

From Struts to JavaServer Faces
Evolving Your Web Applications to Support the New Standard

Kito D. Mann, editor-in-chief, JSF Central
May, 2005

Professional Tools for Eclipse

From Struts to JavaServer Faces

Table of Contents

Executive Summary___3

The Evolution of Java Web Application Frameworks __________________________3

JavaServer Faces - The New Standard ____________________________________4

User interface event-oriented development________________________ 5

A solid component framework __________________________________ 5

Support for multiple client devices_______________________________ 6

Robust tool support __ 6

An extensible architecture _____________________________________ 9

Migrating to JavaServer Faces___9

When to migrate___ 9

Migration barriers___ 10

Migration strategies ___ 10

Components only ___ 11

Incremental migration _______________________________________ 12

Full migration __ 13

Building New JavaServer Faces Applications_______________________________14

Conclusion ___15

References___17

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 2

From Struts to JavaServer Faces

Executive Summary

Last year, the Java Community Process (JCP) completed the initial version of
JavaServer Faces (JSF), the new standard framework for web application
development. JSF offers a user interface (UI) component model, an event-driven
programming model, and several other features that ease the process of developing
web applications.

With the advent of JSF, organizations that have standardized on other web
frameworks, such as Struts, are evaluating their options for future development.
First, they are interested in the key benefits that moving to JSF will provide,
including the true value of JSF tools. Secondly, they are examining the possibilities
for leveraging their existing code base and skill sets. Finally, they are interested in
best practices for building new applications with JSF. This white paper addresses
these questions with a thorough discussion of key JSF features and an overview of
how your organization can begin migrating to JSF.

The Evolution of Java Web Application Frameworks

In the past few years, the process of Java web development has been aided by a
healthy abundance of web development frameworks. These frameworks have built
upon the foundation laid by servlets and Java Server Pages (JSP) to provide robust
facilities for form handling, layer separation via the Model-2 design pattern,
navigation handling, templating, internationalization, and a host of other features.

Most of these frameworks grew out of real-world development experiences, filling in
the areas where standard Java technologies – servlets and JSP – lacked functionality.
Over time, Apache Struts emerged as the framework of choice, largely because it
was early to market and provided all of the core features necessary at the time.
Struts has also maintained its popularity partly because of a strong commitment to
end-users, a vibrant community, and a solid understanding of the importance of
backwards compatibility. Struts is also the only framework whose popularity has
generated a significant market for development tools and books.

Even though Struts is the most popular Java web development framework, many
don't consider it the best choice on the market. As a result, the landscape has been
flooded by alternative options such as WebWork, Tapestry, Echo, and several others.
Even more comprehensive frameworks like Spring offer basic web development
services such as Spring MVC.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 3

From Struts to JavaServer Faces

The multitude of choices for Java web development has led to framework paralysis –
choosing the correct framework has become a complicated, time-consuming task.
While the competitive aspects of choice in the Java ecosystem can improve individual
products, the impact becomes negative when there are too many choices.

JavaServer Faces – The New Standard

As competition between the Java and Microsoft .NET communities heats up, the
appeal of the Microsoft ASP.NET's single-solution approach becomes obvious. From a
management perspective, having a clear path is not only appealing, but more cost-
effective in terms of employee resources. The simplicity of a single choice, coupled
with ASP.NET Web Forms' powerful component model and vibrant component
marketplace, makes it a compelling alternative to the multitude of choices in the
Java landscape.

Component models are not foreign to Java – web frameworks such as Tapestry and
Echo have had components for some time – but leading frameworks such as Struts
do not offer these features.

With the advent of ASP.NET and the continual crowding of the Java web framework
marketplace, it has become clear that Java requires a standard web framework with
a powerful component model. Such a framework could leverage the best features the
Java ecosystem can offer, while simplifying the selection process for development
shops and simultaneously opening up a third-party component market. This is the
goal of JavaServer Faces (JSF) technology.

JSF offers several features that establish it as the foundation for the next generation
of Java web development:

• Robust tool support
• A solid component framework
• A set of standard UI components
• Form validation
• Extensible support for multiple client devices
• User interface event-oriented development
• Internationalization and localization support
• Extensible type conversion
• Navigation handling
• Declarative association of the UI with application code
• An extremely extensible architecture

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 4

From Struts to JavaServer Faces

While many of these features have been present in other Java web frameworks, JSF
has the particular distinction of heavy industry support and the backing of the Java
Community Process (JCP). Within the first year, JSF has already generated the
market for third-party tools and books that Struts required years to create.

In addition, JSF's features are geared towards ease of use. With support for UI
components and a simplified event-oriented programming model, developing web
applications is significantly easier and faster than with alternative frameworks such
as Struts.

Let's examine a few of these features in more detail.

User interface event-oriented development

Traditional web application development involves thinking in terms of HTTP requests
and responses, and requires a high degree of familiarity with the nuances of the
protocol. This contrasts with traditional thick client application development
promoted by rapid application development (RAD) tools like Microsoft Visual Basic
and Borland Delphi as well as Swing. These tools and APIs work in terms of user
events like clicking on a button or changing the value of a text control. These events
are then associated with application code via event handlers.

This event-oriented approach is a more natural and productive method of developing
applications, and lets developers concentrate on responding to the user's actions as
opposed to pulling values from an HTTP request.

Although a few Java web frameworks have promoted this event-oriented approach,
JSF is the first to push it into the mainstream. In JSF, all application code responds
to user interface events so that developers no longer need to concern themselves
with the nuances of HTTP. In addition, JSF can automatically associate form values
with application objects, eliminating the need for handling this process manually for
every request.

A solid component framework

Events in JSF are generated by UI components. A UI component can be something
as simple as a text box, or more complicated like a data grid (a la Swing). This
allows developers to build UIs by assembling a collection of components and then
associating them with object properties and event handlers. Gone are the days when
a developer had to spend a disproportionate amount of time developing basic UI
elements and writing large amounts of JavaScript code which was irrelevant for the
applications' business domain.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 5

From Struts to JavaServer Faces

While the JSF specification contains a basic set of UI components such as text fields,
list boxes, check boxes, panels, and so on, the real power of JSF is its ability to
support third-party components. There are already several components on the
market (some commercial and some open source), which provide pre-built, drop-
down menus, tree controls, enhanced data grids, and so on. Often these components
make use of JavaScript and DHTML when appropriate, which creates a more client-
friendly UI without the additional custom programming that is often necessary.

As the market matures, Java web development will concentrate more on assembling
these components than working with HTTP. This reduces the overall costs of
development by limiting the amount of work required to develop robust UIs, allowing
developers to focus on core business logic. In addition, since components are
developed by organizations with a vested interest in improving their products, the
capabilities that they provide often exceed the capabilities provided by in-house
development teams. The end result is a more powerful, attractive, and functional
user interface developed with fewer man-hours.

Support for multiple client devices

While the HTML browser is still the dominant client delivery mechanism, any
framework which desires relevance in the long-term must also support alternative
choices. JSF has the ability to dynamically display different types of markup to
different client devices. As a matter of fact, UI components can be decoupled from
the way they are displayed. This allows developers to switch to entirely new devices
with minimal coding effort. Currently, JSF components can be displayed as WML,
SVG, XML, and even displayed to telnet devices. JSF components can also expose
rich DHTML interfaces and Asynchronous JavaScript and XML (AJAX) functionality to
enable a richer client experience.

Robust tool support

Since JSF was designed with tool support in mind, it has garnered heavy support for
tool vendors. Those who have worked with powerful Struts development tools such
as M7's NitroX know that solid development tools can greatly enhance the
productivity of a development team.

JSF's tool support enables the kind of IDE integration that is the domain of Java tools
with visual Swing editors, or visual-oriented IDEs such as Microsoft Visual Studio.NET
and Borland Delphi. This includes support for a component palette, property editors,
and the ability to drag and drop components onto a design surface. JSF tools also
support visual editing of navigation rules – the path from one page to the next. In
addition, tools like M7's NitroX for JSF exhibit a key understanding of the different
artifacts involved in a JSF project, automating the synchronization between
configuration files, JSPs, and application code.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 6

From Struts to JavaServer Faces

Figures 1 through 4 show how tools can bring a powerful approach to rapid
application development of Java web applications.

Figure 1. M7 NitroX JSF drag & drop development

Figure 2. M7 NitroX code completion for JSF related artifacts

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 7

From Struts to JavaServer Faces

Figure 3. M7 NitroX validation & error checking between JSF related artifacts, JSP & Java files

Figure 4. M7 NitroX JSF faces-config.xml editors

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 8

From Struts to JavaServer Faces

These advanced features offer a dramatic value proposition when compared with
developing web applications without tool support, which is often the case with other
Java web frameworks.

An extensible architecture

While the goal of JSF is to provide a single standard for Java web development, the
members of the JSF expert group are not oblivious to the current state of the Java
web development landscape. As such, they placed an extraordinary emphasis on
providing extension points throughout JSF's architecture. These extension points
allow for integration with existing frameworks, enabling development organizations
to continue using their framework of choice in conjunction with JSF. This protects
existing investments while providing a migration path for the future. Moreover, this
open architecture allows other frameworks to support one of JSF's key benefits – UI
components. Already, both Struts and Spring have provided integration libraries that
utilize these extension points.

Migrating to JavaServer Faces

As momentum behind JSF continues to grow, development managers face key issues
about how to move forward with existing and new projects. They must determine
situations under which migration is necessary or cost-effective, and which migration
strategy is the best choice.

When to migrate

In the past, most development teams chose Struts because of its strong industry
backing and its strong basic capabilities. Use of JSF, however, is rapidly growing due
to leaps in developer productivity. Organizations that wish to actively develop
existing applications (whether or not they use Struts) should definitely consider
migrating to JSF.

Migrating to JSF enables teams to take advantage of the framework's key benefits,
and to leverage the growing market of third-party components and tools. For
applications that are in maintenance mode and do not foresee any major changes,
migration is not necessary, especially if the maintenance staff is already well versed
in Struts.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 9

From Struts to JavaServer Faces

Migration barriers

There are few obstacles to beginning work with JSF. There are several books on the
marketi, on-line documentationii, third-party componentsiii, on-line resources such as
JSF Centraliv, and development tools such as M7 NitroXv. There are also two
implementations – Sun's reference implementation (RI)vi and Apache MyFacesvii.

Currently, both JSF implementations use JavaServer Pages (JSP) as their templating
mechanism for declaring pages. JSF has the ability to support other templating
mechanisms such as pure XML or Java code, but that support has not yet been
exploited in shipping products. Consequently, migrating to JSF at this time requires
using JSP.

The most important barrier is the skill set of the development team. For teams that
have spent the majority of their development careers building web applications and
using frameworks such as Struts, the component and event-oriented model for JSF
development can prove difficult to understand initially. Developers usually benefit
from a quality book, and are often more productive once they fully master the
concepts. Many of the skills developed using other frameworks are essential for
developing JSF applications as well.

Developers that have been exposed to web frameworks such as Tapestry or Echo,
Java Swing designers, or tools such as Microsoft Visual Studio.NET, Microsoft Visual
Basic, Borland Delphi, or Sybase PowerBuilder usually grasp component-oriented
methodologies quicker.

Migration strategies

JSF's extensible architecture allows for a variety of approaches for working with
existing applications. The most conservative approach is to use JSF components
without other framework features. Alternatively, it is possible to migrate
incrementally or perform a complete migration.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 10

From Struts to JavaServer Faces

Components only

Supporting JSF components in existing non-JSF applications allows you to take
advantage of the growing UI component marketplace while minimizing the cost of
rewriting existing elements of your applications. This is especially beneficial when
you have a large, complex application and limited time.

Using JSF components with an existing application requires integrating JSF with the
application's existing framework. For example, Struts has a library called Struts-
Facesviii, which integrates JSF and Struts (there is also a Spring integration libraryix
available).

Struts-Faces enables you to build UIs using JSF components while using your
existing Struts actions. This is achieved with specialized JSF event listeners that
execute the Struts request processing chain. The Struts actions and forwards work
as usual, and are unaware of JSF. This is possible because both Struts and JSF are
implemented as servlets that execute within the same web application (see figure 5).
Since they are running within the same application, they can also share variables
and application logic.

Figure 5. When using JSF components only, all events are forwarded to Struts. Both the JSF and Struts
servlets execute within the same web application.

For applications which do not use Struts or Spring, you must either use a similar
third-party integration library, or develop such a library yourself. The rules are the
same, however. The migration process consists of replacing proprietary UI custom
tags with JSF component tags, perhaps creating some specialized custom tags that
integrate with the framework, and developing JSF event listeners that delegate
control to your existing application logic. The general strategy is depicted in figure 6.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 11

From Struts to JavaServer Faces

Figure 6. For non-Struts applications, the process is the same: JSF event listeners delegate control to
existing application logic.

Incremental migration

When the eventual goal is to migrate to JSF completely, you can do so incrementally.
This allows you to begin taking advantage of JSF's benefits quickly, with minimal
impact on your existing infrastructure. Incremental migration is especially useful
when you need to continually roll out new features while upgrading to JSF at the
same time. It is also particularly well suited for agile development approaches,
because each release can include migration of a specific portion of the application.

Incremental migration can be achieved using integration libraries much like
component-only migration. As a matter of fact, component-only migration can be the
first step towards incremental migration. Once your application works using JSF
components instead of proprietary custom tags, the next step is to begin moving
application logic to JSF backing beans. Backing beans in JSF are a combination of
Struts actions and action forms (similar to WebWork actions), but do not require a
base class.

For well-segmented applications with business logic in separate domain-specific
objects, moving the application logic is a fairly trivial task. The task is trivial because
the code in the web layer is basically responsible for executing business logic classes,
evaluating the result, and directing the user to the proper response page. Migration
simply involves moving this code to JSF backing beans.

For situations where business logic is dispersed throughout web-layer actions, the
process can be more complicated. In these cases, migration is an opportunity for
refactoring the code to be more loosely coupled.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 12

From Struts to JavaServer Faces

Incremental migration can be performed by converting portions of application logic,
after migration of all pages to JSF components, or by migrating related pages and
application logic simultaneously. This is possible because all of the code is running in
the same web application, so even if part of the application uses JSF and part uses
another framework, the same objects can be shared (see figure 7).

Figure 7. The key to integrating with JSF is understanding that you can have multiple servlets, and that
application logic in a JSF environment and a non-JSF environment can access the same objects, as long as

they’re in the same web application.

Figure 8 compares a related
set of Struts artifacts with
their JSF equivalents.
As the figure shows, there
are three layers that must
be migrated to JSF:
configuration, JSP pages,
and application logic. In
many cases, these artifacts
map particularly well. For
example, a Struts forward i
roughly equivalent to a JSF
navigation rule; both are
handled through
configuration files. Also,
most Struts tags have JSF
equivalents.

s

Copyright © 2005 Virtua, Inc. Unauth
Figure 8. Migrating to JSF requires moving configuration elements,
updating JSPs, and refactoring or re-writing application layer code.
orized reproduction prohibited. 13

From Struts to JavaServer Faces

Full migration

Rather than migrate an application incrementally, you can migrate the entire
application at once. This approach is somewhat more cohesive, because the
application is never in an inconsistent state – it uses either one framework or the
other at all times. Full migration is more time consuming, but it is a very logical
approach when there is a need to rewrite or substantially update the application, and
you have the luxury of more time before an initial deployment. In addition, it
provides an opportunity to take advantage of some of JSF's unique features, as
opposed to simply porting the application.

The process of full migration is conceptually similar to the process of incremental
migration, as shown in figure 8 – the configuration, page, and application layers
must be converted. The key difference is that no integration library is necessary,
which means that the entire application must be migrated before all of its
functionality will be available. Since no integration library is necessary, this option is
especially well suited for home-grown frameworks and commercial or open-source
frameworks for which no library currently exists.

Building New JavaServer Faces Applications

JSF's extensive industry backing, powerful architecture, component model, and
growing third-party component market make it a compelling choice for Java web
development. Those beginning new web development projects should use JSF, in
order to take advantage of its benefits and ensure long-term community and
industry support.

The heavy support of tools vendors can not be understated, because they can
dramatically increase productivity, which may directly impact on the overall cost of a
project. JSF tools come in a variety of flavors, from basic plug-ins, to added support
in full-fledged IDEs, and powerful, dedicated plug-ins like M7 NitroX.

Vibrant community support is available through the Apache MyFaces project, which is
growing in leaps and bounds, as well as community projects at java.netx, which
provide transparent access to both the development of the RI, as well as the
development of the specification itself.

JSF is a compelling choice not just for plain vanilla HTML applications, but also for
powerful AJAX applications, and other clients such as WAP devices or even telnet
devices. Support for all of these clients is possible through its component technology
and powerful rendering architecture.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 14

From Struts to JavaServer Faces

Even though JSF has proven itself as a powerful framework for building applications,
due to its youth, it may not have every feature available in more established
frameworks. However, its extensibility means that one can develop additional
functionality on top of the JSF core. This approach makes it easy for development
teams to extend JSF with custom functionality.

The best example of this approach today is the Struts Shale projectxi, which adds an
extensible request processing approach using the "chain of responsibility" pattern,
additional support for developing dialogs, automatic creation of backing beans, and
even support for non-JSP display technologies. In addition, component sets like
Oracle ADF Facesxii provide additional functionality above and beyond the standard
JSF runtime. By leveraging these third-party extensions as well as custom
enhancements, development teams can maximize their productivity while building
upon a solid foundation simultaneously.

Conclusion

Over the years, the Java web development landscape has become fragmented, due
to lack of a standard web application framework. Apache Struts has emerged as the
de-facto standard, but a steady stream of competitors continue to proliferate,
attempting to provide additional features which Struts lacks. This proliferation has
created framework paralysis – difficulty in deciding which framework is the best
choice for a given project.

Framework paralysis has a negative impact on productivity, and decreases the
overall value proposition of Java development. JavaServer Faces (JSF) is the
standard best-of-breed framework that is intended to ease the process of web
application development in Java. It offers a powerful UI component framework, a
basic set of UI components, an extensible architecture, and several other features
that position it as the new choice for web application development.

Teams that are currently using older frameworks such as Struts have several options
for migrating to JSF. The simplest of these options is to utilize JSF components while
maintaining application logic within the existing framework. This approach makes it
easy to take advantage of the growing market of third-party JSF UI components
while having a minimal impact on the application's overall architecture.

Migration can also be performed in an incremental fashion, converting only pieces of
the application to JSF at a time. This approach makes sense when the entire
application must be ported eventually, but new features must be rolled out quickly.
Incremental migration is also especially well suited for agile development shops.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 15

From Struts to JavaServer Faces

For situations where more time is available, or when a major update or rewrite is
necessary, full migration is a viable option.

New projects should consider using JSF because of the market for powerful tools like
M7 NitroX, components, and growing open source community around products like
Apache MyFaces and Apache Struts Shale.

Kito D. Mann is editor-in-chief of JSF Central (http://www.jsfcentral.com) and the
author of JavaServer Faces in Action (Manning). He is also a member of the JSF
1.2 and JSP 2.1 expert groups and Principal Consultant at Virtua, Inc.,
specializing in enterprise application architecture, development, training,
mentoring, and JSF product strategy. He holds a BA in Computer Science from
Johns Hopkins University.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 16

http://www.jsfcentral.com/

From Struts to JavaServer Faces

References

i For a list of JSF books, see http://www.jsfcentral.com/reading.

ii Sun Microsystems. The J2EE 1.4 Tutorial, chapters 17-21.

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

iii For a list of third-party JSF components, see http://www.jsfcentral.com/products.

iv Virtua. JSF Central JavaServer Faces community and FAQ.

http://www.jsfcentral.com.

v M7. NitroX for JSF Eclipse-based web IDE for open source and standard platforms,

http://www.m7.com/product.do.

vi Sun Microsystems. JSF reference implementation.

http://java.sun.com/j2ee/javaserverfaces.

vii Apache. MyFaces open source JSF implementation. http://myfaces.apache.com.

viii Apache, Struts-Faces integration library.

http://cvs.apache.org/builds/jakarta-struts/nightly/struts-faces/.

ix Mindmatters. JSF-Spring integration library. http://jsf-spring.sourceforge.net.

x Sun Microsystems. Project home for the JSF Reference Implementation.

https://javaserverfaces.dev.java.net.

xixi Apache. Struts Shale next generation Struts subproject.

http://wiki.apache.org/struts/StrutsShale.

xii Oracle. ADF Faces components.

http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/excha
nge/jsf/index.html.

Copyright © 2005 Virtua, Inc. Unauthorized reproduction prohibited. 17

http://www.jsfcentral.com/reading
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html
http://www.jsfcentral.com/products
http://www.jsfcentral.com/
http://www.m7.com/product.do
http://java.sun.com/j2ee/javaserverfaces
http://myfaces.apache.com/
http://cvs.apache.org/builds/jakarta-struts/nightly/struts-faces/
http://jsf-spring.sourceforge.net/
https://javaserverfaces.dev.java.net/
http://wiki.apache.org/struts/StrutsShale
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/index.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/index.html

JSF Central (http://www.jsfcentral.com) is
the leading community for managers,
architects, and developers interested in
using JavaServer Faces technology. The
site features an extensive listing of news,
articles, blog entries, products, and other
resources. For more information, contact
info@jsfcentral.com.

JSF Central is a service of Virtua, Inc., an
enterprise consulting, training, and web
publishing company. For more
information, contact info@virtua.com.

Professional Tools for Eclipse

M7 Corporation, Inc, the leader in web
application tools based on open source and
open standard technologies, is exclusively
focused on improving the development of
web applications for serious developers
who want to avoid platform lock-in. M7
draws on its long history of experience in
understanding the complexity of web
application development. Drawing on this
depth of understanding, M7 develops
innovative products, such as NitroX, which
fuel an incredibly high level of productivity
in creating, editing, or debugging any part
of a complex web application.

Based in Cupertino, CA, M7 is privately
held and venture backed by Highland
Capital Partners, Redpoint Ventures, CIR
Ventures and Genevest. For additional
information, visit the company’s web site
at www.m7.com.

Copyright © 2005 Virtua, Inc. All rights reserved. Unauthorized reproduction is prohibited.

Virtua and JSF Central are trademarks of Virtua, Inc. M7 and NitroX are trademarks or registered
trademarks of M7 Corporation. Java, JavaServer Faces, and all Java-based marks are trademarks or
registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Virtua, Inc. is
independent of Sun Microsystems, Inc. All other trademarks are the sole property of their respective
owners.

http://www.jsfcentral.com/
http://www.m7.com/

	Executive Summary
	The Evolution of Java Web Application Frameworks
	JavaServer Faces – The New Standard
	User interface event-oriented development
	A solid component framework
	Support for multiple client devices
	Robust tool support
	An extensible architecture

	Migrating to JavaServer Faces
	When to migrate
	Migration barriers
	Migration strategies
	Components only
	Incremental migration
	Full migration

	Building New JavaServer Faces Applications
	Conclusion
	References

