
Technical white paper

Adobe® Flex™ Data Services 2: 
Capacity Planning
Introduction
The purpose of this document is to help the reader better estimate what the hardware requirements
for an Adobe Flex application using Flex Data Services 2 might be in a production environment.

The document gives an overview of capacity planning, then addresses capacity planning issues
specific to Flex. The document then walks you through the load testing process using a baseline
Flex application and presents performance test results for this application.

By comparing your application to the baseline application presented in this document and by
using our performance test results as a guideline, you should be able to better estimate your
hardware requirement needs.

It’s important to keep in mind that every application differs in complexity and that the demands
placed upon an application by its users will not be consistent from one application to the next.
Application performance will undoubtedly vary across different application servers. For these reasons
it is important to verify estimates with adequate performance testing using the hardware and software
configuration you have chosen. It is important to do this testing prior to production release.

Capacity planning overview
Determining what hardware configuration will adequately meet the needs of your application is
the process known as capacity planning. When an application is released into production, it is
important to be confident that the hardware configuration that’s chosen will allow it to function
properly and meet the performance requirement goals that were agreed upon. These performance
requirement goals are often called service goals or service level agreements. While these are
usually defined by management or the business owners of a specific application, they will most
likely reflect the end-users’ expectations. The following are three simple examples of
performance requirements:

• No single request can take more than 8 seconds to process

• The application must support up to 30,000 requests per day

• The application must support 1,000 concurrent users

Gathering accurate performance requirements is an important part of the capacity planning
process. If you underestimate the production-level demands for your application, it may not
perform or even function properly. This translates to unhappy users.

Application usage can vary over time—even hourly. If you don’t accurately predict these
fluctuations, your particular hardware configuration may not scale sufficiently to meet the new
demands. Overestimating the demands placed on an application is also undesirable. Most
organizations do not want to purchase more hardware than necessary.

Adobe Flex Data Services 2 :
Capacity Planning

	Introduction	 1

	Capacity	planning	overview	 1

	Flex	architectural	overview	 2

	Application	server	tuning	 4

	Flex	scalability	 4

	MXML	compilation	 4

	Proxy	performance	tuning	 4

	Scalability	test	methodology	description	 5

Test	system	configurations	 6

	Baseline	application	performance	results	 7

	Sizing	an	application	 8

	Conclusion	 9

	 	

2Adobe	Flex	Data	Services	2

Consider, for example, an application deployed to serve 60,000 users. Is it reasonable to expect
that it would need to handle 60,000 simultaneous requests? The short answer is “probably not.”
The challenge then is to determine the number of simultaneous requests that reflects a realistic
use case. That is, how many simultaneous requests will the application need to handle?

For the purposes of this document, let’s assume that the application is intended to replace an
existing one that there is accurate usage information for. Reviewing this information, it’s
determined that 10% of the users (on average) utilize the application daily. This translates to
6,000 users per day as compared with the total.

On further analysis, it’s discovered that there are four hours during the day (peak hours) when
the application is most often used. It’s during these peak hours that the engineer needs to be
certain that capacity can be met. Even if in the unlikely event that the application’s users could
manage to make one request every second during these peak hours, it’s plain to see that 6,000
reqs/sec is an order of magnitude lower than the maximum of 60,0000 reqs/sec based on the total
number of users.

Applications using real-time data have unique requirements compared with traditional web
applications’ HTTP request/response paradigm to request and deliver data. Flex Data Services 2
provides a robust messaging system that can support real-time data streaming and in-context
collaboration of applications. An application that supports 6,000 users consuming a 100KB
stream of data will require additional server capacity compared with an application that supports
6,000 users consuming 10KB streams of data. The performance profile of streaming data and
collaborative applications is usually based on total data transferred rather than number of
concurrent user connections.

It is also important to keep in mind that there are external factors that may impact the
performance of your application. A high-performance application server along with a well-tuned
database can dramatically boost the performance of your application. The same can be said for
the application itself. A poorly written application will undoubtedly have a negative impact on
the amount of hardware necessary to support it. Security is another factor to consider. Many
applications use SSL (Secure Sockets Layer) for secure communications between the client and
server. While often necessary, particularly for financial applications, it’s important to keep in
mind that it adds additional overhead. Some application server vendors report up to a 50%
reduction in capacity when using SSL. Using a hardware accelerator (which offloads SSL
processing to a component on the machine or to another machine entirely) can help improve SSL
performance significantly.

To summarize, capacity planning requires an accurate definition of the performance requirements
for your application. These requirements should include factors such as user count as well as
expected response times for single or multiple requests (transactions). Once these are defined,
the planning will then need to focus on finding a hardware configuration that will meet the
application’s needs. The last step in the capacity planning process involves performance testing
of the application with the chosen hardware configuration for verification.

Flex architectural overview
The Flex Data Services 2 provides infrastructure for delivering and managing data delivered to
rich clients developed with Flex Builder™ 2 or the Flex 2 SDK. Flex is deployed as a standard J2EE
web application and is supported on a number of popular J2EE application servers.

Creating rich Internet applications (RIAs) requires a level of data management that goes beyond
the traditional request/response model. Providing a richer, more expressive experience often
requires more data-intensive interaction and introduces new challenges in managing data
between the client and server tiers. RIAs enable users to work more independently using their
own copy of data managed locally. This provides more intelligence and faster response times for
the user. This model requires data synchronization between the client-side version of the data
and the middle-tier data, which also needs to be synchronized with the database management
system (DBMS).

�Adobe	Flex	Data	Services	2

Flex Data Services manages this important data synchronization process. It removes the
complexity and error potential by providing a robust, high-performance data synchronization
engine between client and server. It also can easily integrate with existing persistence and
solutions to provide an end-to-end solution. The Flex Message Service inside Flex Data Services
enables new categories of innovative applications to be delivered in the browser in a reliable and
scalable manner while preserving the benefits of the traditional web deployment model. Flex
Data Services provides publish/subscribe messaging infrastructure, enabling messages to be
exchanged in real time between thin clients and servers. It allows thin clients to publish and
subscribe to message topics with the same reliability, scalability, and overall quality of service as
traditional thick-client applications.

Adding the Flex server to your production environment often does not require more hardware
capacity. This is especially true for applications that do not deliver large amounts of data in real time
through Flex Data Services messaging service. Performance analysis has shown that network
bandwidth usage and server memory consumption for a Flex application and a similarly authored
JSP application are identical where CPU usage is significantly reduced, as more processing—such
as field validation, data formatting, and so on—can be offloaded to the client. However,
applications with a high level of user interaction will see larger overall client performance gains
with Flex compared with an HTML interface, as well as increased bandwidth and server memory
consumption gains over time. The Flex application has a higher up-front cost in regard to
network bandwidth because the entire application is downloaded at once, but it saves on data
transfer through the network because the Flex application requires fewer requests to the server,
such as navigating to a different page in the application or downloading redundant graphics for
each page request.

Of course, applications that leverage real-time messaging have a different performance profile than
traditional HTML-based web applications. For applications using real-time data delivery, often
the gating performance factor is total network bandwidth usage or network card performance.

Flex Data Services provides a number of data channels for client-to-server communication. Each
data channel is optimized for a specific kind of data transfer. The following is a description of
each data channel that Flex Data Services 2 supports.

HTTP service (HTTP)
HTTP service allows data to be sent between server and client using the standard HTTP protocols.
Data sent via HTTP will be encoded as plain text and included in the body of an HTTP request.
HTTP is most useful for transporting data objects that are static (or mostly static) or rely on the
browser’s built-in HTTP communication capabilities. While there are ways to trick a web server
and browser to communicate asynchronously (using polling or HTTP and so on) to simulate
data push, the HTTP protocol is designed for request/response communication—which means
that the HTTP data channel isn’t well suited to asynchronous (or data push) data transfer.

Web service (SOAP/ HTTP)
Web services are the standard for SOAP-based data transfer. Web services transfer data as an
XML/SOAP object using HTTP. Web services can only support request/response communication,
and data payloads are sent and received as plain text XML objects. This can lead to performance
problems when interacting with large data sets that require frequent updates.

Remote objects (AMF)
Action Message Format (AMF) is a communication protocol that serializes server-side Java™
objects into a compressed-binary form and transfers these objects via HTTP to a Flash® or Flex
client. Once received, the serialized objects are deserialized into an ActionScript representation
of the Java object. AMF is a highly efficient protocol for data communication because it requires
less bandwidth than plain text protocols (like HTTP or SOAP).

�Adobe	Flex	Data	Services	2

Messaging (RTMP)
Messaging support is new in Flex Data Services 2. It is different from the above integration
services because it is asynchronous and does not require the request of a client for a server
message to be sent from the server to the client. Instead, a permanent connection is established,
which is then used to stream data between server and client. Clients can subscribe to a certain
information channel, and the server will send new information to all clients that have subscribed
to the channel. Testing messaging applications that use messaging services is usually difficult
because of their asynchronous nature and new data may or may not be available during a load test.

Application server tuning
Flex Data Services can be deployed on a number of J2EE application servers or servlet containers.
It is recommended that you follow the application server vendor’s tuning recommendations. An
application server that is not tuned can cause a significant decrease in performance.

Application servers have different hardware requirements. Some are built to run large,
enterprise-class applications, while other application servers are more suited to smaller intranet-type
applications. Most application server vendors provide capacity planning guides. It is a good idea
to review and follow their recommendations.

Flex scalability
In most cases, application servers will be configured to work with a load balancer, configured as
a cluster, or some combination of the two. Since the Flex Data Services server is a J2EE WAR file,
it will participate nicely in these environments. The baseline performance numbers shown later
in this document, reveal that Flex will scale along with the underlying application server. There
are areas where special attention can be paid that will reap additional performance gains. These
are covered in the next section. The Flex Data Services messaging features will scale along with
the external messaging system integrated with it.

MXML compilation
MXML compilation is CPU intensive. In most cases this will not be a factor because an MXML
page will be compiled once by the server the first time it is requested. On subsequent requests the
MXML page will be served from a cache. Developers may elect to precompile the application
using Flex Builder 2 or the command-line utility that is included with Flex SDK 2.

Forcing the server to recompile an MXML page for every request is not recommended because
this has a significant impact on the performance of your application. If there is a requirement to
dynamically generate MXML, you should be careful that the number of unique versions of the
application is kept to a minimum. Rather than dynamically generating MXML for each user, it is
better to generate the MXML based on a user’s role. That way, if it takes ten seconds to compile
an application, the first user to request the application will experience a delay of ten seconds, but
the next user will be served that application from cache. If you want to serve a different application
for employees, managers, and executives, only the first request from a user in each of the three
groups will experience a compilation delay; if you compiled a separate application for each user,
each user would experience the delay.

Proxy performance tuning
One of the key features of the Flex Presentation Server is its ability to “proxy” service requests on
behalf of the client. This proxy is similar in nature to an HTTP web proxy and is used to handle
web service and HTTP service calls made by Flex clients. The Flex proxy accepts an HTTP
service or web service request from the client application. It then forwards the request to the
intended service, waits for a response, and returns the results.

While it is possible to bypass the Flex proxy, there are a number of benefits to using the proxy.
The Flex proxy allows your application to access URLs that reside on different domains, adds an
additional layer of security, and provides support for stateful services.

�Adobe	Flex	Data	Services	2

There is some overhead associated with using the Flex proxy. Requests that go through the proxy
may take slightly longer than direct requests. Also, using the proxy will result in additional TCP/IP
sockets opened on the application server machine.

This is to be expected since the Flex server is acting as a web client to the HTTP service or web
service. This is true even if the target service resides on the same machine as the Flex server. It is
always recommended that TCP/IP settings be optimized for the server machine running Flex.

Scalability test methodology description
Flex Data Services load testing was preformed using a series of test suites written by the Flex
server performance team. The goals of these applications are to:

• Show round-trip data processing performance for small, medium, and large data payloads

• Show that Flex scales well under load for each of the data channels that Flex Data Services
supports

These performance test suites test all of the Flex Data Services data access features including
RPC services (web service, HTTP service, RemoteObject service), messaging service (using JMS),
and data management service. Load testing of each of the Flex Data Services data channels is
done in two ways. First, we measure the round-trip performance of each data service at various
data payload sizes. Second, we measure the number of concurrent requests processed by a data
service at increasing data user loads. The size of data payloads used in these tests are 24KB,
100KB, and 200KB.

Test tools used by the Flex performance team included the Microsoft® Web Application Stress
Tool and the Flex Data Service Load Test Tool. Both of these tools are freely available and allow
individuals to test their applications using the same methods and techniques used to create this
report.

The Flex Data Services RPC services were load tested using the Microsoft Web Application Stress
Tool. The tool was used to generate load against the server, and its record feature was used to
create a test script. The record feature launches a browser window into which the application is
loaded. Once the application is loaded into the browser, the user (tester) may begin to interact
with the application, usually following a sequence of previously defined test steps. All network
requests made to the server by the client are recorded by the stress test tool. When the test script
is later executed, or “played back,” the tool will resend these network requests to the server.

The messaging service and the data service were load tested using the Flex Data Services load-testing
tool. This tool was written by the Flex performance testing team to allow for load testing using
the RTMP protocol. RTMP is a custom protocol supported by Adobe Flash Player and does not
go over HTTP, so it cannot be load tested using traditional web application stress test tools (like
the Microsoft Web Application Stress Tool). The Flex Data Services load-testing tool works by
running a small socket server, called the browser server, on a number of client machines. The
browser server is responsible for launching web browsers on the client machine. Each web
browser will run an MXML test application that then makes requests to the browser server. To
increase load, the browser server can be used to launch more client browser instances. When the
resources of the client machines running the browser server are fully utilized, more machines
running the browser server can be added to increase the scalability.

Both of these load-testing applications are executed with no built-in “think time” for each client
or virtual user. This means that one client thread or virtual user does not directly translate to a
single user interacting with the application. The Flex Performance team estimates that a client
thread represents approximately 10 actual users, so 10 client threads or virtual users would
represent around 1,000 users interacting with the application simultaneously. This method of
ignoring think time is preferred because accurately calculating think time is difficult and in most
cases doesn’t provide any greater level of accuracy.

�Adobe	Flex	Data	Services	2

For each server configuration, a test script was run to measure the following:

• The performance of a specific data service (RPC, data management service, messaging) for a
given amount of data transferred

• The total number of concurrent requests that can be handled by the server with a specific
amount of data throughput

Test system configurations
For all tests, the client-tier consisted of one Windows® machine running the MS Web Application
Stress Tool or the Flex Data Services Load Testing tool. No data tier was used as the server-side
components used in memory data objects. The Flex Data Services server was deployed along with
an Adobe JRun 4 J2EE application server.

Server configuration
The server machine that hosted the Flex Data Services applications had the following specifications:

• HP® ProLiant DL380

• Microsoft Windows Server 2003, Enterprise Edition

• Dual-processor Intel® Xeon 3.06Ghz CPU

• 2GB of RAM

Client configuration
The client machines had different specifications, since they required only enough memory to
open 20 browser sessions. Here is a typical specification:

• Microsoft Windows Server 2003, Standard Edition

• Dual-processor Intel Xeon 2.08GHz CPU

• 2GB of RAM

• Internet Explorer v6.0.3790.1830

Network configuration
A 100 Base-T (100Mbps) network was used.

�Adobe	Flex	Data	Services	2

Baseline application performance results

Data service performance by channel
Data service performance by channel measures the performance of an atomic data service operation
at a specific data payload size and user load metric—from the time the client sends data to the
server to the time the server responds with an acknowledgement that the action is complete. This
kind of performance test is very useful when trying to understand how your application responds
to various data payload sizes. As the figure below illustrates, for small data payloads all of the
Flex Data Services data service channels have similar performance characteristics. However, as
data payloads increase in size, the processing time for web service and HTTP channels increases
at a much higher rate than RemoteObject, messaging, or data management services.

Round-trip data-processing time for each Flex Data Services data channel

0

100

24KB 100KB 200KB

200

300

400

500

600

700

800

Round-Trip Data-Processing Time

Data Payload Size

Pr
oc

es
si

ng
 T

im
e

(m
s)

RemoteObject

Data Management Service

Web Service

HTTP Service

Messaging Service

�Adobe	Flex	Data	Services	2

Data service scalability
Data service scalability measures the scalability (or number of users that a single Flex Data
Services server can support) of individual data services given a data payload size. This test is
useful in identifying the maximum number of concurrent users that can be supported by a
specific application. As shown below, the highest performance is seen using RemoteObject, with
data management service providing the second highest. Web service and HTTP service both
support the lowest overall throughput at any data payload size.

Sizing an application
Capacity planning is not an exact science. No two applications are exactly alike, and there are
many factors that may impact performance. Once an estimate has been made with regard to
hardware capacity, it will still be necessary to load test your application in order to validate this
estimate. After load testing, additional tuning may be required in order for the application to
meet the goals set for it. It still may be necessary to adjust your hardware requirements in order
to meet your goals.

The data provided below is meant to showcase Flex Data Services performance capabilities under
a variety of real-world circumstances. This data in isolation, however, is not particularly useful.
To size your specific application, we recommend that you use the same methodology in this
document applied to your application. Once you understand the performance of your data
service, you can make an accurate estimate of how many servers you will need to support your
application.

Scalability for each Flex Data Services data channel

0
25 50 100 200

200

600

400

800

1000

1200

Flex Data Services Scalability

Concurrent Users

Re
qu

es
ts

 P
er

 S
ec

on
d

HTTP Service

Web Service

RemoteObject

Data Management Service

Messaging Service

To size an application you need to answer three questions. First, what is the response time of
your application-specific data services at your average data payload size given your hardware,
application server, and databasee choice? Second, what is the maximum number of concurrent
users that a single server instance can support under load? Third, what is the maximum number
of users your application will need to support (remember to take into account peak usage
patterns for your specific application)?

Once you answer these three questions, use the following formula to determine how many Flex
Data Services servers your application will require.

 Peak number of application users
Total Flex Data Services servers = ———————————————————————————————
 Number of concurrent users at a specific response time

Conclusion
Load and performance testing is a must for any application that serves more than a handful of
users. It will help you ensure you have the right amount and type of hardware and that you are
meeting your users, expectations—so that internal workers are productive and external customers
continue to use your application. This guide shows you a number of characteristics related to the
scalability of Flex applications, the ability of Flex to scale linearly, and its ability to help you more
efficiently use your server resources. However, it necessarily made a number of assumptions
about the application, its users, and their expectations. It is critical that you provide accurate
assumptions for your own testing and perform complete tests on your targeted platform.

Adobe Systems Incorporated
345	Park	Avenue	
San	Jose,	CA	95110-2704		
USA	
www.adobe.com

Adobe,	the	Adobe	logo,	Flash,	Flex,	Flex	Builder,	and	“Better	by	Adobe”	are	either	registered	trademarks	or	trademarks	of	Adobe	Systems	Incorporated	in	
the	United	States	and/or	other	countries.	HP	is	a	registered	trademark	of	Hewlett-Packard	Company.	Intel	is	a	registered	trademark	of	Intel	Corporation	in	
the	U.S.	and	other	countries.	Java	is	a	trademark	or	registered	trademark	of	Sun	Microsystems,	Inc.	in	the	United	States	and	other	countries.	Microsoft	and	
Windows	are	either	registered	trademarks	or	trademarks	of	Microsoft	Corporation	in	the	United	States	and/or	other	countries.	All	other	trademarks	are	the	
property	of	their	respective	owners.

©	2006	Adobe	Systems	Incorporated.	All	rights	reserved.	Printed	in	the	USA.	

95006989	 8/06

Better by Adobe™.

