
Application Note
HOW LZS DATA
COMPRESSION WORKS

 How LZS Data Compression Works

Page 2 AN-0009-00 APPLICATION NOTE

Hi/fnTM supplies two of the Internet’s most important raw materials:
compression and encryption. Hi/fn is also the world’s first company to put
both on a single chip, creating a processor that performs compression and
encryption at a faster speed than a conventional CPU alone could handle, and
for much less than the cost of a Pentium or comparable processor.

As of October 1, 1998, our address is:

Hi/fn, Inc.
750 University Avenue
Los Gatos, CA 95032
info@hifn.com
http://www.hifn.com
Tel: 408-399-3500
Fax: 408-399-3501

Hi/fn Applications Support Hotline:
408-399-3544

Disclaimer

Hi/fn reserves the right to make changes to its products or to discontinue any semiconductor product
or service without notice, and advises its customers to obtain the latest version of relevant
information to verify, before placing orders, that the information being relied on is current.

Hi/fn warrants performance of its semiconductor products and related software to the specifications
applicable at the time of sale in accordance with Hi/fn's standard warranty. Testing and other quality
control techniques are utilized to the extent Hi/fn deems necessary to support this warranty. Specific
testing of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal
injury, or severe property or environmental damage ("Critical Applications").

HI/FN SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED,
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of Hi/fn products in such critical applications is understood to be fully at the risk of the
customer. Questions concerning potential risk applications should be directed to Hi/fn through a
local sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

Hi/fn does not warrant that its products are free from infringement of any patents, copyrights or other
proprietary rights of third parties. In no event shall Hi/fn be liable for any special, incidental or
consequential damages arising from infringement or alleged infringement of any patents, copyrights
or other third party intellectual property rights.

“Typical” parameters can and do vary in different applications. All operating parameters, including
“Typicals,” must be validated for each customer application by customer’s technical experts.

The use of this product may require a license from Motorola. A license agreement for the right to
use Motorola patents may be obtained through Hi/fn or directly from Motorola.

AN-0009-00 (2/99) © 1997-1999 by Hi/fn, Inc., including one or more U.S.
patents No.: 4,701,745, 5,003,307, 5,016,009, 5,126,739, 5,146,221, 5,414,425,
5,414,850, 5,463,390, 5,506,580, 5,532,694. Other patents pending.

 How LZS Data Compression Works

__
APPLICATION NOTE AN-0009-00 Page 3

Table of Contents
1 Overview.. 5
2 How LZS Data Compression Works.. 5

2.1 Maintaining the Compression History .. 6
2.2 Multiple Histories ... 7
2.3 Data Expansion ... 9

3 Summary .. 9
4 Appendix 1: A list of Hi/fn LZS Standards.. 10
5 Appendix 2: Hi/fn’s LZS Encoding Format... 10
6 Appendix 3: Glossary... 10
7 Appendix 4: Evaluation Software .. 11

Figures
Figure 1. LZS data compression format.. 7

 How LZS Data Compression Works

Page 4 AN-0009-00 APPLICATION NOTE

THIS PAGE INTENTIONALLY BLANK

 How LZS Data Compression Works

__
APPLICATION NOTE AN-0009-00 Page 5

1 Overview
In storage technology it is desirable to have greater storage capacity at lower
costs. Data compression addresses these demands by reducing the amount of
data that must be stored to a given size of media, thus lowering the cost of that
storage device.

In data communications it is desirable to have faster transfer rates at lower costs.
Data compression addresses these demands by reducing the amount of data that
must be transferred over a media with a fixed bandwidth, thus reducing the
connection time. Data compression also reduces the media bandwidth required
to transfer a fixed amount of data with a fixed quality of service, thus reducing
the tariff on this service.

Data compression works by having a compressor at one end of the data link and
a decompressor at the other end. For full-duplex communication there would be
a compressor for the forward channel and a decompressor for the reverse
channel at each end of the communication link.

2 How LZS Data Compression Works
The LZS compression algorithm works by searching for redundant data strings
in an input data stream and replacing these strings with encoded tokens of
shorter length in the output data stream. The LZS algorithm builds a table of
these string matches that consists of pointers into the previous data from the
input stream. The encoded tokens that are used to replace redundant strings are
created from information within this table. In this way future data is
compressed based on previous data.

Thus, the more redundant the data in the input stream the higher the
compression ratio will be, and conversely, the more random the data in the
stream the lower the compression ratio will be.

The compression engine maintains a compression history, which contains the
last 2Kbytes of input data, as well as other data structures to accelerate the
compression operation. The compression engine uses this history to search for
string matches to create the tokens. Similarly, the decompression engine at the
other end of the data link maintains an identical decompression history, which
contains the last 2KBytes of output data. The last 2Kbytes of input data
maintained in the compression history must be identical to the last 2Kbytes of
output data maintained in the decompression history. The decompression
engine uses its history to recreate the raw data from the tokens provided by the
compression engine. The compression and decompression histories at each end
of the data link must always match, otherwise the decompressor may output
garbage pointed to by the token.

The compressed stream data consists of literal data and compressed tokens.
Literal data are input data strings that could not be matched (compressed).
Compressed tokens consist of an offset to a location in history that contains the
string match, and a length of number of bytes that match this string. An
example would be “go back 150 bytes and output the next 10 bytes”. Thus, the
tokens can be viewed as pointers into the 2 Kbyte compression history

 How LZS Data Compression Works

Page 6 AN-0009-00 APPLICATION NOTE

The compression ratio is a result of two key factors: the actual data being
compressed, and the amount of searching done to match the “best” (longest)
string. Thus compression consists of intensive string searching and matching.
Many LZS products have a “tunability” feature where compression ratio can be
traded for compression speed by changing the amount of searching performed.
Decompression is much simpler, and hence much faster algorithm. The LZS
decompression algorithm works by taking the compressed data and performing
one look-up for each compressed token. The decompressor reads the offset,
jumps to that location and outputs the length of bytes starting at that offset.
Thus decompression is much faster operation than compression, and does not
require the tunability feature.

At the end of each compression operation, the LZS engine must be flushed.
Flushing consists of outputting any data held inside the LZS engine, and
outputting an end marker. Data is held inside the LZS engine because the
engine may be in the middle of a long string match. A flush operation
terminates this string match process. An end marker is a unique token (used by
the decompressor to find the end of the compressed data).

2.1 Maintaining the Compression History
In some applications data is compressed in small amounts. If the history
information regarding the input stream were reset after each compression
operation, the resulting compression ratio would not be optimum. Many of
Hi/fn’s data compression products allow the history information to be
maintained between multiple compression operations. This allows each
successive compression operation to utilize history information from the
previous compression operations. This yields a higher compression ratio when
compressing small amounts of data.

For example, in data communications data is transmitted in small units called
packets. These packets may be quite small (e.g. tens of bytes). The LZS
compression engine must be flushed for each packet so the compressed data can
be transmitted and the next packet may be processed. If the history were to be
reset on each packet, the overall compression ratio would be poor. However, if
the history information is maintained between flushes for each packet, then the
result would be a significantly higher compression ratio.

A property of Hi/fn’s LZS algorithm is that maintaining or clearing the history
is a function entirely of the compressor. Under normal operating conditions the
decompressor doesn’t know and doesn’t care if the compressor maintained or
cleared the history between successive packets. That is, the compressed data is
“self-extracting”.

Referring to Figure 1, if you consider the LZS encoded format of offsets and
lengths, maintaining the history implies that there may be offsets pointing into
previous packets that have been compressed in this history (up to 2Kbytes
back). Clearing the history between packets implies that there will be no offsets
pointing prior to the beginning of the current packet. Either way, the
decompressor still reads the offset and outputs the number of bytes specified by
the length.

Thus, it is important to note that when keeping history that the decompressor
must decompress packets in the same order they were compressed in. Again, if

 How LZS Data Compression Works

__
APPLICATION NOTE AN-0009-00 Page 7

successive packets are decompressed out of order, then an offset may point to
the wrong data string and the resultant output will appear to be garbage.
Conversely, when clearing the history after each packet it does not matter which
order packets are decompressed in a given history.

Figure 1. LZS data compression format

2.2 Multiple Histories
Bridges and routers are classical examples of applications that process multiple
streams of data concurrently. A router may establish multiple virtual
connections and transfer independent data streams over each virtual connection.
When compressing multiple streams of data it is important to note that data from
the same source and applications and bound for same destinations tends to be
redundant, but data from different sources and applications bound for different
destinations tends to be more random. That is, statistically the data in one
particular data stream typically is redundant. Conversely, the data in different
streams (which may represent separate virtual connections) will be less
redundant.

For example, one data stream can be an executable program loading for one
user, while another data stream can be a word processor file being down-loaded
to another user, while a third data stream could be a spreadsheet database
loading from a third user. Each data stream probably has redundant,
compressible data in it. However, each of the 3 channels probably have vastly
contrasting data from the others.

The problem is that a router cannot wait to receive the entire file before
compressing and transmitting it. This would require tremendous amounts of
memory and create tremendous amounts of delay (called latency) inside the
router. So, the router chops up the data stream into manageable sized packets of
information and transmits these packets on all 3 data streams concurrently.

<Compressed Stream> := [<Compressed String>] <End Marker>
 <Compressed String> := 0 <Raw Byte> | 1 <Compressed Bytes>
 <Raw Byte> := (8-bit byte)
 <Compressed Bytes> := <Offset> <Length>

 <Offset> := 1 | (7-bit offset)
 0 (11-bit offset)
 <End Marker> := 110000000

 := 1 | 0

 <Length> :=
 00 = 2 1111 0110 = 14
 01 = 3 1111 0111 = 15
 10 = 4 1111 1000 = 16
 1100 = 5 1111 1001 = 17
 1101 = 6 1111 1010 = 18
 1110 = 7 1111 1011 = 19
 1111 0000 = 8 1111 1100 = 20
 1111 0001 = 9 1111 1101 = 21
 1111 0010 = 10 1111 1110 = 22
 1111 0011 = 11 1111 1111 0000 = 23
 1111 0100 = 12 1111 1111 0001 = 24
 1111 0101 = 13 ...

 How LZS Data Compression Works

Page 8 AN-0009-00 APPLICATION NOTE

Since data is transferred in small packets, the router is constantly switching
between virtual connections to minimize latency for each session. However,
unless care is taken, this can reduce the compression ratio of data as it passes
through the router.

One option is to utilize one history and clear the history information after each
compression operation when the router switches from one virtual connection to
another. As seen in the previous section this is undesirable, because there will
never be much of a history to search for matches, and the compression ratio will
suffer.

Another option is to utilize one history and maintain all information in all data
streams in this one history. If the data streams are transmitted to multiple
points, then this technique will fail miserably as data bound for different
destinations are compressed in this one history, yet these data streams are
decompressed in histories that may not be synchronized to this history at all.
Even if all the data streams are received at the same destination, the
compression ratio will be poor unless all data streams are passing the same kind
of data.

To achieve maximum redundancy over multiple data streams, and therefore
higher compression ratios in each data stream, the router needs to maintain
separate histories for each data stream, and efficiently switch between these
multiple histories.

While Hi/fn’s research has determined that 2K bytes is the optimal history size
for the LZS algorithm, typical data communication packets are much smaller.
Since data is transferred in small packets, the router is constantly switching
between virtual connections (and their associated histories) to minimize latency
for each session and maximize compression ratio in each data stream.

Maintaining multiple histories requires that history data consisting of the input
data stream, as well as certain data structures maintaining string matches into the
history, and the state of the compression engine be saved. The compression and
decompression engines will maintain pointers into the compression history
memory area for each data stream. In this way, the compression engine may be
switched efficiently between the various data communication sessions with their
individual data compression histories. These data structures as well as their
histories are allocated separately for each virtual connection.

The cost of this efficiency is the amount of memory in the compressor and
decompressor, which is typically in the 16KB range for a full-duplex
communication stream.

Just as it is important to maintain history information between successive
compression operations over a single history, it is equally important to maintain
history information over multiple histories.

Thus, the concept of keeping history (and conversely clearing history) needs to
be implemented in products that implement multiple histories.

 How LZS Data Compression Works

__
APPLICATION NOTE AN-0009-00 Page 9

2.3 Data Expansion
There are some kinds of data that will not compress. That is, it is possible for
the compressed data to be larger in size than the raw data. This is called data
expansion.

If the application is data communications where the goal is to preserve
bandwidth on a wide area data link, then there are 3 possible solutions.
The first option is to simply transmit the expanded data and suffer the lost
bandwidth in the current transmission. This preserves the potential compression
ratio for future data transmissions as the history may be maintained. The good
news is that LZS can only expand to a maximum of 12.5% under worst case
conditions, that is the raw data is totally random. In this case the transmission
speed would be 12.5% slower than sending the raw data. Also, as seen below,
this simplifies the transmitter and receiver implementations.

However, in some systems this lost bandwidth is unacceptable. And it is
possible that subsequent packets may not compress also. The second option to
deal with data expansion is to send the raw data and reset the compression
history. This technique preserves the bandwidth of the current data
transmission, but causes future data transmissions to suffer because the
compression history will need to be rebuilt.

This second option needs special handling by the transmitter. The protocol
layer of the transmitter must notify the receiver that this packet of data is not
compressed, and the receiver must not decompress this packet of data. Since the
compressor already compressed the data for this packet even though it did not
transmit it, the decompressor’s history is no longer identical to the compressor’s
history, and the compressor’s history must be cleared.

The third option is to send the raw data and update the decompressor’s history
with the raw data. This preserves the bandwidth of both the current data
transmission and future data transmissions. This will also resynchronize the
compressor’s and decompressor’s histories while maintaining the highest
compression ratio. Again, the protocol layer needs to inform the receiver not to
decompress this data packet, but to update the decompressor’s history with the
raw data packet.

Hi/fn refers to this feature as “Anti-Expansion”.

3 Summary
Data compression is a ubiquitous technology, because it provides high value for
its cost. It is important that the system implementor understand how this
technology works so its application can be utilized most efficiently. It is also
important for the system implementor to understand some basic principles of the
application of data compression to the system. Maintaining compression
histories, associating compression histories with virtual connections, and
implementing anti-expansion mechanisms are vital to successfully implementing
an optimal compression system in a router.

 How LZS Data Compression Works

Page 10 AN-0009-00 APPLICATION NOTE

4 Appendix 1: A list of Hi/fn LZS Standards
Hi/fn’s LZS algorithm has been standardized, and information is available from
the following institutions:

ANSI X3.241-1994: American National Standards; 11 West 42nd St., New
York, NY, 10036 (212) 642-4900

QIC-122: Quarter-Inch Cartridge Drive Standards, Inc.; 31 East Carrillo St.,
Santa Barbara, CA, 93101, (805) 963-3853

IETF RFC1974: Internet Engineering Task Force; http://info.internet.isi.edu/in-
notes/rfc/files/rfc1974.txt

FRF.9: The Frame Relay Forum; 303 Vintage Park Drive, Foster City, CA
94404-1138 (415) 578-6980, frf@sbexpos.com

TIA/EIA 655: Global Engineering Documents; 15 Inverness Way East,
Englewood, CO 80112-5704 (800) 854-7179

5 Appendix 2: Hi/fn’s LZS Encoding Format
Figure 1 on page 7 shows the format of Hi/fn’s LZS compressed data format,
which is also defined in many standards, such as ANSI X3.241-1994.

By inspecting the length field of the LZS format, it can be seen that the
maximum compression ratio is 30:1. That is, for every 15 bytes in the input
stream that are matched, a nybble of 0xF is output. Thus for every 30 bytes
input, there is one byte output.
Conversely, it can be seen that the worst case expansion is if every byte is raw,
so 9 bits are sent to the output stream for every 8 bits in the input stream.

The LZS end mark is a compressed token consisting of a unique 7-bit offset of
0x0.

6 Appendix 3: Glossary
Compression - A function to decrease the amount of data in a system. In a
networking application this is a function of the transmitter to increase the
bandwidth of the data channel. This function can be implemented in hardware
or software.

Compression ratio - The input number of bytes divided by the output number of
bytes

Compressed tokens - In the LZS algorithm, output tokens that represent
compressed input data that matched in the history. Compressed tokens consist
of offsets and lengths.

Compression history - In the LZS algorithm, the memory reserved to store the
last 2Kbytes of input data and implement the compression algorithm.

Data channel - A physical connection between two communication devices.

 How LZS Data Compression Works

__
APPLICATION NOTE AN-0009-00 Page 11

Data stream - Data that flows from a transmitter to a receiver via the data
channel.

Decompression - A function to increase the amount of data in a system. In a
networking application this is a function of the receiver to restore the bandwidth
of the data channel. This function can be implemented in hardware or software.

Decompression history - In the LZS algorithm, the memory reserved to store the
last 2Kbytes of output data and implement the decompression algorithm.

End marker - a unique 7-bit token produced during the flush operation, which
the decompressor uses to find the end of the compressed data.

Flush - to terminate a compression operation, the compressor’s engine must be
flushed of any data being cached for string matching. Also, the flush operation
appends an end marker to the compressed data so the decompressor can find the
end of the compressed data.

Latency - the amount of time delay from when a router receives the last byte of
a network packet until the last byte of the WAN datagram is transmitted.

Length - In the LZS algorithm, the number of input data bytes that matched.

Literal data - In the LZS algorithm, compressed data that did not match in the
history and would not compress.

LZS - Hi/fn’s lossless data compression algorithm.

Offset - In the LZS algorithm, the distance from the current data that the
matched compressed string starts.

Packet - In a networking application, a unit of data transmitted to the receiver.
For example, ethernet packets are 1500 bytes maximum.

Protocol - A formal set of rules governing the format, timing, sequencing, and
error control of exchanges messages on a data network.

Receiver - In a networking application, the receiver of data via the data channel
during the data transfer.

Tokens - In the LZS algorithm, the compressed data consisting of offsets and
lengths.

Transmitter - In a networking application, the sender of data via the data
channel during the data transfer.

Virtual connection - In a networking application, the logical connection
maintained by the transmitter and receiver.

7 Appendix 4: Evaluation Software
Hi/fn makes available a demonstration program for Hi/fn’s customers to try data
compression on their data. The effects of maintaining history, multiple

 How LZS Data Compression Works

Page 12 AN-0009-00 APPLICATION NOTE

histories, and data expansion with the LZS algorithm may be observed with this
evaluation software.

This program is called CDEMO.EXE and is available on Hi/fn’s world-wide
web site at www.hifn.com.

