
������� ���	����
	�������������	����������	����
 �����

Idris Hsi
Research Statement

Introduction

In the world of commercial computing, we are being inundated with baroque, bloated, and difficult to use software
applications. Market forces demand that new versions of software have more features than its predecessors or
competitors. However, additional features often produce interaction problems with existing features and decrease the
usability of the system. Ensuring that planned features required for market competitiveness enhance the software
without these side effects first requires that we understand how software features contribute to the overall design and
conceptual integrity of the application. Conceptual integrity is the single most important consideration in the effective
design of software. Researchers in software engineering have identified symptoms of low conceptual integrity in
applications, such as high coupling in the software architecture, “bad smells” in code, and bloat in software features.
These symptoms are found in software that is difficult to understand, hard to maintain, and hard to use. However,
since the significance of conceptual integrity was defined by Fred Brooks in The Mythical-Man Month, little progress
has been made on developing models and methods for measuring it, engineering it, or teaching it. While researchers
have studied design for specific aspects of software systems, I believe conceptual integrity must be treated as a holistic
quality to be designed into all levels of a software system, which can only result, as Brooks says, from a unified
design vision. I want to develop a methodology for designing applications from this unified perspective. A
methodology that allowed developers to incorporate conceptual integrity into an integrated design that encompasses
interfaces, functionality, and software architecture would help bring software engineering one step closer to becoming
a mature discipline. As the first step towards this goal, I developed both a research framework and specific
methodologies in my PhD thesis work that explain how conceptual integrity manifests itself in software and how it
can be quantified.

Conceptual Integrity

While conceptual integrity should be present in all aspects of software, I chose specifically to examine how an
application exhibits this integrity in its user-visible services and behaviors. Software is designed and constructed to
solve problems in the world. For example, a spreadsheet application embodies a theory of how its users want to
organize and modify data; a financial management system embodies a theory about how someone keeps track of their
bank accounts. Conceptual integrity begins with problem concepts that were engineered into the code. If those
concepts lack integrity then the resulting software is difficult to understand, difficult to use, or does not succeed in
helping its users to achieve their goals. In my PhD dissertation, I identify and investigate the quality of conceptual
coherence, the degree to which the concepts in an application are related to one another, that can serve as a first but
crucial approximation for the conceptual integrity of an application. Applications that are perceived as bloated have a
disproportionate number of features that go unused by their users. These unused features implement concepts that
have poor relationships with the central concepts in the application. In a conceptually coherent application, one
expects a set of concepts in an application to have relationships with one another such that all the concepts describe
the problems and the solutions the application was engineered to solve. An application with low conceptual coherence
contains concepts that are loosely related or unrelated to those central problems and solutions. Because these
extraneous concepts appear in services that are accessed through the user interface, they not only occupy valuable
screen real estate but require extra effort to learn and understand. I argue that low conceptual coherence reflects a low
conceptual integrity in the design of the application. But how does adding a feature affect this coherence? Is there a
‘breakpoint’ where adding a feature causes the application to become ‘bloated’? Can adding features reduce the
overall usefulness of an application relative to a specific set of users and work context? Because qualities like bloat or
usefulness vary from user to user and context to context, both objective and subjective methods are needed to analyze
conceptual coherence of applications and the impact of this coherence on its usefulness relative to specific work
contexts.

Ontological Excavation and Analysis

First, measuring conceptual coherence requires that we identify those concepts that are visible to the users of the
application in an objective fashion. To identify these user-visible concepts, I developed ontological excavation which
uses black-box reverse engineering on the application user interface and services. White-box reverse engineering
techniques analyze code directly. However, source code often contains concepts that have to do with managing
computing services such as memory, file management, and hardware interactions: concepts that are not typically

������� ���	����
	�������������	����������	����
 � ���

visible to the user. Black-box techniques examine application’s behaviors and ignore the source code that instrument
these behaviors. First, this method develops a model of the user interface of the application being studied. Nouns and
descriptors are identified in the labels of the user interface elements. Then, using data modeling techniques that are
also applied in object-oriented programming and database design in combination with observing system interactions
and reading help files, these nouns and observed behaviors are refined into a semantic network of concepts and
relationships that models the ontology of the application. Because a semantic network is a graph consisting of nodes
that are concepts and edges that are relationships, graph theoretic techniques from social network analysis can be used
to analyze it – specifically, centrality measures that can measure the structural importance of concepts in the ontology.
Concepts that are highly central in the ontology are core concepts, concepts essential to the definition of that
application (e.g. removing the concept of ‘cell’ from a spreadsheet ontology or ‘paragraph’ from a word processor
fundamentally changes or “breaks” those applications). These measures produced candidate metrics that could be used
to measure the conceptual coherence of an application.

Empirical Studies

To test these methodologies and metrics, I conducted empirical studies on real applications, such as the Windows CD
Player and Microsoft Notepad. Those case studies showed, first, that the approach was tolerant of small biases in data
modeling, second, that the core concepts of an application can be identified mathematically, and, lastly, that it is
possible to measure the conceptual coherence of an application. I also study several larger applications, including
Microsoft Word and Yahoo’s Instant Messenger, to demonstrate scalability of the techniques. I also test the claim that
conceptual integrity affects the usefulness of an application. I define usefulness as the extent to which an application
succeeds in assisting a set of users to achieve a set of goals, relative to the amount of effort required to engage those
features. I argue that an application with low conceptual coherence has a disproportionate number of concepts that do
not contribute to the overall use of the application. To measure this subjective potential use of an application relative
to a specific context, I developed a technique called use case silhouetting that measures the number of unique
concepts that are invoked by a set of task scenarios, selected by actual use. If a set of scenarios invokes most of the
concepts in an application ontology, then that set has a high ontological coverage and shows that the application is
likely to be useful to users who employ those scenarios. In my dissertation, I excavate the ontology of Microsoft Word
2000 and measure its ontological coverage using independently obtained usability data to show that a correlation
exists between Word’s low conceptual coherence and the low ontological coverage of a set of commonly used
features, which indicates that Word’s lack of conceptual integrity in its features contributes to user perceptions of its
bloat and complexity.

Future Work

My immediate research following the completion of my degree will be to explore applications of my ideas to
develop visualizations of software from its features, to correlate interface structure with the centrality of concepts in
its ontology, and to develop techniques for ensuring that applications have conceptual fitness with the problem
domains of their users. However, my ultimate research objective is to develop a design methodology that ensures
conceptual integrity throughout all aspects of software. It is my feeling that as software engineering matures as a
discipline and reusable libraries and components becomes a common technology, we will need a design practice that
develops the computing models and blueprints that convey both intent, form, and functionality to customers and
developers. These design artifacts for computing would be used in the same way that architects use drawings,
blueprints, and architectural models in their practice. With such artifacts, designers of computing applications could
focus on understanding the problem domain and identifying the necessary services, information models, and
interaction techniques while engineers could focus on implementation, ensuring a unified vision throughout
development and an appropriate separation of concerns. Many research questions will need to be solved before such a
design discipline can be realized. Their answers will require a wide range of scientific and engineering approaches
across a number of domains. For example, are there existing systems that exemplify high conceptual integrity that can
be identified, for example, from open source communities? What should the proper relationship between ontology and
software architecture be to facilitate both design and engineering? Do applications have limits to the number of
concepts they can contain relative to their features and their user interface structures? Can applications be designed to
accommodate changing requirements and user needs over time? These are all important and interesting questions that
I will address in my future research.

