
J2EE vs. Microsoft .NET Page 1
© 2001 The Middleware Company · http://www.middleware-company.com/

J2EE vs. Microsoft.NET
A comparison of building XML-based web services

By Chad Vawter and Ed Roman
June 2001

Prepared for Sun Microsystems, Inc.

EJB, J2EE, and XML Web Services Expertise

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 2
© 2001 The Middleware Company · http://www.middleware-company.com/

Table of Contents

I. Preface..3
II. Introduction ..3

Building web services with technologies that have gained the most acceptance......................................4
The J2EE and Microsoft.NET approach to Web Services ..5

III. J2EE ..5
Java: The foundation for J2EE ..6
J2EE and Web Services...6
Reference Implementation ..8
Additional Services ...8

IV. Microsoft’s .NET Platform ...8
The .NET Framework ...10
.NET Servers ...10
Other .NET Products and Services..10
Understanding J2EE and .NET by analogy...11

V. Comparative Analysis ..12
Time-to-Market Features...12
Single-Vendor Solution...13
Support for Existing Systems ..13
Market Perception ...14
Maturity of Platform..14
Language Support ...15
Migration from Previous Platform ..16
Portability ..17
Web Services Support ...19
Tools..20
Shared Context ..20
System Cost...21
Performance ..22
Scalability..23

VI. Conclusions...23

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 3
© 2001 The Middleware Company · http://www.middleware-company.com/

I. Preface

In this whitepaper, we will make a powerful comparison between the two choices that businesses have for
building XML-based web services: the Java 2 Platform, Enterprise Edition (J2EE)1, built by Sun
Microsystems and other industry players, and Microsoft.NET2, built by Microsoft Corporation.

Some of the statements we make will offend you, and hopefully more of them will agree with you. So as
you read this paper, please remember our three promises:

1. We promise to compare these choices at a logical, neutral, and unbiased level.
2. We promise to tell the tale about how we really do feel about these technologies.
3. We promise to dispel the Fear, Uncertainty, and Doubt (FUD) that exists in the marketplace today.

Although both J2EE and .NET cover a great deal of technologies and standards, we will focus specifically
on building server-side systems as web services using these architectures (for example, we will not be
mentioning Jini or Office XP). After reading this white paper, you will have a solid understanding of how
these architectures compare, and be empowered to make intelligent decisions in new web services
initiatives.

The first half of this whitepaper is background information about web services, J2EE, and .NET. If you
already understand these technologies, feel free to skip ahead to the 2nd half of the paper, which is the
juicy comparison.

II. Introduction

The next generation of distributed computing has arrived. Over the past few years, XML has enabled
heterogeneous computing environments to share information over the World-Wide Web. It now offers a
simplified means by which to share process as well. From a technical perspective, the advent of web
services is not a revolution in distributed computing. It is instead a natural evolution of XML application
from structured representation of information to structured representation of inter-application messaging.
The revolution is in the opportunities this evolution affords.

Businesses have been offering products and services on the World-Wide Web for the past few years.
Have they not then been offering web services? In what way are web services actually new? In an article
entitled The Web Services (R)evolution - Applying Web Services to Applications” Graham Glass, the
CEO and Chief Architect of The Mind Electric defines a web service as:

“A collection of functions that are packaged as a single entity and published to the network for use
by other programs. Web services are building blocks for creating open distributed systems, and
allow companies and individuals to quickly and cheaply make their digital assets available
worldwide.”3

1 The J2EE homepage: http://java.sun.com/j2ee
2 The Microsoft .NET homepage: http://www.microsoft.com/net/
3 http://www-106.ibm.com/developerworks/webservices/library/ws-peer1.html?dwzone=ws

http://www.middleware-company.com/
http://java.sun.com/j2ee
http://www.microsoft.com/net/
http://www-106.ibm.com/developerworks/webservices/library/ws-peer1.html?dwzone=ws

J2EE vs. Microsoft .NET Page 4
© 2001 The Middleware Company · http://www.middleware-company.com/

Prior to the advent of web services, enterprise application integration was very difficult due to differences
in programming languages and middleware used within organizations. The chances of any two business
systems using the same programming language and the same middleware was slim to none, since there
has not been a de-facto winner. These 'component wars' spelled headaches for integration efforts, and
resulted in a plethora of custom adapters, one-off integrations, and integration 'middlemen'. In short,
interoperability was cumbersome and painful.

With web services, any application can be integrated so long as it is Internet-enabled. The foundation of
web services is XML messaging over standard web protocols such as HTTP. This is a very lightweight
communication mechanism that any programming language, middleware, or platform can participate in,
easing interoperability greatly. These industry standards enjoy widespread industry acceptance, making
them very low-risk technologies for corporations to adopt. With web services, you can integrate two
businesses, departments, or applications quickly and cost-effectively.

The vision for web services predicts that services will register themselves in public or private business
registries. Those web services will fully describe themselves, including interface structure, business
requirements, business processes, and terms and conditions for use. Consumers of those services read
these descriptions to understand the abilities of those web services. Web services will be smart, in that
once a service has been invoked, it will spontaneously invoke other services to accomplish the task and to
give users a completely personal, customized experience. In order for these services to dynamically
interact, they need to share information about the user's identity, or context information. That context
information should only need to be typed in once, and then made available at the user's discretion to
selected web services.

Building web services with technologies that have gained the most acceptance

Now that we've seen the general philosophy behind web services, let's look at how to build and use a web
service. Web services are in reality simply XML-based interfaces to business, application, and system
services, and are really old technologies wearing a new hat. The following technologies that have gained
the most industry acceptance, and is one possible way to perform web services:

• A provider creates, assembles, and deploys a web service using the programming language,
middleware, and platform of the provider’s own choice.

• The provider defines the web service in WSDL (the Web Services Description Language4).

A WSDL document describes a web service to others5.

• The provider registers the service in UDDI (Universal Description, Discovery, and
Integration6) registries. UDDI enables developers to publish web services and that enables
their software to search for services offered by others.

• A prospective user finds the service by searching a UDDI registry.

• The user’s application binds to the web service and invokes the service’s operations using

SOAP (the Simple Object Access Protocol7). SOAP offers an XML format for representing

4 The Web Services Description Language (WSDL) 1.1 specification is available at http://www.w3.org/TR/wsdl
5 Visit http://www.xmethods.com/ for a listing of some interesting web services, and links to their accompanying WSDL
documents.
6 More information regarding the UDDI initiative is available at http://www.uddi.org/
7 The SOAP specification is available at http://www.w3.org/TR/SOAP/

http://www.middleware-company.com/
http://www.w3.org/TR/wsdl
http://www.xmethods.com/
http://www.uddi.org/
http://www.w3.org/TR/SOAP/

J2EE vs. Microsoft .NET Page 5
© 2001 The Middleware Company · http://www.middleware-company.com/

parameters and return values over HTTP. It is the communications protocol that all web
services use.

Note that the above technologies are only sufficient for simple web services. Extended business
exchanges require an agreed-upon structure for business transactions, multi-request transactions, schemas,
and document flow. These application requirements often stretch the limits of a purely SOAP based
implementation. This is the motivation for ebXML, which is a suite of XML specifications and related
processes and behavior designed to provide an e-infrastructure for B2B collaboration and integration.

Note that the above approach is but one way of making web services work. There are other choices as
well, but we feel that these technologies are the most important and will achieve the widest industry
adoption. Because of this, in reality, we really haven’t reached complete consensus on building web
services, and there are still a lot of issues to be resolved. For example, there is vendor disagreement on
SOAP extensions, ebXML, and service flow descriptions. The good news is that:
• For once, all major players, including Sun and Microsoft, generally agree that SOAP, WSDL, and

UDDI are good things and that they (or their standard derivatives) will provide a foundation for the
future.

• All the vendors are working together to establish web services standards, and a foundation is
emerging.

The J2EE and Microsoft.NET approach to Web Services

If you want to build a usable web services system, there is more than meets the eye. Your web services
must be reliable, highly available, fault-tolerant, scalable, and must perform at acceptable levels. These
needs are no different than the needs of any other enterprise application.

J2EE and .NET are evolutions of existing application server technology used to build such enterprise
applications. The earlier versions of these technologies have historically not been used to build web
services. Now that web services has arrived, both camps are repositioning their solutions as platforms
that you can also use to build web services.

The shared vision between both J2EE and .NET is that there is an incredible amount of 'plumbing' that
goes into building web services, such as XML interoperability, load-balancing, and transactions. Rather
than writing all that plumbing yourself, you can write an application that runs within a container that
provides those tricky services for you.

This paradigm allows you to specialize in your proficiencies. If you were a financial services firm, for
example, you'd have proficiency in financial services, but likely very little proficiency in web services
plumbing compared to a specialist such as Sun, IBM, BEA, Oracle, or Microsoft. By purchasing the
container off-the-shelf, you won't need to be an expert at plumbing to build a financial services-based web
service. Rather you just need to understand their business problem at hand, and leave the web service
plumbing to the container.

With that said, let's take a look at the details of each vision.

III. J2EE

The Java 2 Platform, Enterprise Edition (J2EE) was designed to simplify complex problems with the

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 6
© 2001 The Middleware Company · http://www.middleware-company.com/

development, deployment, and management of multi-tier enterprise solutions. J2EE is an industry
standard, and is the result of a large industry initiative led by Sun Microsystems.

It's important for you to realize that J2EE is a standard, not a product. You cannot "download" J2EE.
Rather you download a set of Adobe Acrobat PDF files which describe agreements between applications
and the containers in which they run. So long as both sides obey the J2EE contracts, applications can be
deployed in a variety of container environments.

The J2EE camp's goal is to give customers choice of vendor products and tools, and to encourage best-of-
breed products to emerge through competition. The only way this would ever happen is if the industry as
a whole were bought-into J2EE. To secure buy-in, Sun collaborated with other vendors of eBusiness
platforms, such as BEA, IBM, and Oracle, in defining J2EE. Sun then initiated the Java Community
Process (JCP) to solicit new ideas to improve J2EE over time. The reason Sun did this is because they
had to do so to achieve success--the best way to secure buy-in to an idea is to involve others in defining
that idea.

Java: The foundation for J2EE

The J2EE architecture is based on the Java programming language. What's exciting about Java is that it
enables organizations to write their code once, and deploy that code onto any platform. The process is as
follows:

1. Developers write source code in Java.
2. The Java code is compiled into bytecode, which is a cross-platform intermediary, halfway

between source code and machine language.
3. When the code is ready to run, the Java Runtime Environment (JRE) interprets this bytecode and

executes it at run-time.

J2EE is an application of Java. Your J2EE components are transformed into bytecode and executed by a
JRE at runtime. Even the containers are typically written in Java.

J2EE and Web Services

J2EE has historically been an architecture for building server-side deployments in the Java programming
language. It can be used to build traditional web sites, software components, or packaged applications.
J2EE has recently been extended to include support for building XML-based web services as well. These
web services can interoperate with other web services that may or may not have been written to the J2EE
standard.

J2EE web services development model is shown in Figure 1.

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 7
© 2001 The Middleware Company · http://www.middleware-company.com/

Figure 1 Developing web services with J2EE

Briefly, Figure 1 is explained as follows:

J2EE application is hosted within a container, which provides qualities of service necessary for
enterprise applications, such as transactions, security, and persistence services.

The business layer performs business processing and data logic. In large-scale J2EE applications,
business logic is built using Enterprise JavaBeans (EJB) components. This layer performs business
processing and data logic. It connects to databases using Java Database Connectivity (JDBC) or SQL/J,
or existing systems using the Java Connector Architecture (JCA). It can also connect to business
partners using web services technologies (SOAP, UDDI, WSDL, ebXML) through the Java APIs for
XML (the JAX APIs).

Business partners can connect with J2EE applications through web services technologies (SOAP,
UDDI, WSDL, ebXML). A servlet, which is a request/response oriented Java object, can accept web
service requests from business partners. The servlet uses the JAX APIs to perform web services

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 8
© 2001 The Middleware Company · http://www.middleware-company.com/

operations. Shared context services will be standardized in the future through shared context standards
that will be included with J2EE.

Traditional 'thick' clients such as applets or applications connect directly to the EJB layer through the
Internet Inter-ORB Protocol (IIOP) rather than web services, since generally the thick clients are
written by the same organization that authored J2EE application, and therefore there is no need for
XML-based web service collaboration.

Web browsers and wireless devices connect to JavaServer Pages (JSPs) which render user interfaces
in HTML, XHTML, or WML.

Reference Implementation
In addition to the specifications, Sun also ships a reference implementation of J2EE. Developers write
applications to this to ensure portability of their components. This implementation should not be used for
production, but rather just for testing purposes.

Additional Services
All vendors that offer J2EE platforms provide additional features not found in the standard. Some of
them impact portability, such as extended EAI functionality, E-Commerce components, or advanced B2B
integration. Other features, such as load-balancing, transparent fail-over, and caching, do not affect
portability of application code, because they are implicit services which are provided behind-the-scenes
by the container.

IV. Microsoft’s .NET Platform

Microsoft.NET8 is product suite that enables organizations to build smart, enterprise-class web services.
Note the important difference: .NET is a product strategy, whereas J2EE is a standard to which products
are written.

Microsoft.NET is largely a rewrite of Windows DNA, which was Microsoft's previous platform for
developing enterprise applications. Windows DNA includes many proven technologies that are in
production today, including Microsoft Transaction Server (MTS) and COM+, Microsoft Message Queue
(MSMQ), and the Microsoft SQL Server database. The new .NET Framework replaces these
technologies, and includes a web services layer as well as improved language support.

The developer model for building web services with Microsoft.NET is shown in Figure 4.

8 For further information regarding Microsoft .NET, please see the .NET homepage at http://www.microsoft.com/net/

http://www.middleware-company.com/
http://www.microsoft.com/net/

J2EE vs. Microsoft .NET Page 9
© 2001 The Middleware Company · http://www.middleware-company.com/

Figure 4 Developing web services with Microsoft.NET

Briefly, Figure 4 is explained as follows:

The .NET application is hosted within a container, which provides qualities of service necessary for
enterprise applications, such as transactions, security, and messaging services.

The business layer of the .NET application is built using .NET managed components. This layer
performs business processing and data logic. It connects to databases using Active Data Objects
(ADO.NET) and existing systems using services provided by Microsoft Host Integration Server 2000,
such as the COM Transaction Integrator (COM TI). It can also connect to business partners using web
services technologies (SOAP, UDDI, WSDL).

Business partners can connect with the .NET application through web services technologies (SOAP,
UDDI, WSDL, BizTalk).

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 10
© 2001 The Middleware Company · http://www.middleware-company.com/

Traditional 'thick' clients, web browsers, wireless devices connect to Active Server Pages
(ASP.NET) which render user interfaces in HTML, XHTML, or WML. Heavyweight user interfaces
are built using Windows Forms.

The .NET Framework

Microsoft.NET offers language-independence and language-interoperability. This is one of the most
intriguing and fundamental aspects of the .NET platform. A single .NET component can be written, for
example, partially in VB.NET, the .NET version of Visual Basic, and C#, Microsoft’s new object-
oriented programming language.

How does this work? First, source code is translated into Microsoft Intermediate Language, sometimes
abbreviated MSIL, sometimes IL. This IL code is language-neutral, and is analogous to Java bytecode.

The IL code then needs to be interpreted and translated into a native executable. The .NET Framework
includes the Common Language Runtime (CLR), analogous to the Java Runtime Environment (JRE),
which achieves this goal. The CLR is Microsoft’s intermediary between .NET developers’ source code
and the underlying hardware, and all .NET code ultimately runs within the CLR.

This CLR provides many exciting features not available in earlier versions of Windows DNA, such as
automatic garbage collection, exception handling, cross-language inheritance, debugging, and “side-by-
side” execution of different versions of the same .NET component.

.NET Servers

The .NET platform includes the following .NET Enterprise Servers. Many of these are repackagings of
existing products under a common marketing term:

SQL Server 2000 is Microsoft's relational database.

Exchange 2000 Server is a messaging and collaboration platform useful in developing and running
core business services and is now tightly integrated with Windows 2000.

Commerce Server 2000 offers you quicker and less complicated development and deployment of
customizable online e-commerce solutions.

Application Center Server 2000. Application Center Server 2000 lets you manage clustered servers.

Host Integration Server 2000. Host Integration Server 2000 gives you access to selected legacy
systems running on other platforms (primarily IBM-based).

Internet Security and Acceleration (ISA) Server 2000 offers firewall and Web caching capabilities.

BizTalk Server 2000 is Microsoft’s XML-based collaborative e-business solution for integrating
applications, trading partners and business processes via the Internet.

Other .NET Products and Services

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 11
© 2001 The Middleware Company · http://www.middleware-company.com/

A new version of Visual Studio, another of Microsoft’s flagship products, has been released as Visual
Studio.NET, an integrated development environment for the .NET platform. All languages supported by
Visual Studio prior to the release of .NET (except for Java) are still supported by Visual Studio.

Visual Studio.NET also provides support for Microsoft’s new C# language which is semantically
equivalent to Java, with just a few minor syntactical differences.

Hailstorm9 is Microsoft’s portfolio of building block web services. Microsoft and possibly Microsoft
partners will host the Hailstorm web services. Some Hailstorm web services will be available on a
subscription basis, and others will be free. For example, Microsoft’s Passport service is now freely
available as a web service-oriented universal identification mechanism.

Web services such as Microsoft’s Passport offer a shared context in that many other web services can
depend upon Passport for identity and security credentials. User’s need not have their contextual
information spread across and possibly duplicated across multiple web sites. “Islands” of information can
now be located in a single repository and then shared by user-centric web services regardless of the
invoking client device.

Privacy of information is focal point in Hailstorm web servicing. In fact, users of Hailstorm web services
are empowered to manage the availability of their personal information through “affirmative consent”.

Understanding J2EE and .NET by analogy

To help you understand both models, we offer analogies between J2EE and .NET technologies in Table 1.
This table only showcases the similarities--we will get to the differences in a few moments.

9 Information regarding Hailstorm is available at http://www.microsoft.com/net/hailstorm.asp

http://www.middleware-company.com/
http://www.microsoft.com/net/hailstorm.asp

J2EE vs. Microsoft .NET Page 12
© 2001 The Middleware Company · http://www.middleware-company.com/

Feature J2EE .NET

Type of technology Standard Product

Middleware Vendors 30+ Microsoft

Interpreter JRE CLR

Dynamic Web Pages JSP ASP.NET
Middle-Tier
Components EJB .NET Managed Components

Database access JDBC, SQL/J ADO.NET

SOAP, WSDL, UDDI Yes Yes
Implicit middleware
(load-balancing, etc) Yes Yes

Table 1 Analogies between J2EE and .NET

V. Comparative Analysis

Time-to-Market Features

When developing a commerce solution in today's marketplace, a few months of time is an
eternity. Missing a small window of opportunity is the difference between a corporation that is first to
market, and a corporation that must play catch-up for years.

One way to speed time to market is to choose a Web services platform that allows rapid
application development. This enables developers to write and maintain code quickly, lowering
development time.

Both Sun J2EE and Microsoft .NET provide runtime mechanisms that insulate software
developers from particular dependencies. In addition to a web service-oriented XML layer of indirection
between platforms, languages, and enterprise architectures, Sun J2EE and .NET offer language-level
intermediation via the Java Runtime Environment (JRE) and the Common Language Runtime (CLR)
respectively.

J2EE offers several features that accelerate time-to-market which are not found in .NET. For
example, state management services enable developers to write less code and not worry about managing
state, resulting in a higher degree of rapid application development. State management services enable
you to build components that hold state. Persistence services (entity beans) enable developers to write
applications without coding data access logic, resulting in leaner, database-independent applications that
are easier to build and maintain. Programmatic transactions allow you to have greater transactional
control. And custom tags are extremely powerful, and empower developers and web designers to easily
collaborate.

In addition to these features that enable rapid application development, there are several features
that specific vendors offer which aid time-to-market, such as business process management, E-Commerce
components, XML-based legacy integration, and enhanced B2B collaboration. A warning: Customers
who elect to leverage these features will sacrifice portability. This is a consequence of J2EE architecture

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 13
© 2001 The Middleware Company · http://www.middleware-company.com/

not being all things to all people. However, it should be noted that even after taking advantage of such
proprietary features, there would still be a great deal more portability in the end solution than the .NET
alternative.

Microsoft.NET offers a variety of time-to-market features not found in J2EE as well. Most
notably, ASP.NET is independent of client device, and allows for user interfaces to be rendered to
alternative user interfaces without rewriting code. Microsoft also offers Queued Components which are
superior to MessageDriven Beans. It should be noted here that Microsoft has tried to simplify server-side
programming greatly by removing support for features found in traditional enterprise applications, such as
stateful servers and simple transactions. If developers need to go outside this box, their code must be
made to be non-managed and reside outside the .NET Framework rather than take advantage of it.
Microsoft also provides business process management and E-Commerce capabilities, which are available
in some J2EE implementations but not all.

In conclusion, we feel the ability to achieve rapid application development offered by both J2EE
and .NET is definitely not equal. It is, however, comparable. The feature differences are minor and it is
very difficult to make a compelling argument either way. We do not recommend organizations make
their platform decision based upon them. There are larger business issues at hand that dictate the platform
choice.

Single-Vendor Solution
When building web services, in general you should always prefer to have a single-vendor solution. A
single vendor solution is usually more reliable, interoperable, and less error-prone than a two-vendor
bridged solution.

One of J2EE's strengths is that it has spawned a wide variety of tools, products, and applications in the
marketplace, which provide more functionality in total than any one vendor could ever provide.
However, this strength is also a weakness. J2EE tools are often-times not interoperable, due to
imperfections in portability. This limits your ability to mix and match tools without substantial low-level
hacking. With lower-end J2EE implementations, you need to mix and match to get a complete solution,
and this is the tradeoff when choosing a less complete package. Larger vendors, such as IBM, Oracle,
BEA, and iPlanet, each offer a complete web services solution.

.NET provides a fairly complete solution from a single vendor--Microsoft. This solution may lack some
of the higher end features that J2EE solutions offer, but in general, the complete web services vision that
Microsoft will be providing is equal in scope to that of a larger J2EE vendor.

Another way to look at a single-vendor solution is from a legacy perspective. Many legacy systems are
written by J2EE vendors, such as IBM or BEA. J2EE offers a single-vendor solution from the legacy
integration perspective, since you can re-use existing relationships with those vendors. A J2EE solution
would therefore be a single-vendor solution, since you can stay with that legacy system vendor rather than
inject a new vendor such as Microsoft. For users with existing Microsoft-based systems, the reverse
argument applies.

Support for Existing Systems

Most large corporations have existing code written in a variety of languages, and have a number of legacy
systems, such as CICS/COBOL, C++, SAP R/3, and Siebel. It is vital that corporations be given an
efficient, rapid path to preserve and reuse these investments. After all, it is likely that businesses will
have neither the funds nor the time to reinvent all existing systems. This legacy integration often is one of
the most challenging (if not the most challenging) tasks to overcome when building a web service.

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 14
© 2001 The Middleware Company · http://www.middleware-company.com/

There are several ways to achieve legacy integration using J2EE, including

• The Java Message Service (JMS) to integrate with existing messaging systems
• Web services to integrate with any system
• CORBA for interfacing with code written in other languages that may exist on remote machines.
• JNI for loading native libraries and calling them locally.

But by far, the most important part of the J2EE vision for integration is the J2EE Connector Architecture
(JCA). The JCA is a specification for plugging in resource adapters that understand how to communicate
with existing systems, such as SAP R/3, CICS/COBOL, Siebel, and so-on. If such adapters are not
available, you can write your own adapter. These adapters are reusable in any container that supports the
JCA. The major vendors of existing systems are bought into the JCA.

.NET also offers legacy integration through the Host Integration Server 2000. COM Transaction
Integrator (COM TI) can be used for collaborating transactions across mainframe systems. Microsoft
Message Queue (MSMQ) can integrate with legacy systems built using IBM MQSeries. Finally, BizTalk
Server 2000 can be used to integrate with systems based on B2B protocols, such as Electronic Data
Interchange (EDI) (the reader should note, however, that BizTalk does not serve as an access point to a
proprietary network on which EDI takes place).

In conclusion, we believe that the legacy integration features offered by J2EE are superior to those
offered by .NET. The JCA market is producing a marketplace of adapters that will greatly ease enterprise
application integration. Integration with packaged applications and legacy systems will become much
easier--imagine integrating with a system such as Siebel, Oracle, or SAP without ever leaving the Java
programming environment. There is no analog to this in the Microsoft domain; rather, there is limited
connectivity to select systems provided off-the-shelf through the Host Integration Server.

Market Perception
When comparing two platforms, your first instinct is probably to compare the technologies. The
unfortunate reality is that good technology rarely succeeds in the marketplace because it's good
technology. Usually it's the technology with the best marketing that wins.

J2EE is an extremely well-marketed platform because it is being marketed by an entire industry of 50+
assorted vendors. This network of interdependent businesses form a virtual marketing machine, and the
result is a fantastic market perception for J2EE.

.NET's marketing strength stems from the fact that Microsoft knows how to market a platform. They
have put their "A" team on marketing .NET, as is apparent in the industry hype surrounding the platform.
This is a powerful force not to be reckoned with. Microsoft's advantage is also that it announced it's web
services strategy before the J2EE players, which gave it market perception. So in the marketing front, we
give the nod to Microsoft for doing the best job in hyping their platform--so far.

Maturity of Platform

Organizations that adopt a web services platform must consider the maturity of the underlying platform.
A less mature, earlier-generation platform is more prone to errors and problems.

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 15
© 2001 The Middleware Company · http://www.middleware-company.com/

J2EE is a veneer atop existing J2EE solutions. J2EE deployments are alive and healthy, running a variety
of mission-critical business problems today. However, when looking past the surface, it should be noted
that there are some identifiable areas of risk where J2EE lacks maturity:

• The automatic persistence provided EJB is still immature.
• The Java Connector Architecture (JCA) is new.
• All web service support is new.

For Microsoft.NET, the story is a bit different. Some of .NET is based on Windows DNA, which also
runs a variety of mission-critical web sites today and enjoys success. However:

• With the new CLR, a good portion of the underlying .NET platform has been substantially
rewritten. Indeed, the platform itself is currently only available in a beta version.

• C# is new.
• All web service support is new.

In conclusion, we must find that J2EE is the more mature platform. It is true that certain new features in
J2EE are new and risky. However, the very underlying fabric of .NET, is an overhauled rewrite, and the
entire C# language is brand new. This represents enormous risk compared to the new J2EE features.
This best thing about .NET is that it removes the dependency on the COM Registry -- .NET will do away
with DLL Hell. But the worst thing about .NET is that it tosses out the existing infrastructure. We
recommend that the risk averse take a 'wait and see' approach with first-generation software such as this.

Language Support

J2EE promotes Java-centric computing, and as such all components deployed into a J2EE deployment
(such as EJB components and servlets) must be written in the Java language. To use J2EE, you must
commit to coding at least some of your eBusiness systems using the Java programming language. Other
languages can be bridged into a J2EE solution through web services, CORBA, JNI, or the JCA, as
previously mentioned. However, these languages cannot be intermixed with Java code. In theory, JVM
bytecode is language-neutral, however in practice, this bytecode is only used with Java.

By way of comparison, .NET supports development in any language that Microsoft's tools support due to
the new CLR. With the exception of Java, all major languages will be supported. Microsoft has also
recently introduced its new C# language which is equivalent (with the exception of portability) to Java
and is also available as a programming language within the Visual Studio.NET environment. All
languages supported by the CLR are interoperable in that all such languages, once translated to IL, are
now effectively a “common” language. A single .NET component can therefore be written in several
languages.

The multiple language support that Microsoft has introduced with the CLR is an exciting innovation for
businesses. It is clearly a feature advantage that .NET has over J2EE. But is the CLR a business
advantage for you? This is a more interesting discussion. We are a bit concerned that the CLR may
represent a poor design choice for you if more than one language is used. This is for the following
reasons:

Risk. Many existing systems are internally convoluted. Disrupting such existing systems is a
risky proposition, since knowledgeable engineers, original source code, and a general
understanding of the existing system are often-times unavailable. The old adage, "if it ain't broke,
don't fix it" applies here.

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 16
© 2001 The Middleware Company · http://www.middleware-company.com/

Maintainability. We speculate that a combination of languages running in the CLR may lead to
a mess of combination spaghetti code that is very difficult to maintain. If you have an application
written in multiple languages, then to fully develop, debug, maintain, and understand that
application, you will need experts in different languages. The need to maintain code written in
several languages equates to an increase in developer training expenditures which contributes
further to an increased total cost of ownership.

Knowledge building. With combination language code, your developers are unable to share best
practices. While individual productivity may increase, communication breaks down, and team
productivity decreases.

Skills transfer. While developers using different languages may have very quickly coded a
.NET system using VB.NET and C#, what happens if the new C# developers leave your
organization? You have two choices. Train your VB.NET developers to understand and write
code with C#, or hire other C# developers who know nothing about your code base. The
resulting lack in productivity equates to a reduced time to market and a higher total cost of
ownership.

In most cases, we feel that it's much better design to standardize on a single language, and to treat legacy
systems as legacy systems and integrate with them by calling them through legacy APIs, which can be
achieved using either J2EE or .NET.

We do feel the CLR still adds significant value. The value is that a new eBusiness application can be
written in a single language of choice other than Java. This is useful for organizations that are not ready
to embrace Java. However, again we must provide words of caution.

• It will not be seamless to transition existing developers from their familiar language into
productive .NET developers. Procedural languages such as COBOL and VB are being
rewritten for .NET to be object-oriented. Teaching developers object-oriented programming
is much more of a stepping stone than understanding syntactical rules.

• Languages such as COBOL or VB were never intended to be object-oriented. Legacy code
will not seamlessly transition into .NET. The resulting code is forever bound to .NET and
can never be taken from its .NET home.

• We question the general wisdom in reinvesting in outdated technologies, such as COBOL,
with new eBusiness or web services initiatives.

In summary, there are pros and cons to both approaches to language support. Use the approach that best
suits your business needs, but at least be aware of the consequences of your decision.

Migration from Previous Platform

For organizations who have an existing deployment using either J2EE-based technologies or Windows
DNA-based technologies, an interesting discussion is the ease of migration from the previous platform to
the new platform.

J2EE does not impose many migration problems. As previously mentioned, the Java Connector
Architecture (JCA) as well as the web services support in J2EE is brand new and will require new code,
but those are minor overall.

Although Microsoft.NET is based on MTS and COM+, we are concerned that the migration to .NET will
be taxing compared to J2EE. First off, .NET is based on the “managed code” framework, which steals a

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 17
© 2001 The Middleware Company · http://www.middleware-company.com/

lot of ideas from COM+ and MTS, but it’s still an entirely new infrastructure based on an entirely new
code base – CLR. Taking advantage of the most valuable aspects of the CLR impose one-time frictions.

For example to accommodate a Common Type System (CTS) which standardizes on data types used
between languages, the original Visual Basic data types have been dismissed. Consequently, code
dependent upon those original Visual Basic data types will break, and there is currently no migration tool.

Another example is the COM+ migration path. In .NET terminology, code that runs within the CLR is
referred to as managed code, while code running outside the CLR is called unmanaged code. If you're a
COM+ developer and want to take advantage of the new CLR, then you have two options for migration:

Rewrite existing code as CLR code. COM+ code needs to be rewritten to accommodate the
CLR’s automatic garbage collection mechanism and its deprecation of pointers. Dependencies
also need to be removed to the COM registry.

Keep your existing code as unmanaged. To collaborate between managed and unmanaged
code, special measures must be taken.

So as you can see, migration is not free. But to Microsoft's credit, we do understand that with the
innovation of the CLR, that this is a necessary step for their customers to evolve into their new platform,
and with such a radical change nothing less could be expected. However, we feel obligated to warn users
that the migration path will not be easy compared to J2EE migration path, as some might have you
believe. Consider these statements from a recent Gartner report:

“‘This is fundamentally a brand new platform,’ said Gartner Analyst Mark Driver, comparing the
migration to .NET as more drastic than the switch from MS-DOS to Windows. ‘This is the tiger
changing its stripes...the migration to .NET will be a difficult one for IT departments because it
represents such a major shift from the current Microsoft platforms. For instance, developers will
have to rewrite as much as 60 percent of the code for some existing Windows applications if they
want them to take advantage of Microsoft's .NET platform, Gartner analysts predicted. That's a
frightening prospect for companies who are currently switching to Windows 2000, or for those
who still run Windows 98 and NT.”

Portability

A key difference between J2EE and .NET is that J2EE is platform-agnostic, running on a variety of
hardware and operating systems, such as Win32, UNIX, and Mainframe systems. This portability is an
absolute reality today because the Java Runtime Environment (JRE), on which J2EE is based, is available
on any platform.

There is a second, more debatable aspect of portability as well. J2EE is a standard, and so it supports a
variety of implementations, such as BEA, IBM, and Sun. The danger in an open standard such as J2EE is
that if vendors are not held strictly to the standard, application portability is sacrificed. CORBA, for
example, did not have any way to enforce that CORBA middleware did indeed comply with the standard,
and thus there were numerous problems with portability. In the early days of J2EE there were the same
problems.

To help with the situation, Sun has built a J2EE compatibility test suite, which ensures that J2EE
platforms comply with the standards. This test suite is critical because it ensures portability of

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 18
© 2001 The Middleware Company · http://www.middleware-company.com/

applications. At the time of this writing, there were 18 application server vendors certified as J2EE-
compatible. There are a myriad of other vendors as well that are not certified10.

Our opinion is that in reality, J2EE portability will never be completely free. It is ridiculous to think that
complex enterprise applications can be deployed from one environment to the next without any effort,
because in practice, organizations must occasionally take advantage of vendor-specific features to achieve
real-world systems. However--and this is important--portability is exponentially cheaper and easier with
J2EE and the compatibility test suite than with proprietary solutions, and that is a fact we stand behind
through years of consulting with customers using a variety of J2EE solutions. Over time, as the J2EE
compatibility test suite becomes more and more robust, portability will become even easier.

By way of comparison, .NET only runs on Windows, its supported hardware, and the .NET environment.
There is no portability at all. It should be noted that there have been hints that additional implementations
of .NET will be available for other platforms. However, a question remains – how much of the complete
.NET framework will be (or even can be) supplied on other platforms? History has taught us to be
skeptical of Microsoft's claims of multiple platform support. Microsoft ported COM to other platforms,
but never ported the additional services associated with COM that were necessary to make COM useful.
We find it hard to believe that .NET portability will ever become a reality given Microsoft's historically
monopolistic stance.

So how important is portability to you? This is the key question businesses must ask themselves. When
evaluating the importance of portability, there are three scenarios worth considering.

• If your firm is selling software to other businesses, or if you are a consulting company, and your
customers are on a variety of platforms, we recommend specializing in J2EE architecture. Unless
you can guarantee that every one of your customers will accept a Windows/.NET solution, you
are restricting your salespeople from major accounts that may have solutions deployed on UNIX
or mainframes. This is rarely acceptable at most ISVs or consulting firms.

• If, on the other hand, your customers are on the Windows platform, then either J2EE or .NET will

suffice, since they both run on Windows. You should then ask your sales force and consultants
what middleware your customers are using on that platform, and make your architecture decision
from there. It's important to really be proactive and get this information--the more data you have,
the better.

• If you host your own solutions, then you control the deployment environment. That enables you

to pick J2EE as well as .NET. If you are willing to standardize on the Win32 platform, and live
with the advantages and disadvantages of that platform exclusively, then platform neutrality is
irrelevant, and you should consider other factors when deciding on J2EE or .NET. But we offer a
word of caution: you can never predict the future. Business goals might change, new vendors
might be introduced into the picture, and mergers and acquisitions might happen. All of these
may result in a heterogeneous deployment environment. Your applications will not be portable to
those platforms in this scenario.

We offer a final opinion to end the debate about just how important is portability. Although both J2EE
and .NET will each have their audiences, think about what platform you would choose if you were an
ISVs or a consulting company. Most likely you'd have customers on a variety of platforms, and therefore,
you'd probably adopt the architecture behind J2EE because you don't want to lock yourself out of deals.

10 Check out http://www.flashline.com/for a matrix of J2EE offerings, and http://www.theserverside.com/ for
reviews of these vendor products.

http://www.middleware-company.com/
http://www.flashline.com/for
http://www.theserverside.com/

J2EE vs. Microsoft .NET Page 19
© 2001 The Middleware Company · http://www.middleware-company.com/

Indeed, we are noticing today that an incredible number of consulting firms and ISVs are standing behind
J2EE, such as Vignette, Broadvision, Chordiant, Kana, NaviSys, and Versata.

What does this mean? It's not about the platform, it's about the applications. As time goes on, customers
will likely choose the solution that not only provides the web services infrastructure, but the most
consulting support and ISV applications as well.

This makes the future of J2EE very bright in our minds, and is one of the critical differentiators between
J2EE and .NET.

Web Services Support

The future of eBusiness collaboration is undoubtedly web services. For organizations that are pursuing a
web services strategy, or are preparing for the future of web services, their underlying eBusiness
architecture must have strong web services support.

Today, J2EE supports web services through the Java API for XML Parsing (JAXP). This API allows
developers to perform any web service operation today through manually parsing XML documents. For
example, you can use JAXP to perform operations with SOAP, UDDI, WSDL, and ebXML.

Additional APIs are also under development. These are convenience APIs to help developers perform
web services operations more rapidly, such as connecting to business registries, transforming XML-to-
Java and Java-to-XML, parsing WSDL documents, and performing messaging such as with ebXML.

A variety of J2EE-compatible 3rd party tools are available today that enable rapid development of web
services. There are at least sixteen SOAP implementations that support Java. Almost all of these
implementations are built on J2EE (servlets or JSP). There are only five UDDI API implementations
available, and four of them support Java (IBM UDDI4J, Bowstreet jUDDI, The Mind Electric GLUE, and
Idoox WASP). Third-party software vendors such as Tradia (www.tradia.com), CapeClear
(www.capeclear.com) and The Mind Electric (www.themindelectric.com) also offer tools for creating
web services.

The preview release of Microsoft.NET also enables organizations to build web services. The tools that
ship with Microsoft.NET also offer rapid application development of web services, with automatic
generation of web service wrappers to existing systems. You can perform operations using SOAP,
UDDI, and SDL (the precursor to WSDL). Visual Studio.NET provides wizards that generate web
services.

Our conclusions from our web services comparison are as follows.

With J2EE, you can develop and deploy web services today using JAXP. However, this is not the ideal
way to build web services, since it requires much manual intervention. An alternative is for organizations
to leverage 3rd party libraries to accelerate their development. In the future these libraries will be
standardized through the JAX APIs. For now, if you develop web services rapidly, you'll need to bundle
these libraries with your application.

With .NET, you can develop web services today using the partial release of .NET. However, since this is
only a beta implementation, it does not represent a realistic deployment platform. Another issue with
.NET is that it does not support true web services because of a lack of support for ebXML. ebXML is a
very important standard for eBusiness collaboration, and is experiencing broad adoption from around the

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 20
© 2001 The Middleware Company · http://www.middleware-company.com/

world. Thousands of vendor and non-vendor companies, government institutions, academic and research
institutions, trade groups, standards bodies, and other organizations have joined the ebXML community.
This includes HL7 (Health Care), OTA (Open Travel Alliance), RosettaNet, OAG (Open Applications
Group), GCI (Global Commerce Initiative), and DISA (Data Interchange Standards Association).
Undoubtedly, ebXML is going to be an important force in web services, and we hope that Microsoft
chooses to embrace it. Microsoft is still clinging to their BizTalk proprietary framework which has
proprietary SOAP extensions. This evidence makes us question Microsoft's true commitment to open and
interoperable web services.

Tools

The Sun J2EE Product Portfolio includes Forte, a modular and extensible Java-based IDE that pre-dates
both Sun J2EE and .NET. Developers who prefer other IDEs for Java development are free to use
WebGain’s Visual Café, IBM’s VisualAge for Java, Borland’s JBuilder, and more. Numerous 3rd party
tools and open source-code products are available.

Microsoft has always been a strong tools vendor, and that has not changed. As part of its launch of .NET,
Microsoft released a beta version of the Visual Studio.NET integrated development environment. Visual
Studio.NET supports all languages supported by earlier releases of Visual Studio - with the notable
exception of Java. In its place, the IDE supports C#, Microsoft’s new object-oriented programming
language, which bears a remarkable resemblance to Java. Visual Studio.NET has some interesting
productivity features including Web Forms, a web-based version of Win Forms, .NET’s GUI component
set. Visual Studio.NET enables developers to take advantage of .NET’s support for cross-language
inheritance.

Our conclusion is that Microsoft has the clear win when it comes to tools. While the functionality of the
toolset provided by J2EE community as a whole supercedes the functionality of the tools provided by
Microsoft, these tools are not 100% interoperable, because they do not originate from a single vendor.
Much more low-level hacking is required to achieve business goals when working with a mixed toolkit,
and no single tool is the clear choice, nor does any single tool compare with what Microsoft offers in
Visual Studio.NET. Microsoft's single-vendor integration, the ease-of-use, and the super-cool wizards are
awesome to have when building web services.

Shared Context

A key element of smart web services is shared context. To understand shared context, think about how
many usernames, passwords, credit card information, and so-on that you need to remember and re-type in
every time you visit a web site. The vision for shared context is that you type this information in once,
and that information is then accessible to all web services that you choose to give access to that
information. The information is under your control, rather than the control of the web services, and is
protected using security rules that you define.

The Sun J2EE vision for shared context is a decentralized, distributed suite of shared context services that
live on the Internet. Each user might have a list of one or more of their preferred shared context services,
with each repository storing select information about that user. You would point the web service to your
preferred shared context service when you connect.

Today, developers are empowered to create shared context services by writing a servlet that exposes itself
as a web service using JAXP, and by using JDBC to access a relational storage.

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 21
© 2001 The Middleware Company · http://www.middleware-company.com/

In the future, Sun J2EE will include standards to access shared context services. This will enable the
context repositories to act as web services using a standard interface, empowering other web services to
connect with and tap into the shared context service in standard ways.

By way of comparison, Microsoft.NET achieves shared context via the Passport.NET service.
Passport.NET is a repository hosted by Microsoft that contains user identity information. It is the
cornerstone to Microsoft's Hailstorm services, which is their vision for creating user-centric web services
experiences.

In conclusion, we have found that both Sun J2EE and Microsoft.NET support shared context, and each
have their own advantages and drawbacks. The noticeable difference is that the Sun J2EE approach of a
shared context standard will spawn a marketplace of shared context repositories on the Internet, whereas
the Microsoft.NET solution is a single shared context repository approach.

The advantages of the Sun J2EE approach are:

• Each shared context repository can be specialized for different needs. For example, there could
be medical repositories that store medical history information, or financial repositories that store
credit card and banking information. It is unlikely that a single repository approach such as
Passport.NET would be specialized enough to cover all the bases of shared context information
that the industry demands when smart web services become widely used.

• There is no 'big brother' effect. Businesses and individuals do not need to trust their data to any
individual firm. Local shared context repositories can be created within a trusted few partners in
a business web, which means data can be contained.

• We believe the J2EE solution will will scale to handle the needs of the masses. The needs of the
many better then Passport.NET. Shared context is a more important phenomenon than any one
organization.

• There is no single point of failure.
• There is no control being enforced by a single organization. Can you envision a time when AOL

agrees to use Passport? Or when VISA, MasterCard, or American Express agree to let Microsoft
control their customers’ information? It is difficult to imagine just one vendor-controlled identity
service succeeding for all.

The advantages of the Microsoft.NET approach are:

• There is no question of what is the 'official' shared context repository. There is one place to find
identity information. This is a very important point. J2EE runs the risk of a fragmented shared
context repositories, eliminating the usefulness of such systems, unless care is used.

• Passport is an established and active system.
• Until Sun J2EE standardizes on a schema and API for accessing web services that are shared

context services, we do not predict any real usage of J2EE-based shared context services.

Given that almost no web services use shared context yet, it is too early to tell which approach is the best.
Fortunately most organizations are barely getting up to speed with the basics of web services, and shared
context is in the distance. For most organizations, this debate is likely to be important when choosing
J2EE or .NET.

System Cost

A wide variety of implementations based on J2EE architecture are available for purchase, with price
points varying dramatically, enabling a corporation to choose the platform that meets its budget and

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 22
© 2001 The Middleware Company · http://www.middleware-company.com/

desired service level. Costs are typically in the single-digit thousands of dollars per processor, although
there are higher-end implementations and lower-end ones. At the time of this writing, Microsoft had not
released pricing information for the .NET platform.

As far as hardware, J2EE supports UNIX and Mainframe systems, while both J2EE and .NET support the
Win32 platform, which is generally the less expensive alternative. There is a level playing field for
hardware costs, and the hardware cost debate becomes a moot point.

The takeaway point is that you can get low-cost solutions with both Microsoft and J2EE architecture.
Microsoft's solution has an aggressive price, whereas J2EE architecture allows you choose your service
level. For example, with J2EE you can have a high-end, expensive solution (iPlanet running on Sun
Solaris in an E-10000 server), or a low-end, inexpensive solution (jBoss running on Linux on a Cobalt
RAQ server). There's also an assortment of free and/or open source tools and services that support Java
and XML11. It should be noted that you pay for what you get, and most organizations will not go for this
low-end solution, but rather will embrace a midrange solution as a happy medium.

If you are trying to make heads or tails out of the price wars, we recommend that you consider this: the
price of the platform is always a drop in the bucket compared to the total cost of the project. This is
defined as the price of the server platform, the cost to train developers, the cost to build and evolve a
solution on that platform, the cost to maintain the solution, and any business opportunity costs from
picking the 'wrong' platform.

We hope that firms realize that the total cost of ownership of a project dwarfs any short-term cost
differences between underlying platforms. We recommend you do not consider the price of the platform
when selecting between J2EE, .NET, or any other platform, but rather consider the more important other
factors.

Performance

A platform performs if it yields an acceptable response time under a specified user load. The definition of
what is 'acceptable' changes for each business problem. To achieve acceptable performance, it is
important that the underlying web services infrastructure empowers you to build high-performing
systems.

The primary bottleneck when building web services is usually integration with back-end database
systems. The reason for this is that most enterprise applications are data-driven systems with much more
data logic than business logic. Given that the database is usually the bottleneck, any possible tactics for
reducing database load will result in a significant wins.

J2EE reduces database traffic through two tactics:

Stateful business processes allow you to maintain business process state in memory, rather than
writing that state out to the database on each request.

Long-term caching (provided by some implementations) allow for database data to be cached
for long periods of time, rather than re-reading database data upon each request.

11 For examples, check out www.apache.org, www.netbeans,org, www.jboss.org, www.enhydra.org, www.zvon.org,
www.juddi.org, www.develop.com/soap, www.alphaworks.ibm.com, or www.themindelectric.com.

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 23
© 2001 The Middleware Company · http://www.middleware-company.com/

It should be noted that both maintaining business state in-memory and caching must be used with caution,
and may result in problems if developers are not properly trained on when to (and when not to) use these
features. This is a fundamental difference between the J2EE and .NET approaches to building web
services: J2EE's advantage is that it gives programmers more control over lower-level services such as
state management and caching. Well-educated developers can tap into these features to improve the
quality of their deployment. But it is of vital importance that developers are properly educated on when
to make these tradeoff decisions, or error may be introduced into systems.

By way of comparison, Microsoft.NET does not offer these tactics for improving performance. There are
no opportunities for performance wins, but at the same time, there are no opportunities for developers to
introduce errors into systems.

When trying to choose between whether these features are important for your organization, consider the
quality of your developers. If they are well-educated and do not require much hand-holding, then they
will likely find the flexibility and performance gains from a J2EE system as valuable. If your developers
require more hand-holding, then the Microsoft approach is clearly superior.

Scalability

Scalability is essential when growing a web services deployment over time, because one can never predict
how new business goals might impact user traffic.

A platform is scalable if an increase in hardware resources results in a corresponding linear increase in
supported user load while maintaining the same response time. By this definition, the underlying
hardware (Win32, UNIX, or Mainframe) is irrelevant when it comes to scalability, because both J2EE and
.NET allow one to add additional machines to increase user load while maintaining the same response
time. The major implementations based on J2EE architecture, as well as .NET, provide load-balancing
technology that enable a cluster of machines to collaborate and service user load that scales over time.

The significant difference between J2EE and .NET scalability is that since .NET supports Win32 only, a
greater number of machines are needed than a comparable J2EE deployment due to processor limitations.
This multitude of machines may be difficult for organizations to maintain.

VI. Conclusions

The J2EE verses .NET battle will be the soap opera of the decade for geeks to watch. But there are
promises and realities about both platforms. For example, J2EE is a rather brilliant move on the vendors'
part, but should not be seen as an altruistic initiative. All vendors that participate in J2EE are after
financial gains, as well as an effective weapon against Microsoft. J2EE enables these vendors to
collaborate together and stand ground. Many of these vendors have undergone recent mergers and
acquisitions themselves, and so organizations must exercise good judgment when choosing such a
platform.

As far as Microsoft.NET, that is far from an altruistic initiative. It is a monopolistic initiative dressed in
altruism. Microsoft has been claiming that .NET is about open and interoperable web services, when in
reality Microsoft is already making their web services closed and proprietary. Microsoft will likely

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 24
© 2001 The Middleware Company · http://www.middleware-company.com/

increase the costs of their solutions if a monopoly can be achieved, and innovation will be slowed down
significantly.

So what's a company like yours to do? Both platforms are useful, and both can lead you to the same
destination. Which platform is right for you? When deciding, we recommend you concentrate on the
larger business issues. Think about your existing developer skillsets, your existing systems, your existing
vendor relationships, and your customers. Those almost always drive the decision, not the minor features.

Arguments supporting both platforms

• Regardless of which platform you pick, new developers will need to be trained (Java training for
J2EE, OO training for .NET)

• You can build web services today using both platforms
• Both platforms offer a low system cost, such as jBoss/Linux/Cobalt for J2EE, or Windows/Win32

hardware for .NET.
• Both platforms offer a single-vendor solution.
• The scalability of both solutions are theoretically unlimited.

Arguments for .NET and against J2EE

• .NET has Microsoft's A-team marketing it
• .NET released their web services story before J2EE did, and thus has some mind-share
• .NET has a better story for shared context today than J2EE
• .NET has an awesome tool story with Visual Studio.NET
• .NET has a simpler programming model, enabling rank-and-file developers to be productive

without shooting themselves in the foot
• .NET gives you language neutrality when developing new eBusiness applications, whereas J2EE

makes you treat other languages as separate applications
• .NET benefits from being strongly interweaved with the underlying operating system

Arguments for J2EE and against .NET

• J2EE is being marketed by an entire industry
• J2EE is a proven platform, with a few new web services APIs. .NET is a rewrite and introduces

risk as with any first-generation technology
• Only J2EE lets you deploy web services today
• Existing J2EE code will translate into a J2EE web services system without major rewrites. Not

true for Windows DNA code ported to .NET.
• .NET web services are not interoperable with current industry standards. Their BizTalk

framework has proprietary SOAP extensions and does not support ebXML.
• J2EE is a more advanced programming model, appropriate for well-trained developers who want

to build more advanced object models and take advantage of performance features
• J2EE lets you take advantage of existing hardware you may have
• J2EE gives you platform neutrality, including Windows. You also get good (but not free)

portability. This isolates you from heterogeneous deployment environments.
• J2EE has a better legacy integration story through the Java Connector Architecture (JCA)
• J2EE lets you use any operating system you prefer, such as Windows, UNIX, or mainframe.

Developers can use the environment they are most productive in.
• J2EE lets you use Java, which is better than C# due to market-share and maturity. According to

Gartner, there are 2.5 million Java developers. IDC predicts this will grow to 4 million by 2003.
78% universities teach Java, and 50% of universities require Java.

http://www.middleware-company.com/

J2EE vs. Microsoft .NET Page 25
© 2001 The Middleware Company · http://www.middleware-company.com/

• We would not want to use any language other than C# or Java for development of new mission-
critical solutions, such as a hacked object-oriented version of C, VB, or COBOL.

• We are finding most ISVs and consulting companies going with J2EE because they cannot
control their customers' target platforms. We believe this application availability will result in
J2EE beginning to dominate more and more as time goes on.

In conclusion, while both platforms will have their own market-share, we feel most customers will reap
greater wins with J2EE. We feel the advantages outweigh those offered by Microsoft.NET. That is our
preferred architecture, and we stand behind it.

The Middleware Company is a unique group of server-side Java
experts. We provide the industry's most advanced training,
mentoring, and advice in EJB, J2EE, and XML-based Web Services
technologies. Services offered include:

• Build experts through advanced, interactive training.
• On-site mentoring and consulting
• Guidance when making product or tool selection
• A project jumpstart package designed to get a corporation up-

and-running with server-side Java in a matter of weeks
• Development of full-scale enterprise applications
• Business and technical whitepaper development

For further information about our services, please visit our Web site
at http://www.middleware-company.com

http://www.middleware-company.com/
http://www.middleware-company.com

