
Flex Application Performance: Tips and Techniques
for Improving Client Application and Server

Performance

November 2004

Brandon Purcell

Deepa Subramanian

Copyright © 2004 Macromedia, Inc. All rights reserved.

The information contained in this document represents the current view of Macromedia on the issue discussed as of the date of publication. Because
Macromedia must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Macromedia, and Macromedia
cannot guarantee the accuracy of any information presented after the date of publication.

This white paper is for information purposes only. MACROMEDIA MAKES NO WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Macromedia may have patents, patent applications, trademark, copyright or other intellectual property rights covering the subject matter of this
document. Except as expressly provided in any written license agreement from Macromedia, the furnishing of this document does not give you any
license to these patents, trademarks, copyrights or other intellectual property.

Macromedia®, Macromedia ColdFusion®, Macromedia Dreamweaver®, Macromedia Fireworks®, Macromedia FreeHand®, and Macromedia Flash®
are either trademarks or registered trademarks of Macromedia, Inc. in the United States and/or other countries. The names of actual companies and
products mentioned herein may be the trademarks of their respective owners.

Macromedia, Inc.
600 Townsend Street, Suite 500
San Francisco, CA 94103
415–252–2000

Contents

Executive Summary... 1

Flex Application Performance: Tips and Techniques for Improving Client
Application Performance... 1

Requirements ..2
Feedback and Support ..2
Architecting Flex Applications That Perform Well..2
A Note About Flash Player...3
Using Layouts, Hierarchy, and Containment Properly...4

Avoid Nesting Containers Many Levels Deep ...4
Absolute Positioning and Sizing...5
Use Grid Containers Wisely ...6
Examples of Common Container Redundancies to Avoid...8

Using Deferred Instantiation to Improve Perceived Performance10
Navigator Containers Have BuiltIn Deferred Instantiation10
Progressive Layout—Queued Creation of Components ..12

Handling Large Data Sets..13
Playing Complex Effects Smoothly...14
Achieving Great Performance with Runtime Styles..15
Using Dynamically Repeating Controls for Better Performance16

Using the HorizontalList and TileList Controls ..16
Improving a Repeater Object's Performance...17

Improving Performance of Charting Components ..18
Performance Tuning and Profiling Your Own Flex Application19

Using Runtime Shared Libraries (RSLs)...19
Using the ActionScript Profiler...20
Calculating the Application Initialization Time ..20
Using getTimer() To Time Component and Data Gestures21

Feedback and Support ..22

Flex Application Performance: Tips and Techniques for Improving Flex
Server Performance ...22

Exploring Caching in the Flex Presentation Server..23
Modifying the flexconfig.xml File Configuration Settings..24
Runtime Shared Libraries (RSLs) ..25
Accessing Flex Data Services...25
Using the JSP Tag Library ...28
Precompiling MXML Pages...30
Deployment Options..32
Load Testing Your Flex Application ...33
LoadTesting Tools...33
Load Testing Sample Scenarios ...34

Scenario 1..34
Scenario 2..35
Scenario 3..35

Feedback and Support ..36
About the Authors...36

1

Executive Summary

Macromedia Flex is a powerful platform that offers the ability
to create Rich Internet Application (RIAs). Misusing this power
can result in areas performance. This article explores some of
these performance issues and offers tips on how to make the
most of your Flex application with tiers involved: the Flex
client and the Flex presentation server.

Flex Application Performance: Tips and Techniques for
Improving Client Application Performance

Flex is like any other programming model because certain coding
practices can be detrimental to the overall performance of your client
application. This article describes some of the MXML coding practices
that affect application performance on the client side and demonstrates
simple techniques that will enhance the performance of your Flex
application. More specifically, this article explores how to do the following
tasks:

n Decrease startup time

n Take advantage of deferred instantiation to improve performance

n Play complex effects smoothly

n Use dynamically repeating controls for better performance

n Improve performance of charting components

n Leverage Runtime Shared Libraries (RSLs) for performance gains

n Performance test your own Flex application

Note that the tips suggested in this article do not apply to all Flex
applications. It is important to analyze the structure of your own
application and modify the suggestions to tailor them to your needs. For
ongoing coding and conceptual help, you can use the Flex support forums
(www.macromedia.com/cfusion/webforums/forum/index.cfm?forumid=60)
and Flex Developer Center (www.macromedia.com/devnet/flex/).

Note also that this is the first part in a twopart article. The second
section of this article, "Flex Application Performance: Tips and Techniques
for Improving ServerSide Performance," discusses the serverside
enhancements and deployment options that you can use to improve the
performance of your Flex application.

http://www.macromedia.com/cfusion/webforums/forum/index.cfm?forumid=60
http://www.macromedia.com/cfusion/webforums/forum/index.cfm?forumid=60
http://www.macromedia.com/devnet/flex/

2

Requirements

To make the most of this article, you need the following:

n Familiarity with Macromedia Flex and J2EE application servers (JRun,
IBM Websphere, or BEA Weblogic)

n Some experience building Flex applications. Ideally, you should have built
at least one simple Flex application. If you haven't, see Creating Your First
Flex Application (
www.macromedia.com/devnet/flex/articles/first_flexapp.html).

Macromedia Flex

Learn more about Macromedia Flex
(www.macromedia.com/software/flex/).

Macromedia Flash Player 7

www.macromedia.com/shockwave/download/download.cgi?P1_Prod_Ver
sion=ShockwaveFlash

Feedback and Support

We have made every effort to ensure the accuracy of this article and all
code included. Feedback for this article and all Flex performance issues is
always appreciated. To submit feedback, please email us.

Architecting Flex Applications That Perform Well

Ideally, performance is a topic that is in the back of your mind during
every step of the development process—from application design to
implementation and deployment. When creating a Flex application, think
through the choice of containers and components that you use to ensure
that the code is maintainable, organizationally clear, and performs well.

You can use the Flex navigator containers (Accordion, TabNavigator, and
ViewStack) across all application types to organize content. The navigator
containers organize content in a way that:

n Minimizes users' confusion

n Exhibits good user interface (UI) design principles for browserbased
applications

n Aids performance

http://www.macromedia.com/devnet/flex/articles/first_flexapp.html
http://www.macromedia.com/devnet/flex/articles/first_flexapp.html
http://www.macromedia.com/software/flex/
http://www.macromedia.com/shockwave/download/download.cgi?P1_Prod_Version=ShockwaveFlash
mailto:tutorialfeedback@macromedia.com?subject=flex_client_performance

3

More specifically, Flex navigator containers help you organize content
easily into different child views and control the creation of these views
with deferred instantiation. Organizing content into these child views
spreads out creation time for each child view because Flex creates a
specific child view the first time a user requests that view. The "Navigator
Containers Have Builtin Deferred Instantiation" section later in this
article explains why Flex navigator containers perform better with
deferred instantiation and how you can leverage deferred instantiation to
make your application more robust.

Dashboardstyle applications have also resulted in successful
deployments. This type of application organizes content into modular,
selfcontained views that offer a more intuitive approach to application
organization. Like the navigator containers, this approach performs well
because it organizes complex views, with Flex creating them when the
user drills down. Flex does not have to size, measure, and draw the views
in the background, so it creates the selected view more quickly.

A Note About Flash Player

Before going into techniques for preventing common performance issues,
ensure that you have installed Macromedia Flash Player 7 (7.0.14 or
7.0.19 or later). Flash Player is a multipleplatform client that lets users
interact with Flash content. There are two types of players, the Flash
Player release version and the Flash Debug Player version. The Flash
Debug Player version is best used during the development phase, because
it enables the Flex debugging and profiling features. Since most users use
the release version of Flash Player, use this version to do performance
tuning; running Flex applications with the Flash Debug Player version
does not accurately represent the performance of your application. When
running a SWF file, the Flash Debug Player version reports trace
statements and warnings. This task requires ActionScript processing
cycles that would otherwise resource a running application, which
impacts the perceived application performance.

When you are ready to test application performance, verify you are
running the application with Flash Player 7, the release version. Many
Flex application developers make this simple mistake! To verify the
version of Flash Player, run a Flex application in the browser you use
during development, and then rightclick inside the browser window. If
you see a debug option in the context menu, you are running the Flash
Debug Player version. If you finetune your application to perform well
with the Flash Debug Player version, you can ensure that your
application will perform the same, if not significantly better, with Flash
Player 7.

For more on using the Flash Debug Player to debug clientside code, read
Debugging Client‐Side Code in Flex Applications
(www.macromedia.com/devnet/flex/articles/client_debug.html).

http://www.macromedia.com/devnet/flex/articles/client_debug.html

4

Using Layouts, Hierarchy, and Containment Properly

The biggest Flex performance danger is yielding to the temptation to use
containers randomly. Using too many containers dramatically reduces the
performance of your application. This is the number one performance
danger that Flex developers succumb to—and luckily it is 100 percent
avoidable. The performance penalty occurs because Flex layout
containers and their children follow sizing and measuring algorithms that
determine x,y positions, preferred sizes, and styles. These calculations are
resourceintensive; it is these calculations, coupled with Flash Player
drawing complex objects, that cause a noticeable delay when starting a
Flex application or when instantiating a new view in a navigator
container. One principle dramatically speeds up application startup and
interactivity time: Avoid unnecessary container nesting.

Avoid Nesting Containers Many Levels Deep

A good rule of thumb is to avoid excessive container nesting. At first, you
might find it difficult to pinpoint superfluous container nesting. The
following describes some of the more common cases of nesting containers
and offers useful tips for choosing and using containers.

Below are a few examples of deeply nested code:
<mx:VBox>

<mx:HBox>
<mx:Form>
<mx:FormItem>
.....
...
</mx:FormItem>

</mx:Form>
</mx:HBox>

</mx:VBox>
and
<mx:Grid>

<mx:GridRow>
<mx:GridItem>
<mx:VBox>
<mx:Button />
</mx:VBox>

</mx:GridItem>
</mx:GridRow>

</mx:Grid>

When you nest containers, each container instance runs measuring and
sizing algorithms on its children (some of which are containers
themselves, so this measuring procedure can be recursive). When the
layout algorithms have processed, and the relative layout values have
been calculated, Flash Player draws the complex collection of objects
comprising the view. By eliminating unnecessary work at object creation
time, you give your application a boost and the performance benefits are
readily apparent.

5

Typically, fewer containers provides good results with respect to creation
time. If you find yourself nesting many levels deep, reevaluate your
choice of containers. Perhaps you can achieve the same layout with a
different layout container in conjunction with style attributes, such as
horizontal and vertical alignment, margins, spacers, and gaps. You can
use margins and gaps to manipulate the space around controls and
between the edge of controls and the edge of their parent containers. You
can use spacer objects to fill unwanted space or to push controls around
the screen. You can also align controls horizontally or vertically within
their container. For example, take a look at the layout in Figure 1.

Figure 1: You can achieve this layout without using a Grid container.

It is tempting to use a Grid container to achieve this layout:
<mx:Grid>

<mx:GridRow>
<mx:GridItem>
<mx:Button label="Visa"/>

</mx:GridItem>
<mx:GridItem>
<mx:Button label="MasterCard"/>

</mx:GridItem>
<mx:GridItem>
<mx:Button label="Diner's Club"/>

</mx:GridItem>
<mx:GridItem>
<mx:Button label="AmEx"/>

</mx:GridItem>
</mx:GridRow>

</mx:Grid>

However, this code is unnecessarily bloated. In fact, you can easily revise
the code so that it looks exactly like Figure 1. The following snippet uses
less code and results in a faster creation time and a slightly smaller SWF
output.
<mx:HBox>

<mx:Button label="Visa"/>
<mx:Button label="MasterCard"/>
<mx:Button label="Diner's Club"/>
<mx:Button label="AmEx"/>

</mx:HBox>

Steven Webster, an active Flex community member, has an excellent
entry in his blog (www.richinternetapps.com/archives/000042.html) on
the dangers of nested containers, as well as tips on how to avoid nesting.

Absolute Positioning and Sizing

The Flex container classes are relative layout containers that arrange
contents on the screen for you. However, the calculations to decipher how
big each container and its children are, as well as where to place them,
can potentially be resourceintensive. Here are two tips that can help
reduce these calculations:

http://www.richinternetapps.com/archives/000042.html
http://www.richinternetapps.com/archives/000042.html

6

n Hardcode object positions—Hardcoding object positions can save a lot
of time because the Flex layout containers do not need to calculate object
positions at runtime. If you want to go this route, you can only use the
Canvas container. Other types of containers, like the VBox container, do
not respect absolute positions. When using the Canvas container, you
must explicitly declare the x and y properties of all the Canvas children. If
you omit setting x and y properties, the Canvas container's children lay
out on top of each other at the default x,y coordinates (0,0). Absolute
positioning does not work well if you want your application to resize when
the browser window resizes. Using the Canvas container to create faster
layouts should be a lastresort solution.

n Hardcode object widths and heights—Hardcoding object widths and
heights can also save time, because the Flex layout containers do not
need to calculate the size of the object at runtime. By hardcoding
container or control widths or heights, you lighten the relative layout
container's processing load and subsequently speed up container and
control creation time. This technique works with any container or control.

Use Grid Containers Wisely

Think of a Grid container as a layout choice already pushing the deep
nesting rule. Grid, GridItem and GridRow are all containers in their own
right, although GridItem and GridRow are only used in conjunction with
the Grid container. You should only use a Grid container when your
controls must line up both horizontally and vertically. Developers often
gravitate to the Grid container, because they see the similarity to the
HTML <table> tag. However, as a Flex developer, you can choose from
multiple container choices to position objects (and some are less
resourceintensive to use then others). This is not true of the HTML
world, where <table> is really the only choice. The following code
provides an example of when to use a Grid container—the controls in the
different columns and rows must all line up (see Figure 2):
<mx:Grid>
<mx:GridRow>
<mx:GridItem><mx:TextInput text="TextInput"/></mx:GridItem>
<mx:GridItem><mx:NumericStepper/></mx:GridItem>
<mx:GridItem><mx:TextInput text="TextInput"/></mx:GridItem>
<mx:GridItem><mx:NumericStepper/></mx:GridItem>

</mx:GridRow>
<mx:GridRow>
<mx:GridItem><mx:Button label="button"/></mx:GridItem>
<mx:GridItem><mx:DateField /></mx:GridItem>
<mx:GridItem><mx:Button label="button"/></mx:GridItem>
<mx:GridItem><mx:DateField /></mx:GridItem>

</mx:GridRow>
<mx:GridRow>
<mx:GridItem><mx:TextInput text="TextInput"/></mx:GridItem>
<mx:GridItem><mx:NumericStepper/></mx:GridItem>
<mx:GridItem><mx:TextInput text="TextInput"/></mx:GridItem>
<mx:GridItem><mx:NumericStepper/></mx:GridItem>

</mx:GridRow>
</mx:Grid>

7

Figure 2: This UI is the perfect candidate for a Grid container.

Some common misuses of Grid containers include the following:

n Using the Grid container when you want to leftjustify or rightjustify
controls in the same container (see Figure 3). Developers often try to do
this using the following code:
<mx:Grid borderStyle="solid" width="400">
<mx:GridRow>
<mx:GridItem horizontalAlign="left">
<mx:Button label="left" />
</mx:GridItem>
<mx:GridItem horizontalAlign="right">
<mx:Button label="right" />
</mx:GridItem>

</mx:GridRow>
</mx:Grid>

However, using an HBox container with a Spacer object to fill unwanted
space works the exact same way, as shown in the following snippet:
<mx:HBox borderStyle="solid" width="400">

<mx:Button label="left" />
<mx:Spacer width="100%" />
<mx:Button label="right" />

</mx:HBox>

Figure 3: You can achieve this leftjustify/rightjustify layout without a Grid.

n Using a Grid container as a child of a Repeater object when alternate
mechanisms would work better. Take a look at the Repeater object in
Figure 4.

http://www-staging.macromedia.com/devnet/flex/articles/client_perf/fig2_lg.html
http://www-staging.macromedia.com/devnet/flex/articles/client_perf/fig4_lg.html

8

Figure 4: Figure 4. Using a Grid container in a Repeater object to achieve this layout
is resourceintensive

This Repeater object repeats a heavily populated Grid container with
labels retrieved from a webservice. Creating just one of these Grid
containers would take a noticeable creation time, but repeating this Grid
many times is worse.

As your Flex repertoire expands, you will see that there are alternate
containers and controls that you can easily customize to meet your
needs. For example, you can achieve the layout shown in Figure 4 with a
List control and a custom cell renderer. You can use a cell renderer with
any listbased component to create customformatted cells, and the cells
can be different heights. The Flex documentation will have more
information and examples on how to create a custom cell renderer. The
performance of a List control with a custom cell renderer is spectacularly
better than with a repeated Grid container. Or you can use the
HorizontalList and TileList controls to create custom controls in an HBox
or Tilelike layout. These controls perform very well because they only
create elements visible in the initial view and then the user can scroll to
see subsequent elements—instantiation time is quicker.

Examples of Common Container Redundancies to Avoid

The following list provides examples of common container redundancies
to avoid:

n The VBox container inside an <mx:Panel> tag—A Panel container is a
VBox container with support for a title bar, rounded borders, and other
Panel styles. If you want Panel children to lay out as they would in a
VBox container, populate the <mx:Panel> tag directly with controls; do
not wrap a VBox container around the controls. The VBox container
would be a redundant container wrapper, and removing this eliminates
one more level of unnecessary container nesting.

For example, instead of writing this:
<mx:Panel title="Grocery List" width="150" height="150">

<mx:VBox>
<mx:Label text="Fruits" />
<mx:Label text="Veggies" />
<mx:Label text="Cookies" />
<mx:Label text="Crackers" />

</mx:VBox>
</mx:Panel>

Use this code instead:
<mx:Panel title="Grocery List" width="150" height="150">

<mx:Label text="Fruits" />
<mx:Label text="Veggies" />
<mx:Label text="Cookies" />
<mx:Label text="Crackers" />

</mx:Panel>

Both achieve an identical layout.

9

n VBox container inside an <mx:Application> tag—An Application
object is inherently a VBox container layout. It is unnecessary to wrap
your <mx:Application> tag with a VBox container; removing this
wrapper will eliminate one more level of container nesting.

For example, instead of writing this:
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:VBox horizontalAlign="center" backgroundColor="#EFEFEF">

<mx:Label label="Shopping Cart" />
.
.
.

</mx:VBox>
</mx:Application>

Use this code instead:
<mx:Application xmlns:mx=http://www.macromedia.com/2003/mxml
horizontalAlign="center" backgroundColor="#EFEFEF">
<mx:Label label="Shopping Cart" />
.
.
.

</mx:Application>

n Containers as toplevel tags for MXML components—The beauty of
MXML components is that they provide a way to modularize repeated
code. However, these components are vulnerable to the same performance
pitfalls as the larger application. You do not need to use a container tag
as the toplevel tag of your MXML component definition. It is perfectly
valid for an MXML component to be a simple control, like:
<mx:Image xmlns:mx=http://www.macromedia.com/2003/mxml

source="@embed('foo.jpg')" width="200" height="200" />

By stepping through MXML component definitions and purging unneeded
container wrappers, you can reduce container nesting (and many
unnecessary objects), and, subsequently, ease the load of your
application.

n Container wrappers for an MXML component instance— Normally,
there is no need to wrap a container around an MXML component tag.
You can set different styles, labels, and ids within the instance of the
MXML component—you don't need to set them within a container that
wraps the MXML component. For example, instead of wrapping an
unnecessary VBox container around your MXML component to set some
styles like this:
<mx:VBox backgroundColor=" #FFCCCC" borderStyle=" solid">

<myComponent xmlns=" *" />
</mx:VBox>

You can set those styles within the MXML component tag itself, like this:
<myComponent xmlns=" *" backgroundColor=" #FFCCCC" borderStyle="

solid" />

Developers often couple this bad practice with using unnecessary
containers as toplevel tags for MXML components, which can create at
least two superfluous containers for each MXML component used! This
creates many unused objects that, when eliminated, yield a dramatic
improvement in the responsiveness of your application.

10

n Reevaluate your container choices—Inspect every container tag and
decide if it is necessary and if it is useful for the overall structure of the
application. Could the same layout be mimicked with another layout
container or by using layout styles? Revising your layout ensures that
your application is as lean as possible, reduces overall SWF file output
size, and makes performance much more robust.

Using Deferred Instantiation to Improve Perceived
Performance

If the number one cause of performance problems is unnecessary
measurement and layout from superfluous container nesting, the number
two cause is creating objects before they are needed. To avoid this
problem, you can use deferred instantiation. Flex uses deferred
instantiation to determine which components to create at application
startup. When using deferred instantiation, you can decide at which
stages the user incurs the costs of component creation. Containers have a
creationPolicy property that you set to specify when Flex should create
the container (at startup, incrementally, when a user navigates to that
container, or based on other user action).

Navigator Containers Have Built‐In Deferred Instantiation

The Flex navigator containers (ViewStack, Accordion, TabNavigator) have
builtin deferred instantiation behavior. The default deferred instantiation
behavior means that Flex does not create all the child views at startup,
but only when a user triggers it by navigating to the container. The
following code shows two navigator containers, TabNavigator and
ViewStack, in use:
<mx:TabNavigator>

<mx:VBox id="tabNavView1">
<mx:LinkBar dataProvider="myViewStack" />
<mx:ViewStack id="myViewStack">

<mx:VBox id="view1" >
.
.
.

</mx:VBox>
<mx:VBox id="view2" >

.

.

.
</mx:VBox>
<mx:VBox id="view3" >

.

.

.
</mx:VBox>

</mx:ViewStack>
</mx:VBox>
<mx:VBox id="tabNavView2">

.

.

.
</mx:VBox>

</mx:TabNavigator>

11

The TabNavigator container creates tabNavView1 because it is the first
view displayed when Flex instantiates the TabNavigator container.
Instantiating tabNavView1 will cause the LinkBar and the first view of the
ViewStack, view1, to be instantiated. When the user interacts with the
LinkBar to select another view in the ViewStack, Flex will create that
view. Flex continues in this way, creating the navigator container
descendants as it calls them.

The creationPolicy property on container tags control the creation of
child views. The following list explains what each creationPolicy
property does when set on Flex navigator containers:

n creationPolicy="auto"—When Flex creates the navigator containers, it
does not immediately create all of their descendants, only those that are
initially visible. The result of this deferred instantiation is that an MXML
application with a navigator container loads quickly, but users experience
a brief pause the first time they navigate from one view to another.
Usability studies have shown this is a better user experience then having
to wait a noticeable amount of time at application startup to create the
navigator containers' child views. Also, there is always the possibility that
the user may never visit some of the child views, so creating them at
startup is potentially wasteful.

Note that if you set creationPolicy="auto" on a nonnavigator
container, you must add extra code to specify when to create the
container's children. This extra code is builtin in the navigator
containers, which is why you can set creationPolicy="auto" on a
navigator container without doing any extra work.

n creationPolicy="all"—When Flex creates the navigator containers, it
creates all of the controls in all their child views. This setting causes a
delay in application startup time, but results in a quicker response time
when navigating from view to view.

n creationPolicy="none"—Flex does not instantiate any component
within the navigator container or any of the navigator component's child
views until you explicitly call the instantiation methods. You explicitly
instantiate views with the createComponents() method. The Flex
documentation has more information on setting up a custom component
creation plan.

n creationPolicy="queued"—Flex creates all containers and then creates
the children of the queued containers in the order in which they appear
in the application unless you specify a creationIndex property. This
setting causes components in your application to become visible in
successive fashion, reducing the amount of time it takes for the user to
start viewing the application. In the following "Progressive Layout" section
I give an example and more information on this feature.

12

By playing with the creationPolicy properties, you can manually
handle the creation of child views and decide where in your application
architecture you want to incur the cost of creating the child views of your
navigator containers. Usability studies show that a better user experience
is proffered when using the auto setting. A common mistake that can
inadvertently slow your application startup time is to mistakenly set
creationPolicy="all" on one of your navigator containers. Use
creationPolicy="all" only if you are completely sure that the
component creation plan you have in place is efficient and timely.

Progressive Layout—Queued Creation of Components

In the process of finetuning performance, you may reach a point where
you have whittled your application's startup time to as fast as possible.
However, this does not mean there are no more performance
improvements you can make; you could choose to use progressive layout.
Progressive layout is a UI concept that involves wiring your application to
lay out components in a piecebypiece fashion so there is a shorter initial
delay before components begin appearing on the screen. Progressive
layout is similar to the way HTML applications load content in succession
in a client.

Progressive layout does not quantifiably reduce application startup time,
but it significantly improves the perceived startup time. You implement
progressive layout by using the queued creationPolicy in the deferred
instantiation architecture of Flex. See the example below, which loads
three panels in successive fashion.
<?xml version="1.0" encoding="utf8"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml" >

<mx:HBox>

<mx:Panel id="panel1" title="Panel 1" width="210" height="240"
horizontalAlign="center" verticalAlign="middle"
creationPolicy="queued" creationIndex="1">

<mx:DataGrid width="190" height="95">
<mx:dataProvider>

<mx:Array>
<mx:Object Artist="Death Cab for Cutie" />
<mx:Object Artist="The Postal Service" />

</mx:Array>
</mx:dataProvider>

</mx:DataGrid>
<mx:DataGrid width="190" height="95">

<mx:dataProvider>
<mx:Array>

<mx:Object Album="Such Great Heights" />
<mx:Object Album="We Know the Facts" />

</mx:Array>
</mx:dataProvider>

</mx:DataGrid>
</mx:Panel>

<mx:Panel id="panel2" title="Panel 2" width="210" height="240"
horizontalAlign="center" verticalAlign="middle"
creationPolicy="queued" creationIndex="2">

<mx:List width="190" height="95">
<mx:dataProvider>

13

<mx:Array>
<mx:String>one</mx:String>
<mx:String>two</mx:String>
<mx:String>three</mx:String>
<mx:String>four</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:List>
<mx:List width="190" height="95">

<mx:dataProvider>
<mx:Array>

<mx:String>red</mx:String>
<mx:String>green</mx:String>
<mx:String>yellow</mx:String>
<mx:String>blue</mx:String>

</mx:Array>
</mx:dataProvider>

</mx:List>
</mx:Panel>
<mx:Panel id="panel3" title="Panel 3" width="210" height="240"

horizontalAlign="center" verticalAlign="middle"
creationPolicy="queued" creationIndex="3">

<mx:Tree width="190" height="95">
<mx:dataProvider>

<mx:XML>
<node label="File">
<node label="Open"/>
</node>
<node label="Close">
<node label="Help"/>
</node>

</mx:XML>
</mx:dataProvider>

</mx:Tree>
<mx:TextArea width="190" height="95">

<mx:text>The Macromedia Flex presentation server offers a
familiar, standardsbased programming framework and powerful
set of components for creating a rich, responsive presentation
tier for enterprise Rich Internet Applications
(RIAs).</mx:text>
</mx:TextArea>

</mx:Panel>
</mx:HBox>

</mx:Application>

Jason Szeto, a developer on the Flex team, has written an indepth article
on implementing progressive layout in Flex applications, including using
progressive layout in datadriven applications: "Building Flex Applications
with Progressive Layout
(www.macromedia.com/devnet/flex/articles/prog_layout.html)."

Handling Large Data Sets

Sometimes your application may appear slow because it manages a large
amount of data at once. Matt Chotin, a software engineer on the Flex
team, has some excellent entries on data management that address this
issue. He discusses how to incorporate paging, sorting, and improving
perceived performance on his blog
(www.markme.com/mchotin/archives/cat_data_management.cfm).

http://www.macromedia.com/devnet/flex/articles/prog_layout.html
http://www.markme.com/mchotin/archives/cat_data_management.cfm

14

Playing Complex Effects Smoothly

You may notice that transition effects seem choppy, especially when your
effect has a short duration applied to a large view. What defines choppy?
For example, a Fade effect that fades in a few distinct alpha stages,
instead of a smooth and seamless fade. Or a Zoom effect that zooms in a
few distinct sizes, instead of a gradual and smooth Zoom. There are a few
ways to tweak your transition effects to play in a smoother fashion. Try
the following suggestions and see which work best to improve effects in
your application:

n Increase the duration of your effect with the duration property.
Doing this spreads the distinct, choppy stages over a longer period of
time, which lets the human eye fill in the difference for a smoother effect.
It really makes a difference.

n The less there is for Flash Player to redraw during an animation, the
smoother the effect plays. To do this, make parts of the target view
invisible when the effect starts, play the effect, and then make those
parts visible when the effect has completed. The populating of controls
happens so quickly that the human eye does not notice any sort of delay
or sudden appearance of the controls. Coding this is simple: You hook
into the effectStart and effectEnd events to control what is visible
before and after the effect.

If you look at the SWF file in the online version of this article, at
www.macromedia.com/devnet/flex/articles/client_perf_08.html, the
panel has a populated DataGrid control with a fast Fade effect applied to
it, and a duration of 250 milliseconds. As you toggle the panel's visibility,
see how the Fade plays in an abrupt fashion? Adding the following code
to the <mx:Panel> tag lessens the number of objects Flash Player must
redraw during an animation:

effectStart="myDataGrid.visible=false"
effectEnd="myDataGrid.visible=true"

Now Flash Player does not draw the DataGrid control, but concentrates
on redrawing the empty Panel container. Now look at the second SWF file
at www.macromedia.com/devnet/flex/articles/client_perf_08.html,

http://www.macromedia.com/devnet/flex/articles/client_perf.html
http://www.macromedia.com/devnet/flex/articles/client_perf.html

15

See the difference? The effect is smoother and betterlooking. Because the
duration is so fast, there is no noticeable disappearing and appearing of
the DataGrid. Only use this technique if the effect duration is relatively
short (500 ms or less), and only on a showEffect or hideEffect. In other
situations, hiding pieces of the object will not appear seamless.

The Resize effect, a native effect in Flex, has some of this functionality
already built in. You can use the hideChildren property to specify an
array of panels whose children should be hidden while the effect plays.
This property only works with Panels and help your Resize effects to play
smoother. Before the Resize animation plays, Flex iterates through the
hideChildren array and hides the children of each of the specified
panels. Note: You cannot use the hideChildren property with an effect
declared in MXML (such as in the <mx:Resize> tag). The effect must be
triggered in ActionScript to use of the hideChildren functionality.

n Avoid bitmapbased backgrounds. Oftentimes designers give their views
background images that are solid colors with gradients, slight patterns,
and so forth. To ease what Flash Player redraws, try switching your
background image to a solid background color. Or, if you want a slight
gradient instead of a solid color, use a background image that is a SWF or
SVG file. These are easier for Flash Player to redraw than standard JPG
or PNG files.

Sometimes animations play in a choppy fashion because background
processing occurs and interferes with the animation. You may notice this
when you have an effect attached to a handler that populates controls
from a webservice result, or when you have an effect accompanying the
creation of a large view. The set of tags are a subclass of the Effect class
(Fade, Move, Resize, WipeLeft, and so on) have a public property,
suspendBackgroundProcessing. When it is true, it blocks all
background processing like measurement and layout while the effect
plays. The default is false. Macromedia suggests that you set this
property to true for a smooth playing of effects. However, you must
realize that when you switch on suspendBackgroundProcessing, your
effect cannot be interrupted while playing. Because of this, there are a few
cases where you should avoid using
suspendBackgroundProcessing="true". One common use of effects is
to play an effect while the application waits for a webservice result to
return. After the webservice result returns, the result handler tries to
interrupt and stop the effect. If suspendBackgroundProcessing is set to
true, the result handler cannot interrupt the effect, and the effect plays
continuously, hanging the application. Avoid using
suspendBackgroundProcessing in these cases.

Achieving Great Performance with Runtime Styles

Runtime cascading styles are very powerful, but you should use them
sparingly and in the correct context. Dynamically setting styles on an
instance of an object means calling UIObject's setStyle() method. The
setStyle() method is one of the most expensive calls in the Flex
application model framework, because the call requires notifying all the
children of the newly styled object to do another style lookup. The
resulting tree of children that must be notified can be quite large.

16

A common mistake that impacts performance is overusing or
unnecessarily using the setStyle() method. In general, you only need
the setStyle() method when you want to change styles on existing
objects. Do not use it when setting up styles for an object for the first
time. Instead, set styles in an <mx:Style> block, as explicit style
properties on the MXML tag, through an external CSS style sheet, or as
global styles. It is important to initialize your objects with the correct style
information, if you do not expect these styles to change while your
program executes (whether it is your application, a new view in a
navigator container, or a dynamically created component).

Some applications need to call the setStyle() method during the
application or object instantiation. If this is the case, call the setStyle()
method early in the instantiation phase to avoid unnecessary lookups.
Early in the instantiation phase means setting styles from the component
or application's initialize event, instead of the creationComplete or
other event. By setting the styles as early as possible during initialization,
you avoid unnecessary style notification and lookup.

Using Dynamically Repeating Controls for Better
Performance

New in Flex 1.5 is the addition of the HorizontalList and TileList controls.
You can use these controls for layouts that require dynamically repeating
elements. They perform much better than layouts that used Repeaters. In
fact, layouts created during the Flex 1.0 timeframe that used a Repeater
may often be replaced by a combination of the HorizontalList or TileList
controls and cell renderers for better performance.

Using the HorizontalList and TileList Controls

The HorizontalList and TileList controls are List controls that display data
elements horizontally or in a tile layout, much like the HBox or Tile
containers. Unlike the Repeater object, performance with these controls is
determined by what is visible in the HorizontalList and TileList at that
time. This behavior reduces instantiation time of the view significantly; a
Repeater’s instantiation time will always be equal to or worse than the
HorizontalList and TileList controls.

The HorizontalList and TileList controls usually contain a horizontal or
vertical scroll bar, used to access all the items in the list. When a user
scrolls, it triggers the creation of subsequent elements in the List. Thus,
the user avoids creating all the possible elements at startup; they are
created only when requested.

The HorizontalList and TileList controls perform much better than a
Repeater object. In most cases it is a better choice to use them instead of
a Repeater. However the Repeater control is still available in Flex; it is
better to use the Repeater control to repeat simple elements. For example,
it would make more sense to repeat a collection of RadioButton controls
using a Repeater then a Horizontal or TileList control.

17

Improving a Repeater Object's Performance

There are a few things to think about if you need to improve your
Repeater object's performance. First, if you are using containers as the
child of the Repeater object, check whether using a HorizontalList or
TileList control would be better. If that is not the case, ensure that the
containers used as the children of the Repeater do not have unnecessary
container nesting and are as trim as possible. If a single instance of the
repeated view takes a noticeable time to instantiate, repeating makes it
worse. As mentioned previously in this article, multiple Grid containers in
a Repeater object do not perform well because Grid containers themselves
are resourceintensive containers to instantiate. An alternative solution is
to try a List control with a custom cell renderer or the HorizontalList or
TileList controls.

You should also set the recycleChildren property to true to improve a
Repeater object's performance. The recycleChildren property is a
boolean value that, when set to true, binds new data items into existing
Repeater children, incrementally creates new children if there are more
data items, and destroys extra children that are no longer required.

When you set this property to false, the Repeater object recreates all the
repeated objects when you swap dataProvider properties, sort, and so on,
which causes a performance lag. The FlexStore sample application
(www.macromedia.com/flex/samples/flexstore/flexstore.mxml?versionCh
ecked=true) has an example of recycleChildren at play. When you load
the application, notice the Sort by option under the product thumbnail
view. This enables users to sort the product thumbnails based on name
or price. The ordering of the Repeater object's dataProvider property is
what changes, the thumbnail views do not. By setting the
recycleChildren property to true, the Repeater object does not recreate
each thumbnail view; it simply reshuffles the dataProvider property based
on name or price.

The default value of the recycleChildren property is false to ensure
that you do not leave stale state information in a repeated instance. For
example, suppose you use a Repeater object to display photo images and
each Image control has an associated NumericStepper control for how
many prints you want to order. Some of the state information, such as
the image, comes from the dataProvider property, while other state
information, such as the print count, is set by user interaction. If you set
the recycleChildren property to true and page through the photos by
incrementing the Repeater object's startingIndex value, the Image
controls bind to the new images, but the NumericStepper control
maintains the old information! You should use
recycleChildren="false" only if it is too cumbersome to reset the state
information manually, or if you are confident that modifying your
dataProvider property should not trigger a recreation of the Repeater
object's children.

This may go without saying, but the recycleChildren property has no
effect on a Repeater object's speed when the Repeater object loads the
first time. The recycleChildren property only improves performance for
subsequent Repeater occurrences. If you know that your Repeater object
will only create children once, there is no need to use the
recycleChildren property or worry about the stale state situation.

http://www.macromedia.com/flex/samples/flexstore/flexstore.mxml?versionChecked=true

18

Improving Performance of Charting Components

Flex provides a very robust library of charting components that give you a
twodimensional visual representation of your data. These charting
components follow the same guidelines as other Flex components,
including the same performance drawbacks.

The Flex charts have been designed to perform well. All charts cache
intermediary values in the transformation from data to screen, so that
only the minimum amount of recalculation occurs in response to any
change to the data or chart. The most expensive actions to perform in
Flex charts is forcing a chart to redraw an axis, or forcing a chart to
recalculate its labels. In fact, it is faster to resize a chart than to change
its dataProvider (a change that requires a chart to potentially redraw an
axis or recalculate labels). Below are further tips that you can use to
improve the performance of your Flex charting components.

n When possible, set the filterData property to false. In the
transformation from data to screen coordinates, the various Series types
filter the incoming data to remove any missing values or values outside
the range of the chart that would render incorrectly if drawn to the
screen. For example, a chart representing vacation time for each week in
2003 might not have a value for the July fourth weekend since the
company was closed. If you know your data model will not have any
missing values at runtime, or values that fall outside the chart’s data
range, you can instruct a series to explicitly skip the filtering step by
setting its filterData property to false, earning you a small performance
boost.

n If possible, don’t let a LinearAxis autocalculate its range. A
LinearAxis calculating its numeric range can be a costly calculation. If
you know reasonable minimum/maximum values for the range of your
LinearAxis, specifying them help your charts render quicker. Also,
specifying an interval (the numeric distance between label values along
the axis) value improves performance.

n Have your CategoryAxis dataProvider and Series dataProvider
refer to different objects. Modifying a CategoryAxis object’s
dataProvider is more expensive than modifying a Series object's
dataProvider. If the data bound to your chart is going to change, but
the categories in your chart will stay static, have the CategoryAxis'
dataProvider and Series' dataProvider refer to different objects. This
prevents the CategoryAxis from reevaluating its dataProvider, which is
a resourceintensive computation.

n Improve render time of your AxisRenderers by setting particular
styles. The AxisRenderers perform many calculations to make sure they
render correctly in all situations. The more help you can give them in
restricting their options, the faster they will render. Explicitly setting the
following styles on the AxisRenderer will improve performance:
labelRotation and canStagger. You can set these styles within the tag
or in CSS.

19

n Specify gutter styles when possible. The gutter area of a Cartesian
chart is the area between the margins and the actual axis lines. With
default values, the chart adjusts the gutter values to accommodate axis
decorations. Calculating these gutter values can be resource intensive. By
explicitly setting gutterLeft, gutterRight, gutterTop, and
gutterBottom values, your charts draw quicker and more efficiently.

n DropShadows are optional; if you don’t need them don’t use them.
The default HALO styles for BarSeries, ColumnSeries, and LineSeries
use ShadowRenderers. ShadowRenderers draw drop shadows beneath
the data elements. If DropShadows are not necessary, switch to the
Simple renderers (SimpleBoxRenderer for ColumnSeries and
BarSeries, SimpleLineRenderer for LineSeries); this improves the
rendering speed of your charts.

Performance Tuning and Profiling Your Own Flex
Application

Test the performance of your application early and often. It is always best
to identify problem areas early and resolve them in an iterative manner,
rather then trying to shove performance enhancements into existing,
poorly performing code at the end of your application development cycle.
The following subsections investigate using Runtime Shared Libraries
(RSLs) to improve performance, as well as describe two approaches to
performance testing your Flex client: using the ActionScript profiler and
using a code snippet that times application initialization. We also provide
a handy solution to time component and data gestures using the
ActionScript getTimer() method. (See also the "Load Testing Your
Flex Application" section in the "Flex Application Performance: Tips and
Techniques to Improving Flex Server Performance" article section.)

Using Runtime Shared Libraries (RSLs)

You can shrink the size of your application's resulting SWF file by
externalizing shared assets into standalone files that you can separately
download and cache on the client. Multiple Flex applications can load
these shared assets at runtime, but each client need only to download
them once. These shared files are called Runtime Shared Libraries.

Flex projects that have multiple Flex applications downloaded to the
client can leverage RSLs for better performance. More specifically, the
time it takes to download a Flex application once the initial RSL has been
downloaded is significantly reduced.

However, not all applications benefit from RSLs. The following are
examples of Flex applications that might use RSLs for better performance:

n Large applications that load multiple smaller applications can be linked
to a shared RSL

n A family of applications on a server built with a shared RSL

n A frequently changing application that has a large set of infrequently
changing components

20

n An infrequently changing application that has frequently changing data
or assets

Depending on the type of Flex project you are developing, RSLs may or
may not offer a performance benefit. Roger Gonzalez, a developer on the
Flex team, has a more indepth article focused on RSLs: "Using Runtime
Shared Libraries (www.macromedia.com/devnet/flex/articles/rsl.html)."

Using the ActionScript Profiler

The ActionScript profiler records the time Flash Player takes to perform
tasks in ActionScript. Most commonly, you use the profiler to determine
how long an ActionScript function or method takes to execute, how often
it is called, and how much time is spent executing in its descendant. This
helps identify which objects might be taking too long to initialize, or
whether there are bottlenecks due to heavy graphics use or poor coding.
However, running the profiler adds overhead to the application you are
analyzing. This is because the profiler runs with the Flash Debug Player
version, which is slower than the release version. Analyze the results
returned with the profiler relative to each other, but do not take them as
correct absolute times. Running an application in the release version of
Flash Player will yield different results when compared to running the
same application with the Flash Debug Player version. The Flex
documentation has more information on how to install and run the
ActionScript profiler. Macromedia Flex Evangelist Christophe Coenraets
also has an excellent blog entry (
http://www.markme.com/cc/archives/2004_04.cfm) on optimizing
application performance with the ActionScript profiler.

Calculating the Application Initialization Time

A more simple approach to performance profiling is to use code to gauge
startup time. The following snippet times application initialization time
(the time it takes the Application object to create, measure, lay out, and
draw all of its children); it does not include the time to download the
client SWF, or any of the serverside processing such as checking the
Flash Player version, checking the SWF cache, and so on. The following
example shows a sample Flex application that, when invoked in a
browser, shows a simple form populated with controls, with the time it
took to initialize and print a label.
<?xml version="1.0" encoding="iso88591"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"

creationComplete="doLater(this,'doneNow')">
<mx:Script><![CDATA[
var dp = [{food:"apple", type:"fruit", color:"red"},

{food:"potato", type:"vegetable", color:"brown"}, {food:"pear",
type:"fruit", color:"green"},

{food:"orange", type:"fruit", color:"orange"},{food:"spinach",
type:"vegetable", color:"green"},{food:"beet",
type:"vegetable", color:"red"}];

function doneNow()
{

doLater(this, "reallyDoneNow");
}
function reallyDoneNow()

http://www.macromedia.com/devnet/flex/articles/rsl.html
http://www.markme.com/cc/archives/2004_04.cfm
http://www.markme.com/cc/archives/2004_04.cfm

21

{
timerLabel.text += getTimer() + " ms"

}
]]></mx:Script>
<mx:Form>

<mx:FormHeading label="Sample Form" />
<mx:FormItem label="List Control">
<mx:List dataProvider="{dp}" labelField="food"/>

</mx:FormItem>
<mx:FormItem label="DataGrid control">
<mx:DataGrid width="200" dataProvider="{dp}"/>

</mx:FormItem>
<mx:FormItem label="Date controls">
<mx:DateChooser />
<mx:DateField />

</mx:FormItem>
<mx:FormItem label="Load Time">
<mx:Label id="timerLabel" fontSize="12" fontWeight="bold"
text="The application initialized in "/>

</mx:FormItem>
</mx:Form>
</mx:Application>

The first thing is to get a baseline reading of your application startup
time. Ensure that you exit all other running applications, verify that you
are using the release version of Flash Player, and run the application
three times to get three initialization times. The average of these three
times is your baseline reading. As you implement performance tuning,
confirm that the startup time is indeed getting faster.

This code will also help you see which portion of your application is the
slowest and identify whether you can speed it up. To try this, selectively
remove parts of your application to see whether the single part's startup
time is relative to the entire application's startup time. This iterative
process highlights the problem areas of your application. For example,
this methodology might show you that View B of your application loads in
six seconds out of an overall startup time of twelve seconds. View B is a
problem area for which you can drill down into and investigate
performance alternatives. This process is simpler than setting up and
using the ActionScript profiler, although it yields much less detailed
information.

Using getTimer() To Time Component and Data Gestures

The getTimer() function is a very useful ActionScript function that
returns the number of milliseconds since a Flex client application has
been running in the browser. Attaching getTimer() calls to events
enables you to time component and data gestures. Brandon Purcell,
coauthor of this article and a support engineer at Macromedia, has a blog
entry (www.bpurcell.org/blog/index.cfm?mode=entry&entry=1017)
explaining how to time Flex data service calls using getTimer().

http://www.bpurcell.org/blog/index.cfm?mode=entry&entry=1017
http://www.bpurcell.org/blog/index.cfm?mode=entry&entry=1017

22

Feedback and Support

We have made every effort to ensure the accuracy of this article and all
code included. Feedback regarding this article and all Flex performance
issues is always appreciated.

Flex Application Performance: Tips and Techniques for
Improving Flex Server Performance

Macromedia Flex is a powerful platform that offers the ability to create
Rich Internet Applications (RIAs). Misusing this power can result in areas
of poor performance. This article explores these performance issues and
offers tips on how to get the most out of your Flex server. More
specifically it explores:

n The flexconfig.xml file and its impact on performance

n The Flex caching model

n Runtime Shared Libraries (RSL)

n Efficient data delivery to the Flex client

n Using the JSP tag library efficiently

n Precompiling MXML pages

n JVM tuning

n Flex deployment options

Note that the tips suggested in this article do not apply to all Flex
applications. It is important to analyze the structure of your own
application and modify the suggestions to tailor them to your needs. For
ongoing coding and conceptual help, you can use the Flex support forums
(www.macromedia.com/cfusion/webforums/forum/index.cfm?forumid=6
0).

Note also that this is the second part of a twopart article. The first part of
this article, Flex Application Performance: Tips and Techniques for
Improving Client Application Performance, discusses the clientside
coding techniques that you can implement to improve the performance of
your Flex client application.

mailto:dsubrama@macromedia.com?subject=client_perf_article
http://www.macromedia.com/cfusion/webforums/forum/index.cfm?forumid=60

23

Exploring Caching in the Flex Presentation Server

Flex uses an inmemory cache to handle requests for MXML pages. The
first time it invokes an MXML page, the compiler creates an SWF file and
stores it in the Flex cache. Flex also creates and caches an HTML wrapper
page, and serves subsequent page requests from this cache. Figure 1
shows the flow of traffic.

Figure 5: Caching requests for MXML pages

Flex also caches dependent files such as SWC, MXML, and ActionScript
files. Flex keeps a reference of all dependent files, such as CSS style
sheets, images used in the <mx:Image> tag, and ActionScript files
included with the <mx:Script> tag, and stores them in the /WEB
INF/flex/cache.dep file. If any of these dependent files change, Flex
recompiles the MXML file.

The Flex caching settings are configured in the <cache>...</cache>
section of the flexconfig.xml configuration file. Flex enables caching by
default, using the entry <cachemxml>true</cachemxml>. If you set
this entry to false, all requests to an MXML file force a recompilation of
the MXML document. The <contentsize>500</contentsize> entry
in the flexconfig.xml file defines the default maximum size of the cache,
500 entries. The contentvalue size is not defined by the total number of
MXML files, but by the total number of cached entries. For example, a
single MXML file writes two entries in the cache: one for the HTML shell
and one for the SWF file. In most cases, the default setting of 500 is more
than enough but there might be cases in large enterprise applications
where you have a sizeable number of MXML documents. Flex will create
additional cache entries for different URL pairs (for example,
page.mxml?accessible=true). By setting accessible=true in the URL,
you create a new unique SWF file and HTML shell that is added to the
cache. There is not a significant amount of memory overhead to
increasing this value because most HTML shells are only a few kilobytes
in size and most Flex SWF files are around 100 to 150K.

When you use the JSP tag library to inline MXML into a JSP or CFML
page, Flex uses a separate cache for the MXML code fragments. Flex
defines this cache with the <mxmlsize> entry with a default value of
500. The following example shows a code fragment from a JSP page:

24

<mx:Application>
<mx:Label text="Hello"/>

</mx:Application>

Flex caches this code fragment in the source cache defined by the <mxml
size> entry. The resulting SWF file and HTML shell generated from
compiling the source are cached in the content cache, defined in the
<contentsize> caching setting. If at anytime the source fragment
changes within the page, a new cache entry is entered into the source
cache, and Flex compiles a new SWF file.
<mm:mxml>
<mx:Application>
<mx:Label text="Hello" />

</mx:Application>
</mm:mxml>

When Flex reaches the size limit in a cache, it flushes the least recently
used file. In Flex 1.0 there is no way to see how many entries are in the
cache and there is no way to flush the cache while the server is running.
As you will see in the next section, this is only a problem if the server is
running with productionmode=true. During development, the file
watcher monitors all dependent files defined in /WEB
INF/flex/cache.dep; if a file changes, Flex recompiles the corresponding
MXML file and refreshes the cache. For more details on the caching
implementation in Flex, read the Configuring Caching
(livedocs.macromedia.com/flex/1/flex_docs/36_admi5.htm#wp121792)
section in the Developing Flex Applications documentation.

Modifying the flex‐config.xml File Configuration Settings

The simplest way to improve performance in a production environment is
to set the productionmode attribute to true in the flexconfig.xml file.
This achieves several things in Flex.

n It disables all debugging and profiling features set in the <debugging>
block of the flexconfig.xml file.

n It also forces Flex to ignore query string parameter overrides, such as
?debug=true and ?asprofile=true.

When you enable production mode, Flex only checks for changed files on
server startups. Flex does not use the <filewatcherinterval>
setting to continuously poll files. You must restart the application or the
J2EE server instance to update MXML or dependent files while in
production.

One other configuration setting that can improve performance is the
<optimize> property in the <compiler> section of the flexconfig.xml file.
The <optimize> property defaults to true. By setting <optimize> to
true, the ActionScript optimizer reduces the size of the resulting SWF file
by 10 to 15 percent. The optimizer changes generated ActionScript code
prior to compilation. This results in reduced compilation time and
improved runtime performance of Macromedia Flash Player. During
development, if you are using trace statements, you should set
<optimize> to false to prevent the compiler from removing your trace
statements.

http://livedocs.macromedia.com/flex/1/flex_docs/36_admi5.htm

25

Runtime Shared Libraries (RSLs)

With Flex 1.0 when Flex compiled an MXML file and its assets into a SWF
file, the resulting SWF file is a single entity, consisting of all the base
application model components (such as Button, CheckBox, and Panel
components), graphical assets, embedded data, and custom components.
The result can be a large file that can be slow to download. In many
cases, Flex implementations have multiple applications that share some
of the same assets. But clients were required to download the entire
application and all of the components for each Flex application they
accessed.

Flex 1.5 introduced the concept of Runtime Shared Libraries (RSLs). With
RSLs, you can reduce the size of your application’s SWF file by
externalizing shared assets into standalone files that can be separately
downloaded and cached on the client. These shared assets are loaded by
any number of applications at runtime, but only need to be transferred to
the client once.

If you have multiple applications but those applications share a core set
of graphic files, components, and other assets, your users only have to
download those assets once in an RSL. You can reduce the resulting file
size for your main application dramatically. If a file in one of the RSLs
changes, Flex recompiles and resends that RSL to the client. Flex does
not recompile the application and other unchanged RSLs.

Accessing Flex Data Services

How you choose to access data in your Flex application impacts
performance. Because the application is cached on the browser after the
first request, data access is responsible for significantly affecting
performance while the application runs. Flex provides several solutions
for data delivery to the client. It delivers data through runtime services
that invoke Java classes loaded in the Flex classpath, or sends proxy
requests to web services or HTTP servers. Figure 2 shows the available
Flex data services.

Figure 6: Flex data services

The following list describes the Flex data services:

26

n Web services proxy—Due to the Flash Player security sandbox, requests
to web services can only be made to the same domain that loaded the
SWF file. In many cases, web services will be located on another domain.
In Flex, all web service requests go through a web services proxy running
on the Flex presentation server. The following snippet shows a call to a
web service:
<mx:WebService id="ws" wsdl="http://acme.com/stock.wsdl">

<mx:operation name="getQuote"/>
</mx:WebService>

When the SWF file loads on the client, it sends a request to the web
services proxy requesting the WSDL file. Then, the web services proxy
makes a request to the WSDL file and sends the response back to the
client, using the proxy that the response sent back to the original client.
All client server interaction using the <mx:Webservice> tag passes
through the proxy unless you use the useProxy="false" property. When
you use useProxy="false", the Flash client makes the web service call
directly to the end service. For this to work properly with the sandbox
security in the Flash client, the end service must have a crossdomain.xml
file in place. In some cases you have no control over the end service, so
you need the proxy. In some cases you may experience issues using
HTTPS and retrieving error messages when not using the proxy.
Macromedia recommends that you use the proxy unless you have a good
reason not to.

n Remote object AMF gateway —The remote object AMF gateway
enables you to access serverside objects (Java Beans, EJBs, POJOs)
running on the Flex presentation server. The remote object proxy uses
two different encoding mechanisms, which you choose by modifying the
encoding property in the RemoteObject tag. Flex 1.0 provided two
encoding mechanisms for transferring the data AMF (Action Message
Format) and SOAP. In Flex 1.5, SOAP encoding has been deprecated.
AMF provides a binary protocol for data transfer between server and
client. The following code shows an example of using the RemoteObject
tag with AMF:
<mx:RemoteObject id="ro" src="samples.StockBean" encoding="AMF">

<mx:method name="getQuote">
</mx:method>

</mx:RemoteObject>

n HTTP services—Another data access method uses the HTTPService tag
with remote URLs to load XML into Flash Player. The HTTP services proxy
handles requests from the Flash client, and the proxy invokes the URL
and sends the response back to the client using a proxy. The following
snippet shows how to use the HTTPService tag:
<mx:HTTPService id="myRequest" url=http://acme.com/mydata.xml>
</mx:HTTPService>

27

You can use a standardsbased approach to access data from your Flex
applications, but in some cases you can improve performance with other
options. Using the <mx:Webservice> tag enables you to use a
standardsbased approach but doesn't always yield the best performance.
Also, there is an extra bit of overhead for the additional XML with the
SOAP encoding in comparison to AMF. On average, AMF is three times
faster than SOAP and in cases of very large payloads can be up to six
times faster. This is because AMF uses a binary protocol that greatly
reduces the size of the payload compared to XMLbased soap packets for
the same data. The performance of SOAP with web services is also
dependent on your web services implementation. Different application
servers use different web service back ends, so you might see
performance differences depending on the implementation. The only way
to understand how well your implementation will perform is to load test
your services. Carrying the same data, SOAP is usually double the size of
AMF. By using AMF, you can reduce the overall bandwidth of your
applications.

The two bestperforming methods of data delivery are XML using
HTTPService or RemoteObject. As mentioned previously, web services
may be slower due to the overhead of deserializing and serializing the
SOAP packets on the server and client. Many times, the choice depends
on your existing applications and how you choose to integrate with your
back end serverside resources. The performance of web services can be
highly dependent on your application server's underlying implementation
of the web services engine, so you should load test to see how well it
performs.

You also have the option to use remote classes for more complex objects
with the <mx:RemoteObject> tag. Always consider the overhead of
serializing and deserializing remote classes and use them only in cases
where they are needed. When using remote classes, make sure that you
use the Object.registerClass() method to specify the fullyqualified
name of the corresponding Java class on the server. By mapping the
ActionScript class directly to its Java serverside equivalent, you can
prevent the AMF gateway from having to search for the equivalent. Find
more information on Object.registerClass() in the Developing Flex
Applications document. Serialization for listbased objects will occur
faster in the client.

28

You also have the option of bypassing the Webservice and HTTPService
proxies in Flex allowing you to invoke the services directly. If the service
you are trying to invoke is on the same host or shares the same domain
name as the location of the MXML and SWF files, you can invoke the
service directly by adding the useProxy="false" property. When you
specify useProxy="false", the Flash client no longer routes calls
through the Flex proxy; instead it routes it directly to the end service. If
the MXML document and service are served from different domains or
hosts, then you must place a crossdomain.xml file on the server that is
hosting the service. Read more about this procedure in the Flash 7
security article (
www.macromedia.com/devnet/mx/flash/articles/fplayer_security_03.ht
ml). Macromedia recommends that you develop using the proxy because
it aids in debugging and that you only turn off the proxy if you're
confident that performance requires it during production. The proxy also
handles authentication and authorization. With it, you can use named
services instead of embedding the URLs in the MXML files; it also resolves
conflicts by handling samenamed cookies from different domains.

Using the JSP Tag Library

Flex provides a JSP tag library that enables you to integrate MXML
directly into a JSP or ColdFusion page. The tag library enables developers
to build hybrid applications that integrate both HTML and Flex
applications into a page. For example, if you had an HTML application
and wanted to slowly introduce rich user interfaces into it, you could
leverage the tag library to quickly and easily add it to your application. A
good example is a stock ticker that you add to an HTML application.
Using an HTML post, a user would have to refresh the entire page for a
quote. By adding a rich user interface, the user would see the results
appear without the entire page refreshing.

Used incorrectly, however, the tag library can cause significant
performance degradation by forcing excessive compilation. The following
snippet shows an example of using the Flex tag library. In this example,
Flex compiles the MXML file and stores the SWF file in the cache. As long
as the MXML code does not change, Flex continues to use the cached
version of the content file.
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<mm:mxml>

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
width="200" height="200">
<mx:Label id="label0" text="Hello World "/>

</mx:Application>
</mm:mxml>

If the Flex code changes dynamically, as it does in the following example,
Flex compiles a new version every time the MXML content changes. In
this case, for each unique user who logs in through the application, the
application sets a new session.username value. This causes the MXML
content to change, and causes Flex to cache an additional version of the
code and the SWF content.
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<% session.setAttribute("username", "brandon"); %>
<mm:mxml>

http://www.macromedia.com/devnet/mx/flash/articles/fplayer_security_03.html
http://www.macromedia.com/devnet/mx/flash/articles/fplayer_security_03.html

29

<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
width="200" height="200">
<mx:Label id="label0" text="Hi <%=
session.getAttribute("username") %> "/>

</mx:Application>
</mm:mxml>

This is not the preferred approach since it causes excessive compilation.
For example, if 500 unique users accessed this application at the same
time, the value of session.username would be 500 different values
resulting in 499 additional MXML compilations. It will also add a
significant number of entries in the cache. A better approach is to pass
variables to the Flex application using the <param> tag from the Flex tag
library. You can then use the value of that variable, as long as you
declare the variable inside an MXML script block. The following code
shows the best practices approach to solve the problem explained in the
previous code. With this approach the page only compiles once, and each
time a unique user accesses the application, the app passes the unique
user name through the mm:param value.

<% session.setAttribute("username", "brandon"); %>
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<mm:mxml>
<mm:param name="userName" value="<%=

session.getAttribute("username") %>" />
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml"
width="200" height="200">

<mx:Script>
var userName:String;
</mx:Script>
<mx:Label id="uName" text="Hi {userName}"/>

</mx:Application>
</mm:mxml>

The <param> tag works fine for simple values, but what if you need to
pass an XML tree or complex objects into your Flex application? The
following example passes XML into the MXML document using the tag
library. There are two ways to accomplish this task and the preferred
option for good performance depends on whether the XML is static or
dynamic. If the XML is static, it performs better if you embed the JSP
code within the MXML document, as shown in this example:
<%@ taglib uri="FlexTagLib" prefix="mm" %>
<html>
<%

String tree="<node label='Option 1'><node label='Option
1.1'/><node label='Option 1.2'/></node><node label='Option
2'/>"; %>

<mm:mxml>
<mx:Application width="250" height="250"
xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:XML id="myTree">
<%= tree %>

</mx:XML>
<mx:Tree dataProvider="{myTree}"/>

</mx:Application>
</mm:mxml>
</html>

30

If the XML is dynamic, Flex recompiles the MXML each time the XML
changes, which can lead to poor performance. The best approach for
handling dynamic data is to load the XML dynamically from the server,
using the <mx:HttpService> entry to a JSP or servlet that delivers the
XML. The following code invokes a JSP that feeds the XML back to the
Flex application when it initializes. After the XML returns, Flex binds the
result directly to the <mx:Tree> control.

<%@ taglib uri="FlexTagLib" prefix="mm" %>
<html>
<mm:mxml>

<mx:Application width="250" height="250"
xmlns:mx="http://www.macromedia.com/2003/mxml"
initialize="xmlFeed.send()">
<mx:HTTPService id="xmlFeed"

url="@ContextRoot()/perfpaper/xmlfeed.jsp" resultFormat="xml"/>
<mx:Tree dataProvider="{xmlFeed.result}"/>

</mx:Application>
</mm:mxml>
</html>

The Flex JSP tag library provides a powerful set of features to developers
for embedding MXML into your existing applications and building hybrid
Rich Internet Applications (RIAs). If used correctly, they perform very well,
just remember that dynamic MXML causes recompilation and can fill up
the cache quickly. For complete details on using the JSP tag library, see
the Flex documentation
(livedocs.macromedia.com/flex/1/flex_docs/35_jsps.htm#wp121778).

Precompiling MXML Pages

The earlier section on caching discusses how, for best performance, you
must recompile the MXML files and load them into the cache after a
server restart. Another option is to precompile your MXML pages with the
headless compiler, mxmlc, and create your own HTML shell to load the
SWF files into the browser. This option enables you to deploy bytecode,
but is somewhat more involved than letting Flex build your HTML
wrappers for you on the fly. Many of the things, such as player detection
and history management will no longer be generated automatically. You
must code them into your HTML wrapper to provide those features.

The following code demonstrates an example of precompiling an MXML
file that creates an HTML wrapper. It has a TabNavigator container with
four tabs. If you put this code in an MXML file and invoke it through a
browser, you can click the tabs and use the browser's Back and Forward
buttons to move through the Flex application.
<?xml version="1.0"?>
<mx:Application xmlns:mx="http://www.macromedia.com/2003/mxml">
<mx:Panel title="My Application">
<mx:TabNavigator borderStyle="solid">
<mx:VBox label="Pane1" width="300" height="150" >
<mx:TextArea text="Hello World" />
</mx:VBox>
<mx:VBox label="Pane2" width="300" height="150" >
</mx:VBox>
<mx:VBox label="Pane3" width="300" height="150" >
</mx:VBox>

http://livedocs.macromedia.com/flex/1/flex_docs/35_jsps.htm

31

<mx:VBox label="Pane4" width="300" height="150" >
</mx:VBox>
</mx:TabNavigator>
</mx:Panel>
</mx:Application>

To prevent this file from compiling each time the server restarts, you can
use mxmlc to precompile the file as follows:
{flexroot}bin\mxmlc ..\jrun4\servers\default\flex\TabNav.mxml

For complete details on using mxmlc, see the Flex documentation
livedocs.macromedia.com/flex/1/flex_docs/36_admi2.htm#wp121781).

Note: Please read the Flex enduser license agreement for details on
distributing SWF files created with mxmlc. In the trial and development
versions of Flex, all SWF files created with mxmlc expire one day after
compilation. With the full version of Flex, they will not expire.

In the following example, mxmlc creates the SWF file in the same
directory as the MXML. The next step is to build the HTML shell and
integrate the SWF file into the HTML, JSP, or CFML files, or in a servlet.
The easiest approach is to use a shell that an MXML file within the same
Flex application generated. By using a Flexgenerated shell, you retain
the Flex history management features. All you need to do is replace the
file.mxml.swf entry with the file.swf entry in four locations. For example:
<script language='javascript' charset='utf8' src='/flex/flex

internal?action=js'></script>
<noscript>
<object classid='clsid:D27CDB6EAE6D11cf96B8444553540000'
codebase='http://download.macromedia.com/pub/shockwave/cabs/fla
sh/swflash.cab#version=7,0,14,0' width='100%' height='100%'>
<param name='flashVars' value=''>
<param name='src' value='TabNav.swf'>
<embed

pluginspage='http://www.macromedia.com/go/getflashplayer'
width='100%' height='100%' flashVars='' src='TabNav.swf'/>
</object>

</noscript>
<script language='javascript' charset='utf8'>

document.write("<object classid='clsid:D27CDB6EAE6D11cf96B8
444553540000'
codebase='http://download.macromedia.com/pub/shockwave/cabs/fla
sh/swflash.cab#version=7,0,14,0' width='100%' height='100%'");
document.write(">");
document.write(" <param name='flashVars'
value='historyUrl=%2Fflex%2Fflex%2Dinternal%2Fhistory%2Fhistory
%2Ehtml&lconid=" + lc_id +"'>");
document.write(" <param name='src' value='TabNav.swf'>");
document.write(" <embed
pluginspage='http://www.macromedia.com/go/getflashplayer'
width='100%' height='100%'");
document.write("
flashVars='historyUrl=%2Fflex%2Fflex%2Dinternal%2Fhistory%2Fhis
tory%2Ehtml&lconid=" + lc_id +"'");
document.write(" src='TabNav.swf'");
document.write(" />");TabNav.swf
document.write("</object>");

</script>
<script language='javascript' charset='utf8'>

http://livedocs.macromedia.com/flex/1/flex_docs/36_admi2.htm

32

document.write("
<iframe src='/flex/flex
internal/history/history.html' name='_history' frameborder='0'
scrolling='no' width='22' height='0'></iframe></br>");

</script>

For history management to work, you must ensure that the contextroot
of the application is correct. If you deploy Flex with a context root of /flex,
then you must prefix all URLs in the HTML wrapper with /flex. In the
previous example, the contextroot is /flex. Using the information
provided, you can improve the startup time of the first request for your
application, because Flex does not need to compile the MXML files.
Precompiling the application also enables you to distribute applications
without the source code. Using ant, or another build tool, you could wrap
up the mxmlc functionality and build HTML shells into an automated
process.

You can find more information on building your own HTML wrappers in
the Flex documentation
(livedocs.macromedia.com/flex/1/flex_docs/38_dep24.htm#wp147786).
The documentation also describes the steps for adding player detection to
your HTML wrappers.

Deployment Options

You have two options when deploying Flex. You can leverage your existing
hardware and application servers, or you can deploy Flex on a dedicated
system. The best investment is to leverage your existing hardware. You
may be concerned that adding Flex to an existing environment would tax
the existing infrastructure by adding additional load to the servers. In
fact, the opposite is true. Using Flex can actually decrease server load.

Adapting an existing JSP or servletbased application to a Rich Internet
Application (RIA) decreases server load by decreasing the amount of data
passed on each request. Meanwhile, HTML applications are pagebased,
and demand complete page refreshes when information is submitted to a
server, as well as when a client navigates from one page to another. Each
page load uses up network bandwidth and server resources. RIAs behave
like desktop applications, instead of series of pages. Flash Player
manages the client interface as a single, uninterrupted flow and does not
require that a page load from the server when the client moves from one
section of the application to another. With an RIA, the browser loads the
SWF file only once; all subsequent requests are smaller datadriven
requests using either XML or AMF.

The other, less preferred option for deploying Flex is to create a dedicated
Flex environment. In this model, the existing infrastructure provides data
connectivity through web services or XML feeds. This model adds a
significant amount of cost and administrative overhead, because it
requires that you install and configure new hardware and the J2EE
application servers where you plan to deploy Flex.

http://livedocs.macromedia.com/flex/1/flex_docs/38_dep24.htm

33

A note about JVM and J2EE server tuning: Flex supports a wide range
of J2EE application servers, so it is difficult to outline specific actions for
server performance tuning. The best place to start is with your
application server vendor's website; look for tuning resources there. The
compiler and data services in Flex can use a large amount of shortterm
objects under heavy load. In some case that can cause delays due to
heavy use of garbage collection. If your JVM vendor is independent of
your J2EE application server vendor, you may want to review information
on tuning the JVM and garbage collection.

Load Testing Your Flex Application

The performance of your Flex application is highly dependent on your
existing applications and infrastructure. For example, the Flex
application server and data services may be able to sustain several
hundred requests per second. However, if your web service or remote
object can only sustain 35 requests per second, your web service becomes
the bottleneck and hinders scalability. This is why you must test each
independent tier of your application on its own. The following sections
explore how you can load test your Flex application. (See also the
"Performance Tuning and Profiling Your Own Flex Application" section in
the article section on, "Flex Application Performance: Tips and Techniques
to Improving Client Application Performance.")

Load‐Testing Tools

First, load test each of your data services independent of the Flex proxies.
If you have a web service or an XML feed from a servlet, use a loadtest
tool to gauge the maximum number of requests per second that it can
sustain. Second, run the same test through the Flex proxy, because all
traffic is sent from the Flash client to the proxy, and the proxy, in turn,
sends the request to your web service or HTTP feed.

You can choose among several loadtesting tools, ranging from free tools
to tools that cost tens of thousands of dollars. During the development
and staging phases, a free tool works just fine for load testing individual
services (such as web services, remote objects, or XML feeds). Some free
loadtesting tools are:

n Microsoft Web Application Stress Tool
www.microsoft.com/downloads/details.aspx?familyid=e2c0585a062a
439ea67d75a89aa36495&DISPLAYLANG=en

n OpenSTA
www.opensta.org

n Apache JMeter
jakarta.apache.org/jmeter/index.html

n Apache Bench
perl.apache.org/docs/1.0/guide/performance.html

However, to load test a finished application and randomize request data,
use one of the following commercial loadtesting tools:

http://www.microsoft.com/downloads/details.aspx?familyid=e2c0585a-062a-439e-a67d-75a89aa36495&DISPLAYLANG=en
http://www.opensta.org/
http://jakarta.apache.org/jmeter/index.html
http://perl.apache.org/docs/1.0/guide/performance.html

34

n SegueSilkPerformer
www.segue.com/html/s_solutions/s_performer/s_performer.htm

n Mercury LoadRunner or LoadTest
www.mercuryinteractive.com/products/

n Emperix e‐Test Suite
www.empirix.com/Empirix/Web+Test+Monitoring/Web+Test+Monitor+Ov
erview.html

Load Testing Sample Scenarios

During development, test each of the services that your Flex application
consumes. This can be as simple as using one of the free tools listed
previously to record interaction between the Flash client and the server
and playing back the recorded request/response under a multiuser
scenario. This section describes several scenarios using different
approaches and data services.

Scenario 1

A common approach is to use a JSP or servlet that exposes XML to the
Flex application and is invoked using the <mx:HTTPService> tag in Flex.
After building a portion of the application that consumes this XML feed,
load test to ensure the backend service can sustain the production load.
Since most development systems do not provide production horsepower,
use a staging environment that mirrors the production system. Using the
staging system and a testing tool, you can record the traffic that occurs
between the browser and server. The testing tool records the traffic and
can play it back using multiple threads (or users) to simulate a
production load. It is important that at this stage that you only test the
data services, not the loading of the SWF file or the other services that
Flex provides. Delete the other requests from the recorded script. The
following snippet shows requests from a sample script recorded in
Microsoft WAS:
GET /sharedapps/xmltest/WeeklyReport.mxml
GET /flexinternal?action=js
GET /sharedapps/xmltest/WeeklyReport.mxml.swf
GET /flexinternal/history/history.html

POST /flex/flashproxy
(post data

transport=http%2Dget&target=http%3A%2F%2F192%2E169%2E1%2E24%3A8
100%2Fsharedapps%2Fxmltest%2Fxml%2Ejsp)

GET /flexinternal?action=swf

Delete all requests except POST /flex/flashproxy to focus on load testing
only the XML feed. Later, before you go to production, load test all of the
requests to the server. After running your first load test, you set a
baseline. Afterwards, by modifying code or tuning the server, you can
improve the numbers until you meet your target. Use this testing
approach for all serverside resources that Flex consumes.

http://www.segue.com/html/s_solutions/s_performer/s_performer.htm
http://www.mercuryinteractive.com/products/
http://www.empirix.com/Empirix/Web+Test+Monitoring/Web+Test+Monitor+Overview.html

35

Scenario 2

You may run across cases where it seems that the Flex proxy services,
network, or some unknown factor is a bottleneck. To troubleshoot this,
first rule out the end service. To find the baseline maximum, point your
HTTPService request at a static document. To do this, request the JSP or
servlet feeding the XML file, save it to a static XML file, and then put the
XML file in your webroot. Change the URL of your HTTPService to point to
this static document and run your load test again. This provides you not
only with a theoretical maximum, but also targets other bottlenecks.

The steps to load test a web service using the <mx:WebService> tag in
Flex are almost identical. When viewing your traffic results, you may
notice that when the SWF file first loads, it makes a request to the WSDL
to load information about the web service. The SWF file makes the
request once for each client when the Flex application loads. Requests to
methods in the web service follow the WSDL request. If you load test a
web service, you may want to load test the WSDL invocation separately
from the method calls, because it is not requested nearly as often as the
method calls to the service. Some loadtest tools let you set up a ratio
using different scripts to get the model as close to a realworld scenario as
possible.

Scenario 3

Many of the commercial tools also provide powerful scripting languages to
customize your scripts and randomize data passed into the request. For
example, if you were testing the logon section of your site, you would not
want the same user to log on over and over again in your script. You
would instead randomize a set of users in the script so that you mimic
different users logging in throughout the load test.

There are some challenges to load testing using RemoteObject with AMF
encoding. SOAP uses XML in the request to the server, so it is fairly
simple to write a script so that a portion of the XML data is random. AMF
is a binary protocol and the request data to the Flash gateway is binary,
so not only is it difficult to read what is passed, but it is also difficult to
script the requests to include random data. Some commercial loadtesting
vendors, such as Segue, include AMF as a native protocol to their testing
suites to simplify this process.

Near the end of your development cycle, you should run several full
fledged load tests. The commercial tools mentioned previously work best
in this situation. Record several common paths that users will take
through the application. After recording the different paths, you might
need to modify each script, to randomize the data passed to the server.
You can then run the scripts against the server while monitoring several
different areas on the back end. Monitor the following areas on both your
application and database servers: CPU, JVM heap usage, network, and
any tools that the application server provides for monitoring.

36

After completing the tests, analyze the results and try to identify the
requests that take the longest to process. The goal is to find bottlenecks
and optimize any areas in your application or server. After optimizing
your applications, run several longterm MTBF (mean time between
failure) tests to ensure that after several hours in production, no
preexisting or new issues cause downtime. Although it is impossible to
simulate exactly what occurs in a production environment, you can come
close. Following the steps and tips outlined previously, and you can be
confident that your application will perform well in production with very
little downtime.

Feedback and Support

We have made every effort to ensure the accuracy of this article and all
code included. Feedback regarding this article and all Flex performance
issues is always appreciated.

About the Authors

Brandon Purcell started at Macromedia/Allaire four years ago as a
support engineer working with ColdFusion and JRun. He has worked
with the Professional Services Group helping customers with their
architecture planning, code reviews, customized training, load testing,
and performance tuning. He has also worked on special projects
including the clustering, load testing and deployment of the new
macromedia.com website. During his tenure with Macromedia, he has
supported ColdFusion, JRun, Flash Remoting, and has written white
papers and articles on clustering and high availability with ColdFusion
and JRun. Currently he is working as an escalation engineer for the Flex
Server Support Organization. You can visit him at his website.

Deepa Subramanian is a quality assurance engineer for the Flex team.
Straight out of UC Berkeley (Go Bears!), with an undergraduate degree in
computer science, she has been at Macromedia for just over one year and
is very excited to be working on all things Flex related.

mailto:bpurcell@macromedia.com?subject=server_perf_article
http://www.bpurcell.org/

