
Printed in the Proceedings of the 2000 IEEE International Conference on Software Maintenance, pp. 143-151

Studying the Evolution and Enhancement of Software Features
Idris Hsi1, Colin Potts2
College of Computing

Atlanta, Georgia 30332-0280, USA
1 +1 404 385 1101, 2 +1 404 894 5551

idris@cc.gatech.edu, potts@cc.gatech.edu

Abstract
The evolution and enhancement of features during system
evolution can have significant effects on its coherence as
well as its internal architecture. Studying the evolution of
system features and concepts across a product line from
an external or problem domain perspective can inform
the process of identifying and designing future features.
We show how we derive three primary views,
morphological, functional, and an object view, from the
user-level structures and operations of a system, using a
case study of Microsoft Word’s evolution. We show how
these views illustrate feature evolution over three
versions of Word. Lastly we discuss the lessons learned
from our study of feature evolution.

1. Introduction

“Feature creep” is a phenomenon of system evolution
where successive releases of a product not only grow in
size and complexity, but also show a reduction in the
conceptual homogeneity or intellectual coherence of the
product as experienced by the user. Thus a text editor
may become a page layout program, a document
management system, a knowledge-based authoring tool.
Just as modules or lines of code are size units for software
architecture or implementation, respectively, features are
the units of software function or usefulness.

Up to a point, more features are better than fewer, and
it is a matter for design judgment and human-factors
evaluation to decide when a product has grown too big to
be useful or usable. But when this point is reached,
engineering questions arise such as whether it will be
possible to separate a given feature cluster (e.g. spell-
checking) into a separate module so that users can plug in
new versions or select among “ lite” , “professional” or
“enterprise” editions.

More significantly, given that a major goal of modern
software engineering is the assembly and directed
evolution of systems from pluggable components [5], we
would like to be able to anticipate these questions far in

advance so that we may predict where significant feature
growth is likely to occur or prove problematic in the
future. Or, alternatively, if an organization is planning a
new product line, it is only sensible to analyze the feature
space that the product line will occupy, so that
component-based assembly can be planned from the
outset.

In this paper, we present a view of feature evolution
that is defined exclusively in terms of user-accessible
features and concepts. This is not to argue that software
architecture is unimportant to evolution. Obviously it is.
Rather, we are claiming that the terms used in questions
such as “can we replace X?” should ultimately be
couched in the vocabulary of the problem domain and not
that of software architecture. “Checking spelling” is what
it is whether it is done with a dictionary and blue pencil
or an online spell-checker. It is the coherence and
integrity of the activity of checking spelling, not the fact
that there is a module in the design documentation or a
recovered design abstraction re-engineered from the code
called the “SpellChecker Module” that makes spell-
checking a plausible substitution for “X” in the question
above.

Given that features make sense in problem-domain or
user-activity terms, we would like to be able to depict the
feature architecture of a product independently (at least
initially) of the underlying software architecture. If we
want to find which modules in the architecture are
implicated in spell-checking, then the very question
presupposes that spell-checking is a sensible feature-
oriented abstraction in the first place.

Our term “feature architecture” may sound like a
“domain model.” In domain analysis, application domain
knowledge is modeled independently of systems to
support the forward engineering (including maintenance
and evolution) of product families [4,5,7]. However, the
source of this application knowledge is generally domain
experts or the intuitions of the designer. When existing
systems or product families are the starting point for an
integration or evolution project, as is more after the case,
it is necessary to use the current system as a source of the

‘ theory’ of its domain. Previous research into reverse
engineering has adopted this approach [4,7] mainly from
a starting point of code and code-level documentation.
The forward- and reverse-engineering approaches to
domain modeling differ not only in their practical aims
but also in what the resulting domain model represents.
In forward-engineering, a domain model is a normative,
expert-generated model of what the problem domain is
like. It thus constrains the software architecture by
prescribing a view of the problem domain but does not
reflect it. The reverse-engineering approach takes a
domain model to be a description of the problem domain
exhibited by the current product, not a prescription
imposed from outside.

Our approach to feature architecture takes the reverse
engineering approach, but differs in one crucial respect
from the previous approaches: We reconstruct externally
relevant feature objects and operations from the
morphology (externally visible interfaces) of an
application, and developed a reverse-engineering version
of domain analysis. There is no single domain model, but
rather a tripartite view of the domain/product features as
follows:

• The morphological view is the user-visible analog
for feature architecture of the source code content of
a software architecture. It consists of the user-
interface composition and navigation structure.

• The functional view is the description of what the
features do. A thorough analysis of functionality
would require a detailed model of interactions based
on data flow or control abstractions. In this paper, we
restrict ourselves to enumerating the operations, the
activities that the system performs.

• The object view is a description of the subject-matter
of the feature. Like an object model produced during
software design or an information model for database
design, the object view consists of static relationships
between objects in the problem domain. In the case
of the feature architecture, however, the objects are
derived from user-visible phenomena, especially the
user interface components from the morphological
view. The objects in the feature architecture may be
correlated with the objects underlying the
implementation if it is object-oriented or the data
structures and files if it is not, but they need not be.
Again, it is the problem domain that makes the
products’ objects appropriate or inappropriate, not
the fact that they are to be recovered from the code.

Thus these three views of feature architecture are
derived without knowledge of the source code and
without recourse to specialist domain expertise. Rather,

the feature architecture encompasses the working domain
model and functional repertoire of the existing product.
“Spell checking” can therefore be thought of, if rather
fancifully, as what a word-processing product tells us
about spell-checking.

Studies of system growth or evolution from the
software-maintenance perspective (e.g. [10]) address
evolution as changes in the size and relational
complexity of the code base of the product. To our
knowledge, there have been no comparable
implementation-independent studies of feature evolution,
where feature architectures have been objectively defined
and measured.

In addition to its potential practical value in helping us
to understand the dynamics of feature evolution, we think
such studies have an intrinsic interest. Significant
software products affect society in numerous obvious and
subtle ways, and it is appropriate for software engineering
to undertake precedence studies [8] similar to those of
architecture and urban planning, two professional
disciplines whose products have similarly wide-ranging
effects. Tracking the evolution of features in office
products, for example, could tells us much about how
technology drives social processes, how technology
infrastructure and social phenomena affect what features
grow at what epoch in a product’s life history, and how
the two actors in this interaction—technology and its
contexts of use—co-evolve.

To this end, we are studying office productivity
packages, time-management and scheduling packages,
computer games, camera controls, and telephony features
[2]. In this paper, we present a case study examining
three versions of Microsoft Word for Windows.

This paper is a prospectus and example of this
approach to studying feature architectures and their
evolution and its possible value in planning future feature
evolution through component assembly. Section 2 builds
on this approach and describes a specific methodology for
deriving the three views of feature architectures: System
Morphology, System Operations, and the System Object
Model. The results of applying this methodology are
discussed in Section 3, in which feature evolution is
documented for three versions of Microsoft Word. In
Section 4, we discuss the findings of the case study.
Lastly, we conclude with some benefits of the approach
for forward-engineering of software in practice.

2. Three Views of Feature Architecture

2.1 System morphology

Morphology is the study of the form and structure of

an organism without consideration of function. An
application’s morphology is the structure that organizes
its features, consisting of user interface elements
including menu items, user input device commands, and
information displays. These provide portals through the
external to the domain features.

File

Version

Versions

Open Delete

Save
As

HTML

Save As
HTML

Saver
Version

Figure 1. An example of system morphology – a
portion of the Word 97 File Menu

We construct the representation without analysis of
functionality or design intent by tracing paths through the
interface elements and developing them into a graph
representation.

Figure 1 shows a portion of the Word 97 File menu
morphology. We generated the graph by traversing the
File menu, identifying all the menu items listed. The
menu’s main items are represented as large circles.
Rectangles represent dialog boxes. Small circles are
simply generic terminators like OK/Cancel. They also
become leaf nodes in the graph because they cause the
activity to return to the top level morphology. Small
triangles are actions specific to that dialog box that also
act as leaf nodes. The horizontal dotted lines show how
“deep” that particular path reaches. Every time an action
invokes another interface structure, the path gets deeper.
Other items represented by the morphological view, but
not shown in the example, include mode changes,
parallel dialog structures, toolbars, mouse actions,
displays, and menu bars. Items not represented by this
view include dialog box details such as radio buttons,
selectors, dials, and so on. We chose not to represent the
smaller structures within the dialog boxes to simplify the
representation.

2.2 System functional view

The functional view consists of an enumeration of all
the operations that the user can call through the normal
operation of the system. In the absence of documentation

or program specifications, we uncover these by traversing
the morphological views, observing, sometimes inferring,
the operations that the program performs. Fortunately, for
this case study, we were able to use the lists of operations
that MS Word provides to program macros and set button
and keyboard shortcuts.

After we obtain the list of operations, we categorize
them by whether they are old, new, or have been removed
since the last release, which interface structures are used
to call them, what object they affect, and a description (if
needed) of the function’s action. At this point, we define
an object to be something that can be accessed by a user
through the system’s morphology or a system operation.
Most of the objects can be taken directly from the
operation’s name and behavior. Occasionally, they have
to be inferred from the morphology and action they
perform. An operation called “Exit” for example, infers
an Application object that you exit from.

Table 1 shows all the operations associated with the
bulleted list in Word 95. From Word 2.0 to Word 95,
there have been three new operations added and none
removed. The fact that the older operations have no
interfaces connected to them implies that they are unused
in the later version and may be present for backwards
compatibility or to support user-level macros created in
Word 2.0.

Table 1. Functional view of Bulleted List
Operations in Word 95. (Not shown are the

descriptions of the operations.)

Name Status M enu
Access

Toolbar
Access

Input
Device

Object

ApplyListBullet New None none Ctrl+Sh
ift+L

Bulleted
List

FormatBulletDefault New None Formatting None Bulleted
List

FormatBulletsAndNumb
ering

New Format None Right
Mouse
Button

Bulleted
List

ToolsBulletListDefault Old None None None Bulleted
List

RemoveBulletsNumbers Old None None None Bulleted
List

2.3 System object model

Using the objects derived from the system operations
and morphology, we can build a modified entity-
relationship diagram that describes how those objects
interact to form the underlying domain model. There are
three types of relationships that we examine because of
their relevance to the work product domain.

• has – Object A has Object B if, very simply, A can
physically contains B or can possess B as a sub-
property or concept. This is an optional, not a
mandatory relationship. The has relationship is also

directed. Object A must be located higher than B in
the morphological hierarchy for Object A to have
Object B. The relationship is derived from a
morphological connection between A and B but only
the closest connection is considered in the hierarchy.
For example, a page can have words and a paragraph
can have words. But pages must first have
paragraphs before they can have words. So in an
object representation, we represent a has relationship
between page and paragraph, and one between
paragraph and word but not page and word.

• strictly contains – Object A strictly contains Object
B if Object A must have Object B to exist. The
strictly contains relationship is a subset of the has
relationship. Fonts can optionally have a Font
Underline but must have a Color. Therefore, Fonts
strictly contain Font Color. Strictly contains
relationships are important because they help to
define tight relationships between objects. A change
to this kind of relation can imply a fundamental
conceptual change to the parent object.

• type of – Object B is a type of Object A if A, as the
morphological parent references B from a set of
equivalent objects. Fonts can have a Font Underline
but in the morphology, there are 11 different types of
Font Underlining.

Based on these relationships, we can isolate system
concepts which we call teleons, from the Greek word
teleos meaning goal, using the following definition.

• teleon – A teleon parent is any node that has at least
one child resulting from a has or type of relationship.
The teleon is then formed by tracing the graph until
a node with a shared ancestor or subtypes is reached.
That last node is included in the graph and the trace
ends. The resulting subgraph is the complete teleon.

Font
Animations (6)

Font

Shadow

Outline

Engrave

Emboss

Double
Strikethrough

Wave Underline

Thick Underline

Dotted
Underline

Dot Dot Dash
Underline

Dot Dash
Underline

Dash Underline

Symbol

Font Style

Character
Dotted

Underline

Font Effects

All Caps

Bold

Double
Underline

Hidden

ItalicSmall Caps

Strikethrough

SubScript

SuperScript

Single
Underline

Word Underline

Font Underline

Color

Normal

Figure 2. Object view of the character teleon in
Word 97.

Figure 2, shows the Character teleon. The dashed lines
represent Type Of relationships, the thin lines represent
has relationships, and the thick lines represent strictly
contains relationships. The Character teleon consists of
the Symbol, Character, and Font nodes. It also contains
subteleons such as Font, which consists of Font Effects,
Font Underline, Font Animations, Font Style, and Color.
Color, in this representation, is not a teleon because it
does not have a child.

3. The evolution of MS Word

We use these system descriptions to study how an
application evolves in structure and functionality over the
lifetime of the product line. In addition, this approach has
revealed a relationship between these three views of the
system that suggests some feedback mechanisms that
impact this evolution. Here we examine the evolutionary
trends that we have observed in MS Word.

3.1 Morphological evolution

Evolution of system morphology has two implications.
First, that there is more underlying functionality to be
accessed and second, that more portals are being opened
to frequently used operations. We observed two basic
trends in the morphological evolution of Word: changes
in the size and complexity of the overall morphological
structure and to the types of primary interfaces used in
the morphology.

I
n B

r
P
ag

F
o

B
o

A
n

D
at

F
i

S
y

I
n

I
n

Ta
bl

F
i

F
r

P
i

O
b B

r
P
ag

 Pa
ge

F
o

Fo
ot

S
e

C
o

C
o

B
o

A
n

D
at

F
i

S
y

I
n

I
n

Ta
bl

 F
i

O
p

P
r

P
ri

 P
ri

S
u

D
e

S
e

E
d

A
d

D
e

S
t

P
ri

 D
e

C
o

O
p

F
i

P
i

F
i

O
p

P
r

P
ri

 P
ri

S
u

D
e

S
e

E
d

A
d

D
e

S
t

P
ri

 D
e

C
o

O
p

O
b

I n s e r t

B r e a k P a g e N u m b e r s F o o t n o t eA n n o t a t io n D a t e a n d T im e F ie ld S y m b o l C a p t io n

B r e a k

P a g e N u m b e r s

P a g e N u m b e r F o r m a t

F o o t n o t e a n d E n d n o t e

A n n o t a t io n

D a t e & T im e F ie ld S y m b o l C a p t io n

F ie ld O p t io n s

I n s e r t

S p e c ia l C h a r a c t e r s

S h o r t c u t K e y F o o t n o t e O p t io n s E n d n o t e O p t io n s S y m b o l

F o o t n o t e

C o n v e r t

N e w L a b e l N u m b e r in g A u t o C a p t io n

N e w L a b e l N u m b e r in g

C r o s s - R e f e r e n c e

C r o s s - r e f e r e n c e

S o u n d R e c o r d in g

F o r m F ie ld

S h o w T o o lb a r

C h e c k B o xT e x t D r o p - D o w n

T e x t F o r m F ie ld O p t io n s

F o r m F ie ld

S t a t u s B a r H e lp K e y

A d d H e lp T e x t

F ile F r a m e P ic t u r e O b je c t D a t a b a s eI n d e x a n d T a b le s

I n d e x T a b le o f A u t h o r it ie sT a b le o f C o n t e n t s T a b le o f F ig u r e s

M a r k E n t r y

M a r k

A u t o m a r k

F in dN o w

O p e n I n d e x A u t o M a r k F u k e

A d v a n c e d

F in d

S a v e

S e a r c h

O p e n S e a r c h

R e n a m e

F in d N o w

O p e n

S t y le

M o d if y

A p p ly

M o d if y S t y le

F o r m a t

F o n t P a r a g r a p h T a b s B o r d e r L a n g u a g e F r a m e N u m b e r in g

S h o r t c u t K e y

F o n t C h a r a c t e r S p a c in g I n d e n t s a n d S p a c in g T e x t F lo w

T a b s

D o e s n 't s e e m t o d o a n y t h in g .

B o r d e r s S h a d in g L a n g u a g e F r a m e

R e m o v e F r a m e

B u lle t e d N u m b e r e d

M o d if y B u lle t e d L is t

O p t io n s O p t io n s

M a r k C it a t io n

C a t e g o r y

F in dN o w

I n s e r t F ile

A d v a n c e d

F in d

S a v e

S e a r c h

O p e n S e a r c h

R e n a m e

F in d N o w

O p e n

F in d

N o w

I n s e r t P ic t u r e

A d v a n c e d

F in d

S a v e

S e a r c h O p e n S e a r c h

R e n a m e

F in d N o w

O p e n

C r e a t e N e w C r e a t e f r o m F ile

?

F in d

N o w

B r o w s e

A d v a n c e d

F in d

S a v e

S e a r c h

O p e n S e a r c h

R e n a m e

F in d N o w

O p e n

O p e n

D a t a b a s e

G e t D a t a Q u e r y O p t io n s

T a b le A u t o f o r m a t

I n s e r t D a t a

N o t c o m p le t e d

O p e n

M a r k A ll

T a b s

I n s e

r t

B
r
e

a
k

P
a

g
e
N
u

m
b
e
r
s

A
n
n
o

t
a
t
i

o
n

D
a

t
e
a
n

d
T
i
m
e

B r e a k

P a g e

N u m b
e r s

P a g e
N u m b

e r
F o r m a t

A

n
n
o
t

a
t
i
o

n

D a t e
&

T im e

S

o
u
n
d

R
e
c
o

r
d
i
n
g

A u t o t
e x t

A
u
t

o
T
e
x

t

N
e
w

A t t e n t
io n

L in e

C lo s i
n g

H e a d
e r /

F o o t e r

M a ilin

g
I n s t r u
c t io n s

R e f e r
e n c e

L in e

S a lu t
a t io n

S u b je
c t

L in e

<
A

u
t
o
T

e
x
t
>

<
A

u
t
o
T

e
x
t
>

<

A
u
t
o

T
e
x
t

>

<

A
u
t
o

T
e
x
t

>

<

A
u
t
o

T
e
x
t

>

<

A
u
t
o

T
e
x
t

>

<

A
u
t
o

T
e
x
t

>

A u t o C
o r r e c t

A u t o F
o r m a t

A u t o F
o r m a t
A s

Y o u
T y p e

A u t o T
e x t

S
h

o
w
T
o

o
l
b
a

r

F ir s t
L e t t e r

I N it ia l

C a p s

E x c e p t io n s

C r e a t e
A u t o T
e x t

F
i
e

l
d

S
y

m
b
o
l

C
o
m
m

e
n
t

F ie ld

F ie ld
O p t io n

s

S y m b
o l

I
n
s

e
r
t

S p e c i

a l
C h a r a

c t e r s

S h o r t c
u t K e y

F ir s t
L e t t e r

I N it ia l

C a p s

E x c e p t io n s

A u t o C
o r r e c t

C
o
m

m
e
n
t

S
o
u
n

d
R
e
c

o
r
d
i

n
g

F

o
o
t
n

o
t
e

C
a
p

t
i
o
n

C
r
o

s
s
-
R

e
f
e
r

e
n
c
e

I
n
d
e

x
a
n
d

T
a
b
l
e

s

P ic t u r
e T

e
x

t
B
o
x

F
i
l

e

O
b
j
e

c
t

B

o
o
k
m

a
r
k

H
y
p
e

r
l
i
n

k

F o o t n o
t e a n d

E n d n o
t e

S y m b
o l

A l l
F o o t n o

t e s

A ll
E n d n o

t e s

C o n v e
r t

N o t e s

O p t io n s

C a p t io

n

N e w
L a b e l

N u m b
e r in g

A u t o C
a p t io n

N e w
L a b e l

N u m b
e r in g

C r o s s -

R e f e r e
n c e

I n d e x

T a b le
o f

A u t h o r
it ie s

T a b le
o f

C o n t e
n t s

T a b le
o f

F ig u r e
s

M a r k
I n d e x
E n t r y

M
a
r
k

M
a
r
k

A
l
l

F
i

n
d
N
o
w

O p e
n

I n d e
x

A u t o
M a r k

F ile

A d v
a n c e

d
F in d

S a v
e

S e a r
c h

O p e

n
S e a r

c h

R e n
a m e

O
p
e

n

A u t o m a r k

T a b l
e o f

C o n t

e n t s
O p t i
o n s

T a b l
e o f
F ig u r

e s
O p t i
o n s

M a r k
C it a t

io n

C a t e

g o r y

S t y l
e

A
p
p
l
y

M o d i
f y

S t y l
e

F o r m a

t

F
o

n
t

P
a

r
a
g
r

a
p
h

T
a

b
s

B
o
r

d
e
r

L
a
n
g

u
a
g
e

F
r
a
m

e

N
u

m
b
e
r

i
n
g

I n d e n t
s a n d
S p a c i
n g

L in e
a n d
P a g e
B r e a k

s

B o r d e r
s

S h a d i
n g

L a n g u
a g e F r a m e

R
e

m

o v
e

F r
a

m

e

B u lle t

e d

O u t lin
e

N u m b

e r e d

C u s t o
m iz e

B u lle t
e d L is t

F o n t

C h a r a
c t e r

S p a c i
n g

A n im a
t io n

T a b s

T a b s

B o r d e r
a n d
S h a d i

n g
O p t io n

s

N u m b
e r e d

C u s t o
m iz e
N u m b
e r e d
L is t

O

p
e
n

F o n t

C h a r a

c t e r
S p a c i

n g

A n im a
t io n

S y m b

o l
F o n t

C h a r a

c t e r
S p a c i

n g

A n im a
t io n

F o n t

C h a r a

c t e r
S p a c i

n g

A n im a
t io n

F
i
n

d
N
o
w

C u s t o
m iz e

O u t lin
e

N u m b
e r e d
L is t

C u s t o
m iz e
O u t lin

e

N u m b
e r e d

L is t

M
o
r

e

P ic t u r
e

T

e
x
t
B

o
x

F

i
l
e

O
b

j
e
c
t

B
o
o

k
m
a
r

k

H
y

p
e
r
l

i
n
k

C
l
i
p

A
r
t

F
r
o

m
F
i
l

e

A
u
t
o

S
h
a
p

e
s

W
o
r
d

A
r
t

C
h
a

r
t

C lip
A r t

V id e oP ic t u r
e s

S o u n d
s

I
n
s
e

r
r

?F in d
C lip

F
i

n
d
N
o

w

E d it
C a t e g

o r ie s

N e w
C a t e g

o r y

R e n a

m e
C a t e g

o r y

C lip

P r o p e r
t ie s

N e w

C a t e g
o r y

I m p o r t
C lip s

O
p
e
n

B
r

o
w
s
e

W
e
b

I n s e r
t

P ic t
u r e

F

i
n
d
N
o

w

A d v
a n c e

d
F in d

S a v

e
S e a r

c h

O p e

n
S e a r

c h

R e n

a m e

F
i

n
d
N
o

w

O
p
e
n

O
p

e
n

A u t o S h a p e s W o r
d A r t

G a ll
e r y

E d it
W o r
d A r t

T e x t

W o r d A r t

O K

O K

<
I
n

s
e
r
t

C
h
a
r

t
>

T e x t B o x

F

i
n
d
N

o
w

I n s e r

t F ile

A d v
a n c e

d
F in d

S a v
e
S e a r
c h

O p e
n
S e a r
c h

R e n
a m e

F
i
n
d
N

o
w

O
p

e
n

C r e a t e
N e w

C r e a t e
f r o m

F ile

F

i
n
d
N
o

w

A d v
a n c e

d

F in d

S a v
e

S e a r
c h

O p e
n

S e a r
c h

R e n
a m e

F

i
n
d
N

o
w

O
p
e

n

B r o

w s e

B o o
k m a r

k

I n s e r
t

H y p
e r lin

k

B o o

k m a r
k

F

i
n
d
N
o

w

A d v
a n c e

d

F in d

S a v
e

S e a r
c h

O p e
n

S e a r
c h

R e n

a m e

B r o

w s e

F
i

n
d
N
o

w

O
p
e
n

Figure 3. An overview of the graphs representing
the Insert Menu morphology for Word 2.0, Word
95, and Word 97, respectively.

Figure 3 shows the evolution of the Insert menu over
the three versions of MS Word. The menus (with the
exception of the File menu) visibly grow in depth and
breadth reflecting an increase in the types of objects that
can be contained in a document. The curved lines from
the bottom most nodes back to a middle layer node
represent a return to a previous dialog box in the trace.
So in addition to growing in overall size, there are now
more loops in the graph. While the Insert menu is the
most pronounced example of growth that we encountered,
similar behavior can be seen across most of the other
morphologies.

The other basic trend that we observed was the
changes to the types of primary interfaces. For example,
Word 95 and 97 employ more mode shifts and toolbars to
accomplish tasks. Also, Word 97 departs from redundant
accessibility, where a function could be reached from
menu and toolbar. Instead, it employs unique
accessibility, or specialized portals, where a function can
only be reached from a particular toolbar that can be
accessed during a particular mode.

3.2 Functional evolution

The number of operations provided by each word
processor significantly increased over versions. This
seems to be a reasonable result given the changes to the
morphology: more portals implies more operations on
average.

Table 2. Function Growth in MS Word

Version # New
Operation

s

Kept from
last version

Removed
from Last

%
Growth

Total # of
Operations

2.0 311 311
95 362 253 58 97% 614
97 383 572 42 56% 955

Table 2 shows a brief quantitative analysis of how the
numbers of operations evolved. The removed operations
were actually renamed, consolidated, or relocated to other
parts of the operating environment. For example, Word
2.0 used to have file management capabilities and Word
97 uses Visual Basic to manage its macros.

The numbers imply that Word experiences a steady,
calculable growth in functionality. However, further
examination reveals that almost half of the new
operations in Word 97 are related to graphics teleons,
specifically 3D drawing objects, 125 new drawing
objects, and Word Art. Some of these operations also
support the management of these drawing objects. Other
objects, such as Tables or Bulleted lists, see a few new
operations that extend their capabilities but not
significantly. Our general finding is that functional
evolution in the MS Word product line is not evenly
distributed, as one might see in an application that
experiences monotonic, conservative growth.

3.3 Object evolution

To help constrain our analysis for this study, we chose
to limit our object model to the electronic and paper
document that Word produces. We did not look at the
window and application mechanisms or the supporting
operations, such as spelling and grammar checking.

After deriving the object representations, we noticed
some general tendencies in the object model. With the
exception of the character/font teleons from Word 2.0 to
Word 95, older teleons rarely changed their existing
subgraph. Teleons changed by either increasing their
potential space or by increasing the number of different
types associated with it.

For example, Paragraph is a very important teleon.
Word 2.0 has 9 nodes in the Paragraph teleon. Word 95
has 18. Word 97 has 21. In general, Word changed
significantly from Word 2.0 to Word 95 but the
extensions to the Paragraph teleon in Word 95 were
almost all new teleons that could now be contained in a
paragraph, such as a Cross Reference. Word 97 simply
adds three more items, such as Hyperlink, to this list.
What this implies is that Paragraph is becoming a more
stable teleon in definition and is growing in capability.

The other behavior, increasing the number of types,

can be seen in Word 97’s Drawing Objects (added 115
objects). The functional growth described earlier is partly
the result of adding over a hundred drawing objects. Each
object needs a minimum of one function to be used in a
document. Other things that developed more types
included Field, Font Effects, Document, and Links.

We also examined the conceptual evolution of the
Word document. Table 3 shows that the growth of new
teleons over the versions. If we removed “sub-teleons” ,
such as 3D Lighting (a sub-teleon of 3D object), we’ re
left with an evolutionary model that indicates
conservative growth – adding a small number of teleons
to the document per release.

Table 3. Conceptual Evolution of the Document
in MS Word

Word 2.0 Teleons Word 95 – New Teleons Word 97 - New Teleons
Annotation Caption 3D Direction
Border Cross-Reference 3D L ighting
Character Database 3D Object
Column Drawing 3D Sur face
Document Drawing Object Comment
Envelope Font Font Animation
Field Font Effects HTM L Document
Font Style Font Under line OCX Object
Footer Form Field
Footnote Heading
Frame List
Header Note
Index Number ing
Line Numbering Revisions
Object Table of Author ities
Page Table of Figures
Paragraph
Picture
Section
Shading
Style
Summary Info
Tab Alignment
Table
Table Cell
Table of Contents
Tabs
Word

4. What changed and why?

From the data, we know that none of the teleons
vanish from the new domain model. In fact, they become
more entrenched, growing more connections to different
objects and morphologies over time. Intuitively, one can
say with some confidence that the teleons outlined in the
Word 2.0 represent a set of teleons that are core to a
document produced in the MS Word family. In fact, the
objects introduced in Word 97, with the exception of
HTML Document, seem to have only peripheral
relevance to what you might expect to find in a typical

document.
In order to analyze this evolution, it is important to be

able to separate the changes that are a result of
technological advances in hardware or implementation
from those that represent fundamental changes to the
concepts embodied in the software. The former type of
change tends to be primarily morphological in nature:
better graphics, new widgets, and new interactive devices.
We consider these changes to be superficial in nature.
They alter the outward appearance of the application and
sometimes give the illusion of significant enhancement.
We are more concerned with the evolution of the
software’s concepts.

4.1 “ True” conceptual evolution

Concepts that evolved through the different versions of
Word did so almost exclusively by the addition of new
subtypes of the object or the addition of new contained
objects. However, these new objects were almost never
strictly contained and the concept structure grew
monotonically without restructuring. This suggests an
operational method to deliver stable and core features:
they grow but do not have to be restructured; and they
accrete new parts, but not in a way that necessarily affects
what already exists.

Studies of conceptual evolution in other areas reveal a
similar phenomenon. For example, Thagard [11] shows
that the conceptual schemas of science, before and after
major paradigm shifts are structured differently, with
different classification and containment relations holding
between concepts. However, normal science proceeds
more routinely by the addition of specialized and
component concepts.

This suggests, by analogy, that occasional changes to
core feature concepts are likely to have radical effects,
either immediately or in subsequent releases. An example
of this may be present in the inclusion in Word 97 of the
‘HTML document’ – which is not merely a new kind of
document but is likely to affect the concepts of document
sections, pages, etc. It is, of course, more common for
changes to be made for functional reasons than because
the domain concepts have changed [1,6,14]. Such shifts
do, however, occur occasionally, and it is vital to identify
the objects most vulnerable to radical change.

Older features, representing the “core” of the
application experience less change and evolution over the
lifetime of the product line, stabilizing with each version.
Newer features tend to be added to the periphery, either
as small extensions of existing concepts or as large
“clumps” of functionality that expand the overall domain.

2000

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

9795

� �
� �
� �
� �
� �

2.0 200x?

Text
Editing

Doc
Structure

Graphics

Web
Publishing

Web
Collaboration

Figure 4. Feature “ clumps” in successive
versions of MS Word

Figure 4 shows how Word 2.0’s text editing
capabilities were extended by changes to document
structure management in Word 95. Then Word 97 added
graphics capabilities. Our initial work with Word 2000
shows additional Web publishing features as its large
clump. In each case, the clumps grew from existing
concepts in previous versions. Using this heuristic, we
can hypothesize that the next version of Word will have
more Internet collaboration capabilities, extending the
existing email and web publishing capabilities.

4.2 Morphological and conceptual changes

While morphological changes have important
implications for the efficiency and usability of these
applications, they do not tend to alter what we consider to
be the core teleology of a product. Changes to teleons
naturally affect the morphology, reflecting the intuition
that the “deep structure” of the application affects the
“surface structure.” We would therefore expect changes
in the morphological scale and complexity of the product
to reflect the underlying functional and object-oriented
complexity. However, the MS Word evolutionary record
shows that its morphological changes far outstripped any
underlying changes.

It would be an exaggeration to say that the user
interface of Word has become extremely rich, whereas
the product has not evolved substantively; our analysis of
MS Word does show a large growth in morphology and
only a small growth in the number of teleons. Some
changes may therefore be imposed by interface
efficiencies. In the case of user interfaces, this could lead
to user opinions that a product had become complex and
“bloated” far beyond its actual functional and conceptual

growth.
Features are composed of these teleons and objects. In

order to understand the differences between the small
changes to the teleons and the dramatic changes to the
morphology, we need to examine how introducing objects
to create features or enhance existing ones can affect
operations and morphology. Consider the simple example
of a single object, with one function, accessed by a single
morphological port shown in Figure 5.

Morphology

Menu:
Insert XInsert XX

OperationObject

Figure 5. 1:1:1 correspondence

Many objects in an application tend to have attributes,
options, and capabilities, each of which requires a
function to use it properly. If the user wants to be able to
change a Font Style from Normal to Bold, an extra
function is needed. This situation is better portrayed by
Figure 6 than the simple correspondences of Figure 5.

Morphology

?
Op 1

X

OperationObject

Op 2

Op 3

Op n

Figure 6. 1:n correspondence between object
and operations.

But in order for these operations to be useful, they
require some form of accessibility from the system
morphology. Important or frequently used operations may
also require multiple portals to increase accessibility.
Figure 7 shows how the final morphology grows from
adding a new object.

Morphology

1

Op 1

X

OperationObject

Op 2

Op 3

Op n

2

m

Figure 7. 1:n:m correspondences with object in
system

This illustration shows how introducing or extending a
features can have tremendous impacts on the overall
morphological complexity of the system. The rapid
structural changes in the morphology of Word compared
with the relative stability of its core features reinforces
the standard architecture guideline to decouple user
interface code from application features.

5. What is in a feature?

In proposing a feature architecture independent of
implementation architecture, we have assumed a
traditional function/data split in describing the deep
structure of the application. Our description of features
consists of two representations: a modified object model
showing the structure of a teleon as a network of related
or contained objects, and a list of operations that create,
access, update, or delete such objects.

Object structuring, particularly ownership and
containment, is an appropriate organizing principle for a
word processor’s feature architecture, because word
processing is a “work piece” problem frame [9]. That is,
the software features are responsible for creating an
artifact that can subsequently be inspected and
manipulated but which does not exist independently in
the world outside the software or change independently of
it. A different set of basic categories would probably be
more appropriate for control, information management or
transform applications (which correspond broadly to
Jackson’s control, information system and JSP problem
frames).

For example, control features, such as setting
reminders in real time or controlling the operation of a
device like a camera, have the achievement of goals as a
primary category for these application features. These
have to be modeled as the achievement of event-
recognizing and phenomenon-affecting goals [2,12].

6. Feature Coherence

The application itself is a source not only of the
teleons and operations represented in its features but also
their relative centrality and connectivity. Earlier we
argued that ‘core’ and peripheral’ teleons evolve
differently, but did not define these terms independently
of their age (“core” teleons being the earliest).

We are investigating graph-theoretic and statistical
clustering techniques for quantifying and presenting
teleon structure independently of their evolution, an
approach complementary to Waters’s use of lattice-
theoretic techniques (“concept analysis”) for reverse
engineering architectural concepts [13].

Extending existing features or adding new ones

requires developing new associations with the current
features. Older features tend to be more entangled with
associations and will therefore require more effort to
modify in later releases. New features with effective
conceptual relationships to existing features may also
require many associations with them. This difficulty may
account for the tendency to supply new features that only
loosely associate with old features and are thus peripheral
to the core teleology of the application.

A major practical consideration for developers is how
to manage the design and architecture of a version to
allow for the coherent evolution of its features.
Developers planning to evolve systems need to design
and structure architectures to support such coherent
growth. We have argued that a more principled definition
of feature architecture as a combination of morphology,
functional model, and object model is a viable way to
describe a product’s feature set independently of its code
architecture and that such planning of feature evolution
could be framed in these terms.

7. Acknowledgements

We thank the reviewers for their helpful comments.

8. References

[1] Abowd, G., Ertmann-Christiansen, C., Goel, A., et al.,
“MORALE: Mission Oriented Architectural Legacy
Evolution” , Proc. International Conference on Software
Maintenance'97 (Bari Italy, 1997), IEEE Computer Society
Press, 1997, pp. 150-159.

[2] Antón, A. I. and C. Potts, “The Use of Goals to Surface
Requirements for Evolving Systems” , Proc. 20th
International Conference on Software Engineering (ICSE
‘98), (Kyoto Japan, 1998), IEEE Computer Society Press,
1998, pp. 157-166.

[3] Anton, A. I and C. Potts, “Requirements Engineering in
the Long Term: Fifty Years of Telephony Evolution” ,
Accepted to International Workshop on Feedback and
Evolution in Software and Business Processes (FEAST
2000), (London UK, 2000).

[4] Arango, G., “Domain Analysis: From Art Form to
Engineering Discipline” , Proc. International Workshop on
Software Specification and Design, (Pittsburgh PA, 1989),
IEEE Computer Society Press, 1989, pp. 152-159.

[5] DeBaud, J.-M. and K. Schmid., “A Systematic Approach
to Derive the Scope of Software Product Lines” , Proc.
International Conference on Software Engineering, (Los
Angeles CA, 1999), IEEE Computer Society Press, 1999,
pp. 34-43.

[6] Easterbrook, S. and B. Nuseibeh. “Managing
Inconsistencies in an Evolving Specification” , Proc.
RE'95: Second IEEE International Symposium on
Requirements Engineering, (York UK, March 1995) IEEE

Computer Society Press, 1995, pp. 48-55.
[7] Fischer, G., “Seeding, Evolutionary Growth and

Reseeding: Constructing, Capturing and Evolving
Knowledge in Domain-Oriented Design Environments” ,
Automated Software Engineering, Boston, MA, Kluwer
Academic Publishers, 5(4), 1998, pp. 447-464.

[8] Hillier, B., Space is the Machine: A configurational theory
of architecture. Cambridge, UK, Cambridge University
Press, 1996.

[9] Jackson, M.A., Software Requirements and Specification,
Reading, MA, Addison-Wesley, 1995.

[10] Lehman, M. and L. Belady, Program Evolution, New
York, NY, Academic Press, 1985.

[11] Thagard, P. Conceptual Revolutions. Princeton, New
Jersey, Princeton University Press, 1992.

[12] van Lamsweerde, A. and E. Letier, “ Integrating Obstacles
in Goal-Driven Requirements Engineering” , Proc. 20th
International Conference on Software Engineering (Kyoto
Japan, 1995) IEEE Computer Society Press, 1995, pp. 53-
63.

[13] Waters, R. and G. Abowd, “Architectural Synthesis:
Integrating Multiple Architectural Perspectives” , Proc.
Sixth Working Conference on Reverse Engineering
(Atlanta GA, 1999). IEEE Computer Society Press, 1999,
pp. 10-15.

[14] Zowghi, D. and R. Offen, “A Logical Framework for
Modeling and Reasoning about the Evolution of
Requirements” , RE'97: Third IEEE International
Symposium on Requirements Engineering, Annapolis,
Maryland, January 6-10, IEEE Computer Society Press,
1997, pp. 247-2.

