate Preclinical Evaluations into 
Discovery 

Part I - Dealing with the Data Deluge 
8.1 Dealing with the Quantum Jump in Amounts of
      Data 
8.2 Challenges in Discovery and Informatics 
8.3 The Scale of the Data Deluge 
8.4 Responses to Challenges in Discovery and
      Informatics 
8.5 Data Visualization 
8.6 Enabling Technologies 

Part II - Materials Management - Pitfalls and Bottlenecks 

8.7 Compound Management Challenge 
8.8 Solutions to Materials and Substance Handling 
8.9 New Technologies Create Compound Overload 
8.10 Bottlenecks and the "Hurry-Up-and-Wait"
        Syndrome 
8.11 Compound Management: The Hub of Drug
        Research 
8.12 A Typical Screening Procedure 
8.13 Inventory Management Software: The Missing
        Link 
8.14 OPTIMA - A Compound Management Solution 
8.15 Compound Management Solutions Drive
        Process Improvement 
8.16 Open And Integrated Operations 
8.17 Conclusion 
8.18 Summary 

9. Better Decision-Making Through Data-Mining and Visualization 

9.1 Managing the Increasing Volume and
      Complexity of Data 
9.2 Moving from "Analog" to "Digital" Exchange of
      Knowledge 
9.3 Scalable Systems for Data Storage and Analysis 
9.4 Capturing Lessons and Knowledge 
9.5 Evolution from Static Data Repositories to
      Interactive Data-mining and Visualization 
9.6 MineSet as a Tool for Data-mining and
      Visualization 
9.7 Building Predictive Models Using Visualization of
      Data 
9.8 Building Predictive Models
9.9 Applications of Data-mining and Visualization to
      Discovery Research 
9.10 Visualization of Genomics Data 
9.11 Visualization of Chemical Data 
9.12 Visualization of Clinical Trial Data 
9.13 Estimating Errors and Testing Assumptions in
        Model Design 
9.14 From Information Overload to Insight 

Table of Contents

Pricing:
All 3 Volumes - $2,490
Volume 1 - High Throughput Screening Assays- $1,290
Volume 2 - In Silico Biology - $1,290
Volume 3 - Early Compound Attrition - $1,290

 

Back to Main Report Page

 

[Home] [Products] [KnowledgeBase] [Partners] [About Us]

©1999 AdvanceTech Monitor. All rights reserved
Tel: 781-939-2500 or 800-767-9499
webmasters@advancetechmonitor.com