AMD

Flash Memory

\searrow
 $\pm+$

Quick Reference Guide

SPANSIO N ${ }^{w}$

Part Number Construction

Spansion" Ordering Part Number Construction: Single-die Products

Speed Option

Asynchronous (no CLK input)
"Speed Option" represents random access time (ns).
If greater than 100 ns , use the two leftmost digits.
Synchronous (CLK input)
"Speed Option" represents clock frequency (MHz). First digit represents 100 s of MHz . Second digit represents the speed between 0 and 99 MHz :

A	$0-4$	F	$25-29$	L	$50-54$	R	$75-79$
B	$5-9$	G	$30-34$	M	$55-59$	S	$80-84$
C	$10-14$	H	$35-39$	N	$60-64$	T	$85-89$
D	$15-19$	J	$40-44$	P	$65-69$	U	$90-94$
E	$20-24$	K	$45-49$	Q	$70-74$	W	$95-99$

$\begin{array}{ll}\text { A } & 0-4 \\ \text { B } & 5-9\end{array}$
10-14 H 35-39
D $15-19 \quad$ J $40-44 \quad$ P $\quad 65-69$ U $90-94$
E $\quad 20-24 \quad$ K $\quad 45-49 \quad$ Q $\quad 70-74 \quad$ W $95-99$

Temperature Grade

$\mathrm{E}=$ Engineering Samples
$\mathrm{C}=$ Commercial $\left(0-70^{\circ} \mathrm{C}\right.$
$\mathrm{W}=$ Wireless $\left(-25-85^{\circ} \mathrm{C}\right)$
I = Industrial ($-40-85^{\circ} \mathrm{C}$)
$\mathrm{N}=$ Extended $\left(-40-125^{\circ} \mathrm{C}\right)$

Package Material Set (Varies by Package Type)
[BGA] A = Standard Not Lead (Pb)-Free
$[B G A] F=$ Standard Lead (Pb)-Free
[Lead Frame] A = Standard Not Lead (Pb)-Free, Copper [Lead Frame] F = Standard Lead (Pb)-Free, Copper, Sn

Package Type [Family]

$B=B G A[B G A$
= CSOP [Lead Frame]
D = Die [Die/Wafer]
$E=$ Super CSP [BGA]
$\mathrm{F}=$ Fortified BGA [BGA]
M = SOIC/SOP [Lead Frame]
$\mathrm{N}=\mathrm{WSON}$ [Lead Frame]

Spansion"' Ordering Part Number Construction: Single-die Products

Generic OPN										Ordering Options								
Prefix	Series		Family			Density			Tech D	Sector	Speed Option				Package		Temp	Option
Am	2	9	B	D	S	3	2	3		T	1	1	A	(R)	W	K	I	
Prefix Am = originally	Prod 29 = NOR nsion develo	ries Erase memory mory AMD				Dens Density and d indica Bus w vary by	not eets. ice d nd or ily.	tables s broadly y. zation		Sector Ar Sector Wr $\mathrm{T}=$ Top b $\mathrm{B}=$ Bottom U/blank = $\mathrm{H}=$ Unifor highe Uniform $\mathrm{L}=\underset{\text { Iowes }}{\text { Unifor }}$	itect Pro sect boot iform secto addre secto ddres					erat omm dust xtend	Range ($0^{\circ}-7$ $-40^{\circ}-85$ $-55^{\circ}-1$	$0^{\circ} \mathrm{C}$) ${ }^{\circ} \mathrm{C}$) $5^{\circ} \mathrm{C}$)

Device Family
$\mathrm{BDS}=1.8 \mathrm{~V}$, SRW, Burst
DS $=1.8 \mathrm{~V}$, SRW
$\mathrm{SL}=1.8 \mathrm{~V}$
$\mathrm{LV}=3 \mathrm{~V}$
$\mathrm{DL}=3 \mathrm{~V}, \mathrm{SRW}$
$\mathrm{BL}=3 \mathrm{~V}$, Burst
PL $=3 \mathrm{~V}$, Page
$\mathrm{PDL}=3 \mathrm{~V}$, SRW, Page
$\mathrm{F}=5 \mathrm{~V}$
SRW = Simultaneous Read-Write

Process Technology
B: 320 nm Floating Gate C: 320 nm Floating Gate
D: 230 nm Floating Gate
G: 170 nm Floating Gate
H: 130 nm Floating Gate
M: 230 nm MirrorBit ${ }^{\text {TM }}$

Optional Processing blank = standard $\mathrm{N}=\mathrm{ESN}$ device

Speed Option, Voltage Regulation

1.8V Devices

$* *(*)=(S L, D S) 2$ or 3 digits indicate speed in ns,
$\mathrm{V}_{\mathrm{CC}}=1.8-2.2 \mathrm{~V}$
$*^{*}(*)=(\mathrm{BDS}) 2$ or 3 characters indicate clock rate asynchronous read access, handshaking type.

$3 V$ Devices

$* *(*)=2$ or 3 digits indicate speed in ns, device is full voltage range.
${ }^{*}(*) 1=($ LV64xD/G) First two digits indicate speed in ns $\times 10$. " 1 " indicates $\mathrm{V}_{\mathrm{IO}}<\mathrm{V}_{\mathrm{cc}}$
** $=(P D L)$ First digit is speed in ns $\times 10$ Last is V_{IO} range, $3: \mathrm{V}_{\mathrm{IO}}=3 \mathrm{~V}, 8: \mathrm{V}_{\mathrm{IO}}=1.8 \mathrm{~V}$.

5V Devices

()0 = Ends in "0" - indicates speed in ns, $\mathrm{V}_{\text {cc }}=5.0 \mathrm{~V} \pm 10 \%(4.5-5.5 \mathrm{~V})$.
*5 = Ends in " 5 " - check table or data sheet for actual speed and voltage range.
(F400) If part number has a "0" after the temperature range, then $\mathrm{V}_{\mathrm{cc}}=4.5-5.5 \mathrm{~V}$.
" R " indicates regulated voltage range

Package Type

J $=$ Rectangular Plastic Leaded Chip Carrier (PLCC)
$\mathrm{K}=80$-pin Plastic Quad Flat Package (PQFP) (PQR080)
$\mathrm{P}=$ Plastic Dual Inline Package (PDIP)
$\mathrm{S}=44$-pin Small Outline (SO) Package (SO 044)
SK $=44$-pin Small Outline (SO) Package (SO 044)
$Z=56$ pin Shrink Small Outline Package (SSOP) (SSOO56)

Thin Small Outline Packages (TSOP):

$\mathrm{E}=32,40$, or 48Pin Standard Pinout (TS 048) (for Am29F016/017 devices only $E=48-$ pin, $E 4=40-$ pin)
E2 $=40 / 44$-pin Type-II Standard Pinout (TS 044)
$\mathrm{F}=32,40$, or 48pin Reverse Pinout (TSR048) for Am29F016/017 devices only, F = 48-pin, F4 = 40-pin)
F2 $=40 / 44$-pin Type-II Reverse Pinout (TSR044)

Fine-Pitch Ball Grid Array Packages,

0.8 mm ball pitch (unless otherwise noted):
0.8 mm ball pitch (unless otherwise noted)

MA $=63$-ball, $11 \times 12 \mathrm{~mm}$ body (FSA063)
MD $=63$-ball, 10.95×11.95 body (FSD063)
MD $=63$-ball, 10.95×11.95 body (FSD063)
$V A=44$-ball, $9.2 \times 8 \mathrm{~mm}$ body, 0.5 mm pitch (VDA044)
$\mathrm{VK}=80$-ball, $11.5 \times 9 \mathrm{~mm}$ body (VBB080)
$\mathrm{VM}=64$-ball, $8 \times 9 \mathrm{~mm}$ (VBD064)
$W A=48$-Ball, $6 \times 8 \mathrm{~mm}$ body (FBA048)
$\mathrm{WB}=48$-Ball, $6 \times 9 \mathrm{~mm}$ body (FBB048)
$W C=48$-Ball, $8 \times 9 \mathrm{~mm}$ body (FBCO48)
WD $=63$-Ball, $8 \times 14 \mathrm{~mm}$ body (FBD063)
WG $=40$-Ball, $8 \times 15 \mathrm{~mm}$ body (FBE040)
$\mathrm{WH}=63$-Ball, $12 \times 11 \mathrm{~mm}$ body (FBE063)
WH $=$ 63-Ball
WK $=47$-Ball, $7 \times 10 \mathrm{~mm}$ body, 0.5 mm ball pitch (FDD047)
$\mathrm{WL}=48$-Ball, $11 \times 10 \mathrm{~mm}$ body, 0.5 mm ball pitch (FDE048)
$W M=48$-Ball, $6 \times 12 \mathrm{~mm}$ body (FBD048)
$\mathrm{WM}=48$-Ball, $6 \times 12 \mathrm{~mm}$ body (FBD048)
$\mathrm{WP}=84$-Ball, $11 \times 12 \mathrm{~mm}$ body (FBF084)
$\mathrm{WS}=80$-Ball, $11 \times 12 \mathrm{~mm}$ body (FBE080)

Fortified Ball Grid Array Packages,

1.0 mm ball pitch (unless otherwise noted):

PA $=64$-Ball, $13 \times 11 \mathrm{~mm}$ body (LSA064)
$\mathrm{PB}=80$-Ball, $13 \times 11 \mathrm{~mm}$ body (LAA080)
$\mathrm{PC}=64$-Ball $13 \times 11 \mathrm{~mm}$ body (LAA064)
$\mathrm{PE}=80$-Ball, $10 \times 15 \mathrm{~mm}$ body (LAB080)
PG $=64$-Ball, $18 \times 12 \mathrm{~mm}$ body (LAC064)
$\mathrm{PH}=80$-Ball, $13 \times 11 \mathrm{~mm}$ body (LSB080)
$\mathrm{PI}=80$-Ball, $11 \times 12 \mathrm{~mm}$ body (LSC080)

Spansion"' Ordering Part Number Construction: Single-die Products (230nm, 330nm technology)

(MBM)
Spansion"' Ordering Part Number Construction: Single-die Products (I70nm technology and newer)

MBM $=$ Spansion $^{\text {TM }}$ memory originally developed by Fujitsu

Dual. dual operation
$A=$ Conventional
B $=$ Burst, Dual
no handshake
$D=$ Dual
$F=$ Burst, Dual,
handshake
$P=$ Page
$\mathrm{Q}=$ Page, Dual
R = Page, Dual,Multi CS
$X=$ Page, Dual, x32

Density, $1 / 0$

$32=32 \mathrm{Mb}, \times 8 / \times 16$ Flexible Bank
$34=32 \mathrm{Mb}, \times 8 / \times 16$ Sliding Bank
$64=64 \mathrm{Mb}, x 8 / \times 16$
$65=64 \mathrm{Mb}, \times 16$
$96=96 \mathrm{Mb}, \times 16$
$12=128 \mathrm{Mb}, \times 8 / \times 16$, x16/x32

Note: Please contact your local sales office for information on any OPN's that are not covered by the above structures.

Website and Contact Information

Spansion LLC
915 DeGuigne Drive, P.O. Box 3453
Sunnyvale, CA 94088-3453, USA
Tel. 408-962-2500
I-866-SPANSION

Spansion LLC
Spansion Japan Limited
4-33-4 Nishi Shinjuku, Shinjuku-ku
Tokyo, I60-0023, Japan
Tel. +81-3-5302-2200
Fax. +8I-3-5302-2674

www.spansion.com

AMD

One AMD Place, P.O. Box 3453
Sunnyvale, CA 94088-3453, USA
Tel. 408-749-4000
www.amd.com

FUJITSU LIMITED

Marketing Division,
Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-I,
Nishishinjuku 2-chome, Shinjuku-ku,
Tokyo 163-0721, Japan
Tel: +81-3-5322-3353
Fax: +81-3-5322-3386
http://edevice.fujitsu.com

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. I250 E. Arques Avenue, M/S 33
Sunnyvale, CA 94088-3470, U.S.A.
Tel: 408-737-5600
Fax: 408-737-5999
http://www.fma.fujitsu.com

Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fme.fujitsu.com

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. \#05-08, I5I Lorong Chuan
New Tech Park, Singapore 55674I
Tel: +65-6281-0770
Fax: +65-6281-0220
http://www.fmal.fujitsu.com

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER,
1002 Daechi-Dong
Kangma-Gu, Seoul I35-280, Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7III
http://www.fmk.fujitsu.com

[^0]
[^0]: © Spansion LLC. All rights reserved. Spansion LLC, Spansion, the Spansion logo, MirrorBit, and combinations thereof are trademarks of Spansion LLC. Microsoft and Windows are registered
 trademarks of Microsoft Corporation in the U.S. and/or other jurisdictions. Other product names are for informational purposes only and may be trademarks of their respective companies.

