

Technical White Paper – February 2005

LZS Compression
Benefits of TLSComp

__
LZS Compression Benefits of TLSComp (WP-0129-00) - 1 -

2/05 © 2005, Hifn, Inc. All rights reserved.

No part of this publication may be reproduced, transmitted, transcribed, stored in a
retrieval system, or translated into any language in any form by any means without the
written permission of Hifn, Inc.

Trademarks

Hifn®, FlowThroughTM, and HIPP are registered trademarks of Hifn, Inc. Hifn™ and the Hifn
logo are trademarks of Hifn, Inc.

All other trademarks and trade names are the property of their respective holders.

__
LZS Compression Benefits of TLSComp (WP-0129-00) - 2 -

The Desire For Data Compression
In data communications it is desirable to have faster transfer rates at lower
costs. Data compression addresses these demands by reducing the amount
of data that must be transferred over a medium of fixed bandwidth, thus
reducing the connection time. Data compression also reduces the media
bandwidth required to transfer a fixed amount of data with a fixed quality of
service, thus reducing the tariff on this service.

Transport Layer Security (TLS), a standards-based version of SSL, is used
extensively to secure client-server connections on the World Wide Web.
Although these connections can often be characterized as short-lived and
exchanging relatively small amounts of data, TLS is also being used in
environments where connections can be long-lived and the amount of data
exchanged extends into millions of octets. For example, TLS is now
increasingly being used as an alternative Virtual Private Network (VPN)
connection. Compression services have long been associated with Internet
Protocol Security (IPSec) and Point to Point Tunneling Protocol (PPTP) VPN
connections, so extending compression services to TLS VPN connections
preserves the user experience for any type of VPN connection. Now end
users can benefit from compression at layer 2 (PPP), layer 3 (IP), and layer 5
(TLS), as illustrated in Figure 1.

Figure 1. Comparing compression schemes in data networking

Compression within TLS is the most efficient technique to help reduce the
bandwidth and latency requirements associated with exchanging large

__
LZS Compression Benefits of TLSComp (WP-0129-00) - 3 -

amounts of data while preserving the security services provided by TLS.
Since encrypted data cannot be compressed, TLS security defeats layer 2 and
layer 3 compression, so there is a need for layer 5 compression.

The technical benefit of incorporating compression with TLS is the ability to
compress all data in a TLS connection, whereas other protocols only
compress certain types of browser content from the TLS server.
Incorporating LZS (Lempel-Ziv Stac, an update of basic Lempel-Ziv
algorithm) compression into security devices better enhances the end user
experience along with protecting their data.

For example, Microsoft IIS v6.0 by default only supports HTTP compression
for .HTM, .HTML, and .TXT file types on a web server. The web manager
must manually configure other file types on every server. Furthermore,
enabling HTTP compression uses more CPU resources, server memory, and
disk storage, as the server must now compress the cached content and store
it somewhere. In fact, the web manager is cautioned not to enable HTTP
compression if the server's CPU load is already too high.

Conversely, TLS security using LZS compression is embedded in the
hardware security accelerator that encrypts the client-server connection,
which guarantees line speed performance, and requires no server CPU cycles,
disk resources, nor memory resources.

Figure 2. LZS compression with TLS security

Highly efficient compression software embedded in the client side utilizes
minimal client CPU cycles to perform decompression operations.
Compression software agents can be dynamically downloaded from TLS VPN
servers to authenticated TLS clients.

All data that is secured by TLS in the client-server connection is also
compressed, not just certain statically pre-defined file types. Furthermore,
TLS compression using LZS is automatic and requires no interaction by users,
IS or web managers to enable its use.

Provisions for data that does not compress is handled automatically by the
TLS compression hardware on the server and software on the client.

__
LZS Compression Benefits of TLSComp (WP-0129-00) - 4 -

Eliminating data expansion also preserves line speed with no server CPU
cycles and minimal client CPU cycles.

LZS compression plays a vital role for data communication equipment
manufacturers. Most security processors today contain high-speed
compression engines that enable service providers the following benefits,
which in turn, are passed on to the VPN user:

• Compressed packets consume less network equipment bandwidth

• Compression reduces fragmentation of records due to additional security
headers, since payload length is decreased

• Line rate performance is significantly enhanced

The rest of this article details how to integrate LZS data compression in TLS
VPN applications.

The Magic of LZS Compression
Data compression works by having a compressor at one end of the data link
and a decompressor at the other end. For full-duplex communication there
would be a compressor for the forward channel and a decompressor for the
reverse channel at each end of the communication link. For TLS VPN
applications, the server would have LZS compression built in the encryption
accelerator and the client would have a downloadable software agent.

The LZS compression algorithm works by searching for redundant data
strings in the raw input data stream and replacing these strings with encoded
tokens of shorter length in the compressed output data stream. When the
LZS algorithm finds a string in the raw input data that matches a previous
string, it creates an encoded token that consists of a pointer to the previous
data matched from the input stream. The encoded tokens then replace the
redundant strings in compressed data stream. In this way future data is
compressed based on previous data.

The compression engine maintains a “sliding window” compression history,
which contains the last 2Kbytes of raw input data, as well as other data
structures to accelerate the compression operation. As illustrated in Figure
3, the compression engine searches this history looking for string matches to
create the tokens. Similarly, the decompression engine at the other end of
the data link maintains an identical decompression history, which contains
the last 2Kbytes of output data to which encoded tokens point.

Thus, the more redundant the data in the input stream the higher the
compression ratio will be. Conversely, the more random the data in the
stream the lower the compression ratio will be. This is why encrypted data
does not compress. Compression ratio is defined as the number of input
bytes divided by the number of compressed output bytes. The less output
bytes the higher the compression ratio.

__
LZS Compression Benefits of TLSComp (WP-0129-00) - 5 -

Figure 3. LZS compression & decompression process

The decompression engine uses its own 2Kbyte history to recreate the raw
data pointed to by the encoded tokens created by the compression engine.
The decompressor writes the decompressed output bytes back to the history,
and this is how the decompression history is created & maintained at the
receiver. Thus, the compression history is created at each end of the
communication link, but never has to be transmitted. The compression and
decompression histories at each end of the data link must always match,
otherwise the decompressor may output garbage pointed to by the token.

The format of the compressed data stream consists of literal data and
compressed tokens. Literal data are input data strings that could not be
matched (compressed). Compressed tokens consist of an offset to a location
in the compression history that contains the string match, and a length of
number of bytes that match this string. An example would be “go back 150
bytes and output the subsequent 10 bytes”. Thus, the tokens can be viewed
as pointers into the 2 Kbyte compression history. At the beginning of a
compressed record most encoded tokens are literals, until enough data is
processed so that the input data stream starts matching the history content.

At the end of each compression operation, all compressed data is output and
an LZS end marker is appended to the compressed data stream. The LZS
end marker is a unique token used by the decompressor to find the end of
the compressed data.

The LZS decompression algorithm works by taking the compressed data and
performing one look-up for each compressed token. The decompressor reads

__
LZS Compression Benefits of TLSComp (WP-0129-00) - 6 -

the offset, jumps to that location in decompression history and outputs the
length of bytes starting at that offset.

Compression History Maintenance
In some applications, such as IP, packets are communicated over an
“unreliable” media, which means packets can arrive out of order or possibly
not at all. In this case the LZS history must be cleared for every packet.
This means that the compressor and decompressor must start building a
compression history from scratch for every packet.

However, TLS sessions are communicated over a reliable media, which
guarantees in-order transport off every single byte between client and
server. In this case, the LZS data compression algorithm allows the history
information to be preserved between multiple compression operations,
resulting in a higher compression ratio for each client-server connection.

A property of the LZS algorithm is that maintaining or clearing the history is
a function entirely of the compressor. Under normal operating conditions the
decompressor is unaware of whether the compressor maintained or cleared
the history between successive TLS records. That is, the compressed data is
“self-extracting”.

Referring to Figure 4, if you consider the LZS encoded format of offsets and
lengths, maintaining the history implies that there may be offsets pointing
into previous records that have been compressed in this history (up to
2Kbytes back). Clearing the history between records implies that there will
be no offsets pointing prior to the beginning of the current packet. Either
way, the decompressor still reads the offset and outputs the number of bytes
specified by the length.

__
LZS Compression Benefits of TLSComp (WP-0129-00) - 7 -

<Compressed Stream> := [<Compressed String>] <End Marker>
 <Compressed String> := 0 <Raw Byte> | 1 <Compressed Bytes>
 <Raw Byte> := (8-bit byte)
 <Compressed Bytes> := <Offset> <Length>

 <Offset> := 1 | (7-bit offset)
 0 (11-bit offset)
 <End Marker> := 110000000

 := 1 | 0

 <Length> :=
 00 = 2 1111 0110 = 14
 01 = 3 1111 0111 = 15
 10 = 4 1111 1000 = 16
 1100 = 5 1111 1001 = 17
 1101 = 6 1111 1010 = 18
 1110 = 7 1111 1011 = 19
 1111 0000 = 8 1111 1100 = 20
 1111 0001 = 9 1111 1101 = 21
 1111 0010 = 10 1111 1110 = 22
 1111 0011 = 11 1111 1111 0000 = 23
 1111 0100 = 12 1111 1111 0001 = 24
 1111 0101 = 13 ...

Figure 4. LZS data compression format

Because the decompressor may have references in its history prior to the
beginning of the current record, it is important that when keeping history
that the decompressor must decompress records in the same order they
were compressed in. That is why a reliable media is required for keeping
history. For, if successive packets were decompressed out of order, then an
offset may point to the wrong data string and the resultant output will appear
to be garbage.

Conversely, for lossy media such as IP, when clearing the history after each
packet it does not matter which order packets are decompressed in a given
history.

Multiple History Support
For TLS VPN servers that process multiple streams of data concurrently
between many clients, it is important to note that each TLS VPN connection
requires its own compression history in order to provide optimal compression
ratio performance.

Alternatively, if the implementation were to utilize only one LZS history for all
TLS sessions, then it must clear the history information after compressing
each TLS record, degrading compression ratio for all compressed records.

To achieve maximum redundancy over multiple data streams, and therefore
higher compression ratios in each data stream, the TLS VPN needs to
associate separate histories in each client-server TLS context.

The cost of providing this efficiency is the amount of memory in the
compressor and decompressor, which varies by implementation but can be
as low as 4KB (8KB for software) for each full-duplex TLS session. In a

__
LZS Compression Benefits of TLSComp (WP-0129-00) - 8 -

server, compression histories are stored in the security/compression device’s
local memory.

Handling Data Expansion
There are some kinds of data (e.g. random data) that will not compress.
That is, under some conditions it is possible for the compressed data to be
larger in size than the raw data. This is called data expansion. When
maintaining histories, there are 3 possible solutions to resolve data
expansion.

The first option is to simply transmit the expanded data and suffer the lost
bandwidth (due to larger record size) when transmitting the current record.
This preserves the potential compression ratio benefit for transmitting future
record as the history is maintained. Fortunately, LZS can only expand to a
maximum of 12.5% under worst-case conditions, if absolutely no raw input
data could be compressed. In this case the transmission speed would be
12.5% slower than sending the raw data. However, this scenario simplifies
the transmitter and receiver implementations. This option requires no
communication between transmitter and receiver.

However, in some systems this lost bandwidth is unacceptable. And it is also
possible that subsequent packets may not compress. The second option to
deal with data expansion is to send the raw data and reset the compression
history. This technique preserves the bandwidth of the current record
transmission, but causes future record transmissions to suffer because the
compression history will need to be rebuilt.

This second option needs special handling by the transmitter. The record
processing layer of the transmitter must notify the receiver that this packet
of data is not compressed, and the receiver must not decompress this packet
of data. The TLS compression using LZS standard has the
“compressed/uncompressed” (C/U) flag bit in the TLSComp header that
communicates whether the record payload is compressed or not.

Since the compressor already compressed the data for this packet even
though it did not transmit it, the decompressor’s history would no longer be
identical to the compressor’s history, so the compressor’s history must be
cleared. The TLS compression using LZS standard has the “reset
compression history” (RST) flag bit in the TLSComp header that
communicates when the decompressor should clear its history.

The third option is to send the raw data and update the decompressor’s
history with the raw data, which is the most optimal of the three scenarios.
This option preserves the bandwidth of both the current transmitted data (by
sending the smaller of the data) and future transmitted data (by preserving
the compression history).

In this case the transmitting record processing layer informs the receiver that
the payload is uncompressed, but the history has not been cleared, using the
C/U and RST header flags. The receiver will not decompress this record

__
LZS Compression Benefits of TLSComp (WP-0129-00) - 9 -

payload. The LZS algorithm has provisions for updating the decompression
history with the uncompressed TLS record payload.

This synchronizes the compressor’s and decompressor’s histories while
maintaining the highest compression ratio. This feature is referred to as
“anti-expansion”.

It can be seen how the LZS compression algorithm is optimized not only for
compressing data, but also for handling sub-optimal data that does not
compress well.

Enhancing The User Experience
Data compression is now a vital ubiquitous technology, because it maintains
the high-value user experience as remote users migrate from dial-up
connections to PPTP to IPSec to TLS VPNs. LZS compression plays a vital
role for data communication equipment manufacturers at communication
protocol layers 2, 3, and now 5.

Hifn’s high-performance security processors take advantage of this by
integrating high-speed pipelined compression engines that provide
compression along with security in one pass through the device. This
enables service providers to deploy OEM security equipment that improves
the remote user’s VPN experience with performance and bandwidth benefits,
such as, minimized network equipment bandwidth, reduced record
fragmentation, and enhanced line rate performance.

It is important that the system implementer understand the basic principles
of how compression technology works so it can be applied most effectively in
a TLS VPN system. Maintaining multiple compression histories, associating
compression histories with TLS sessions, and implementing anti-expansion
mechanisms are vital to successfully implementing an optimal compression
system in a TLS VPN solution.

The addition of LZS compression to the TLS protocol reflects the growing use
of compression in all networking applications to improve data rates over
standard protocols, including TLS, IPSec, PPP, Frame Relay, and IP storage
networks, as well as non-standard compression applications, such as SONET
and Fiber Channel networks. LZS data compression algorithm is an essential
ingredient for manufacturers of VPN/firewall appliances, multi-protocol
routers, remote access concentrators, web servers, server load balancers,
and all other data communication devices. This why the LZS compression
algorithm has been standardized by so many organizations, including the
IETF (RFC3943, RFC 2395, RFC 1974, RFC 1967) Frame Relay Forum
(FRF.9), ANSI (X3.241), and QIC (122).

