
Hsi, I, Potts, C., and Moore, M., "Ontological Excavation: Unearthing the core concepts of the application", Proceedings of WCRE
2003, November 13-16, 2003, pp. 345-352.

Ontological Excavation: Unearthing the core concepts of the application

Idris Hsi, Colin Potts
College of Computing

Georgia Institute of Technology
Atlanta, GA 30032-0280

idris, potts@cc.gatech.edu

Melody Moore
Computer Information Systems Department Georgia

State University
Atlanta, GA 30392
melody@gsu.edu

Abstract

Applications possess and implement a specific

"theory of the world" or ontology. Recovering and
modeling this ontology may help inform software
developers seeking to extend or adapt an application's
functionality for its next release. We have developed a
method for the black-box reverse engineering or
excavation of an application's ontology. The ontology is
represented as a semantic network, and graph theoretic
measures are used to identify core concepts. Core
concepts contribute disproportionately to the structural
integrity of the ontology. We present analyses of
ontologies excavated from several interactive
applications. From a set of several candidate metrics for
identifying core concepts we find node betweenness
centrality is a good measure of a concept's influence on
ontological integrity and that the k-core algorithm may
be useful for identifying cohesive subgroups of core
features. We conclude by discussing how these analyses
can be applied to support application evolution.

Keywords: domain analysis, reverse engineering,
software evolution, software metrics

1. Introduction

Applications are designed to solve specific problems
in the real world. Because technologies, business process,
work practices, and user sensibilities in the real world
change over time, the services provided by the
application can drift out of synch with the current
requirements. Lehman’s Laws of Software Evolution
state that applications have to be continually evolved to
remain useful [1, 2]. Thus, during software maintenance,
developers are often faced with decisions regarding how
the application should be evolved or adapted for its users
to meet these new demands: Functionality might be
added, removed, or modified; Specific operations may
need to be optimized or enhanced; The entire application
may need to be reengineered for a different context of

use. How are these decisions made and what costs have to
be considered?

An application can be evolved by adding features to it.
More features may improve its overall functionality and
may cause the application to appear more attractive to
customers comparing it to similar applications with fewer
features. However, adding too many features may induce
“feature creep” or “bloat” that may alienate or hinder the
users [3, 4]. Alternatively, an application’s features can
be optimized or extended. Optimizing its existing
functionality or extending its capabilities could improve
its services but could also cause it to fall out of synch
with the existing goals and procedures of its users.
Informed decisions that account for these possibilities
cannot be made solely on an understanding of the
underlying code and architecture. Instead, software
developers will need to examine what the application
knows and understands about its problem area or domain
[5].

Arango and Prieto-Díaz state that a domain exists if it
has “deep or comprehensive relationships among the
items of information”, a community that has a stake in
solving its problems, and a store of knowledge that can
be used towards solving these problems [6]. Because
applications are designed and constructed primarily to
solve problems within a domain, we argue that all
applications possess a “theory of the world” that captures
this domain knowledge. For example, a scheduling or
calendaring application has a theory about how its users
want to organize their time or be notified about their
appointments. Users that meet frequently in a shared
building include a notion of room scheduling in their
meeting scheduling domain that the scheduler
application needs to encode. Extending the feature set of
an application to accommodate new demands from the
users will naturally alter the application’s theory of the
world. If the application’s theory of the world falls too far
out of synch with the theory of the world as understood
by the users in the domain, then the application has
failed to evolve in a useful fashion. A method for
analyzing the application’s theory of the world and
identifying these potential inconsistencies could identify

Hsi, I, Potts, C., and Moore, M., "Ontological Excavation: Unearthing the core concepts of the application", Proceedings of WCRE
2003, November 13-16, 2003, pp. 345-352.

such disconnects during development. To this end, we
first model this theory of the world in an ontology. An
ontology defines and represents the domain’s concepts
and relationships using a formalized vocabulary [7] and
representation. Under this definition, for example, entity-
relationship diagrams and object-oriented models are
types of ontologies.

Now, one can argue that some concepts will be more
important than others within the ontology. For example,
the concept of “paragraph” is likely to be more important
than the concept of “font color” to a word processor. One
could also argue that some of the concepts are somehow
essential to that application’s ontology. A personal
scheduler wouldn’t make much sense if it didn’t have the
concept of “appointment” or “event”. We call these
essential concepts core concepts because they have some
central importance to the application, possibly
contributing disproportionately to the structure of its
ontology.

Changes to the application that involve its core
concepts have the potential to be extremely difficult to
engineer or can alter the application’s functionality in
undesirable ways. Changes to the application that affect
only those non-core or peripheral concepts can still
impact the core concepts. Any alterations to core
concepts often translate to additional costs in regression
testing and development. Thus, in addition to recovering
an application’s ontology prior to performing evolution
or adaptation activities, it will be useful to have a method
for identifying which concepts are core concepts.

Previous work in domain analysis and reverse
engineering has developed methods for extracting the
domain from program documentation [8], requirements
specifications [9], code [10, 11], and interviews with
domain experts [12]. Of these techniques, code domain
analysis offers the closest method for obtaining the
application’s ontology but code itself contains a meta-
domain with concepts and relationships that concern
software engineering and programming. We wish to
uncover only the concepts and relationships that are
visible to the users as they interact with the application.
To this end, we have developed a method for the black-
box reverse engineering of an application’s ontology. We
call this reverse engineering process ontological
excavation because the ontology is recovered by digging
through the application’s external interfaces.

In Section 2, we explain how we excavate the
ontology and review the candidate metrics we used to
identify the core concepts. In Section 3, we present the
results from our excavations of three modern and
interactive systems: the Windows 95/98 CD Player, the
Palm Pilot Scheduler, and Windows Notepad. In Section
4, we discuss our findings and possible criticisms of this
work. Lastly, we conclude with our plans for future work.

2. Ontological Excavation and Analysis

2.1 Building a map of the morphology.

In our research framework, all applications have a
morphology, the external interface elements of the system
that give its users access to the implemented
functionality. In interactive systems, the morphology is
the user interface. The components comprising the
morphology represent windows or portals through the
external “shell” of the application to the underlying
ontology [4]. Through systematic interaction with the
application’s outer shell, we can identify or “excavate”
the concepts and the basic relationships between those
concepts and model them in a semantic network.

We first model the user interface in an interface map.
This map consists of the UI’s containers (e.g. windows,
dialog boxes, toolbars), interactive elements or
interactors (e.g. buttons, text fields, check boxes), and
information displays. The visual icons representing these
major components of the UI are also linked using arrows
to show either their point of containment or their point of
activation. Figure 1 shows a portion of the Notepad
menu.

Font DB

Font DB:
Size L

Font DB: Sample D

Font DB: Script
DD Font DB: OK BFont DB: Cancel

B

Figure 1 - Notepad Morphology showing Font
Dialog Box, Font List, Font Display, Script

Dialog Box, and OK/Cancel Buttons

We build this map by systematically traversing and
activating all the user interface elements in a depth first
fashion. These elements, their labels, and their
interconnections are modeled using Microsoft Visio as
the drawing tool. Currently, the reconstruction of the
morphology into Visio is a manual process.

2.2 Excavating the ontology

There are many representations for ontologies that
typically support data modeling and database exchange
activities [13-15]. We’ve chosen a semantic network
because the basic structure of a network, semantic or
otherwise, consists of nodes and edges allowing us to use
graph theory to analyze it. Thus, we can analyze the
ontology in a domain independent fashion using graph

Hsi, I, Potts, C., and Moore, M., "Ontological Excavation: Unearthing the core concepts of the application", Proceedings of WCRE
2003, November 13-16, 2003, pp. 345-352.

Disc

Artist Title

Current Disc

Drive

Track Track Name

Track
Number

Current Track
Playing_or_P

aused

has-a has-a

has-a

has-a

has-a
has-a

has-a

is-a

is-a

Playlist

has-a

Available Tracks Of

Custom Playlist Of

Track Time
Elapsed

Track Time
Remaining

Track Time

Playlist Time
Remaining

has-a
has-a
has-a

has-a

Play Mode

Random
Order

Continuous
Order

Intro Mode

has-a
has-a
has-a

has-a

has-aIntro Play
Length

has-a

Figure 2 - Ontology for the Windows 95/98 CD Player

theoretic metrics developed for social network theory [16]
and city planning [17]. These metrics enable us to
identify what are candidate core concepts as well as
potential subgroups of concepts that may have tightly
linked functionality or importance.

Using the interface map as an information source, we
first identify the concepts indicated by the labels attached
to those elements, looking for noun phrases and the
indirect objects implied by verbs, a process borrowed
from object-oriented analysis methods [18]. For example,
a “File Menu” implies that there is a concept of “File”. A
“Font” dialog box informs the concept “Font Size”. In
cases where a noun does not exist in the label, concept
identification requires interaction with the system. “Play”
on a CD Player plays a “Track” on a “Disc”. Once we’ve
identified a concept, we also model those attributes and
subtypes associated with it. For example, a “Disc” in the
CD Player has an “Artist” and a “Title” as seen in Figure
2. Attributes are modeled as first class objects, similar to
approaches used in some Entity-Relationship Models
[19].

After identifying some candidate concepts, we identify
the relationships between them. For constructing a
semantic network, we use the basic relationships from
object modeling: generalization (is-a), aggregation (has-
a), and associations [20]. During this process, we also
have to refine the concepts. In the CD Player example,
we have to make a distinction between a track on the CD
(“Track”) and the track being played (“Current Track”)
and, likewise, a similar contrast between “CD” and the
current CD being played (“Current CD”). Figure 2 shows
the ontology for CD Player.

We don’t model any concepts that are specific to the
operating system that runs the application, such as mouse

movements, file handling, or printing capabilities. This
also includes all functions and supporting applications
that operate independently of the one being studied. For
example, the Win 95/98 CD Player does have a volume
command but it activates the Volume Control dialog box
of the operating system so we don’t model this in the CD
Player’s ontology.

Once identified, the concepts and relationships are
modeled as boxes and arrows in Visio. We wrote a macro
that takes this graph and puts it into an adjacency list
representation which we use for our analyses.

2.3 Ontological metrics

We analyze the semantic network in its adjacency list
form using UCINET, a software package designed for
social network analysis [21]. UCINET allows the
calculation of centrality for nodes in a graph. Centrality
metrics assess the importance of a node to the rest of the
graph. In social networks, nodes represent individuals or
groups. A node with a high centrality measure could
have some significance to the social network [16]. That
node could represent a CEO or an executive of some sort.
In an ontology, concepts with high centrality values
should be good candidates for core concepts. However,
different centrality metrics check for different structural
attributes in the graph and not all will be suitable for our
purposes. There are five different metrics that we
examined.

• Degree Centrality measures the number of

edges on a node. The more edges on a node, the
higher the centrality.

Hsi, I, Potts, C., and Moore, M., "Ontological Excavation: Unearthing the core concepts of the application", Proceedings of WCRE
2003, November 13-16, 2003, pp. 345-352.

• Closeness Centrality measures the average
distance from that node to all other nodes.

• Betweenness Centrality measures the number of
shortest paths between all pairs of nodes in the
graph that use a particular node. The higher the
centrality measure, the more dependencies on
that node. Because leaf nodes only serve as start
and end points for paths, they automatically
have a betweenness value of 0.

• Information Centrality measures the information
contained in all paths originating with a specific
node.

• Eigenvector Centrality measures the centrality
of a node relative to the importance of its
surrounding nodes.

a.

n7

n6

n5 n4

n3

n2

n1

 b. n7n6 n5n4 n3n2 n1

Figure 3 - a) Star Graph b) Line Graph

Each metric returns a normalized value from 0.0 to
1.0 for each node in the graph where 0.0 represents a
node that is not central (a leaf node) and 1.0 represents a
node that is completely central relative to the other
nodes. Figure 3 has two examples to motivate these
metrics [16]. In the Star Graph, n1, the most central node
in the graph has degree and betweenness centralities of
1.0 because of its direct connections to all other nodes in
the graph. In the Line Graph, n1, also the most central
node, the degree centrality is only 0.333 as are all nodes
with two edges (the two outer nodes have a degree
centrality of 0.167). The betweenness centrality of n1 is
0.6. The other nodes flanking n1 have values of 0.533
because they are fairly central but not the most central.
The nodes on the outside have a betweenness value of 0.0
because they do not fall on any shortest paths between
pairs of nodes.

We also examined the ontologies using subgraph
identification algorithms. Core concepts rarely exist in
isolation and are often found in subgroups of related
items. We hypothesized that these could be identified
structurally and looked for specific subgraph types such
as cliques and k-cores. A k-core is a connected, maximal,
induced subgraph of nodes such that each node has a
minimum degree greater than equal to k [22].

3. Case studies

We recovered the ontologies of three applications:
Windows 95/98 CD Player, Palm Pilot Scheduler, and

Windows Notepad. These were chosen partly for their
simplicity but also because they represented implemented
solutions to larger problem domains: media playing,
scheduling, and word processing. We then analyzed their
ontologies using each centrality metric and then analyzed
the ontologies for connected subgroups. A summary of
the applications can be found in Table 1.

Table 1 - Application comparisons

 # of
nodes

of non-leaf
node concepts

of k-
cores

CD Player 21 6 1
Palm Pilot
Scheduler

58 32 1

Notepad 78 31 3

3.1 Evaluating the Candidate Centrality Metrics

We first checked to see which concepts were identified
by the centrality measures to see whether the concepts in
the ontologies could be measured in this matter and also
to see whether certain metrics were more effective than
others in returning the core concepts. Each of the metrics
in each application identified a slightly different subset of
the concepts as being important with some differences.
We examined the data to determine whether the metric
returned concepts that seemed to be good candidates for
being core concepts. In the absence of a preexisting
structured representation for these specific applications,
we used an ad hoc method for determining whether a
concept truly was a core concept. Specifically, we ask
ourselves the common sense question “Does the
application require this concept to function?” For
example, the Scheduler needs Event to be a scheduler but
not necessarily Backup Copy. Therefore, Event is more
likely to be a core concept then Backup Copy.

An interesting characteristic of the ontologies is that
when they are visualized (using NetDraw, part of the
UCINET Package [21]), they all have a cluster of nodes
in the middle with ‘satellite’ notes around the periphery
(see Figure 4) This seems to verify the intuitions behind
the idea of a core concept that structures the ontology.

Figure 4 - Visualization of Notepad Ontology

Hsi, I, Potts, C., and Moore, M., "Ontological Excavation: Unearthing the core concepts of the application", Proceedings of WCRE
2003, November 13-16, 2003, pp. 345-352.

Using this visualization and some deeper analysis of
the metrics themselves, we were able to eliminate some
of the metrics. For example, degree centrality measures
are strongly affected by the number of attributes or
subtypes that a concept possesses. It turns out that
concepts with many different subtypes (for example,
Script in Notepad) can skew the metrics even if they exist
on the periphery. This depends, of course, on the size of
the graph.

We also eliminated closeness and information
centrality. The intuition informing this decision is that
core concepts would stand out by having significantly
higher values than the non-core concepts. When all the
values are graphed (independent of where they are in the
graph), we can see that closeness and information
centrality are very “flat” relative to betweenness and
eigenvector centralities. Those centrality metrics don’t
enable us to discriminate core from non-core concepts.
This leaves betweenness and eigenvector centrality.
Betweenness has the nice property of automatically
eliminating leaf nodes. In addition, betweenness
measures, by debatable degrees, succeeded in identifying
what we considered to be the core concepts in each
application.

3.2 Testing the “common sense” approach

To further test the metrics, we performed a series of

tests on the data. The intuition is that a core concept
makes a significant contribution to the underlying
structure of the ontology. Therefore, removing a core

concept should cause large changes to the measurements
of the other concepts. We systematically removed each
concept from the graph and recalculated the values in the
new graph using all the centrality measures. This turned
out to be very easy to do in Visio. To avoid the problem
of disconnected graphs, as happened when a peripheral
node with many attributes was removed, we simply
removed attributes when we removed the node.

We calculated the average absolute values and sum-
squared values of the difference between the centrality
values of all the nodes in the original graph and the new
graph. We then sorted the concepts according to the size
deltas and checked to see where concepts ended up in the
new rankings.

The results of the test showed that betweenness had
the most consistent behavior in that the rankings of the
concepts in the original graph very closely matched the
rankings of the concepts produced from the difference
calculations. This means that the concepts identified by
betweenness centrality as being important had profound
effects on the other nodes when they were removed from
the graph.

The second issue was choosing a reasonable threshold
that could act as a ‘cutoff’ point between core concepts
and peripheral ones. We graphed the normalized
centrality values sorted from lowest (least central) to
highest (most central). As Figure 5 shows, betweenness
measures returns a narrow range of values and
automatically ignores leaf nodes. A simplistic analysis
could arbitrarily decide that all concepts greater than 0
are core concepts. However, a concept on the periphery

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Degree
Closeness
Betweenness
Eigenvector
Information

Figure 5 – Comparing the different metrics using the Notepad ontology

Hsi, I, Potts, C., and Moore, M., "Ontological Excavation: Unearthing the core concepts of the application", Proceedings of WCRE
2003, November 13-16, 2003, pp. 345-352.

with one attribute will have a positive betweenness value
but may not be a core concept. Therefore, for this study,
we chose a reasonable cutoff point for each ontology
based on the slopes displayed by their respective graphs
to identify a set of candidate concepts (Table 2). The
identified concepts seemed to be reasonably important in
the context of their applications.

Table 2 – Candidate Core Concepts found in the
3 ontologies in order of their betweenness

centrality values

Application Candidate Core Concepts
CD Player Current Track, Play Mode, Track, Disc,

Current Disc, Playlist
Palm Pilot
Scheduler

Event, Date, To Do Item, Hot Synch,
Day, Month, Time, Alarm, Repetition,
Note, Every

Notepad Page Setup, Font [Setting], Paper, Text,
Paper Size, Font, Script, Header, Footer,
[Configuration], [Header/Footer Code],
Margins, Alignment, Font Style

3.3 Subgroup Identification

We know that there are core concepts that make
contributions to the same functions and hypothesized that
these related concepts might form a cohesive subgroup
that would be detectable in the ontology. These
subgroups may resemble standard graph theoretic
subgraphs such as cliques and clans. We examined the
ontologies using the subgroup identification algorithms
provided by UCINET but found them to be relatively
ineffective, especially for small graphs.

What may be promising is a k-core analysis. A k-core
is a maximal induced subgraph such that each node in
the subgraph has edges connecting it to k or more nodes.
When we performed a k-core analysis on CD Player and
scheduler, we obtained 1 k-core consisting of many of the
concepts identified by the betweenness centrality metric.
Notepad shows multiple groups, 1 3-core and 2 2-cores
as shown in Table 3.

Table 3 - k-cores in Notepad

k value Concepts in the core
3 Text, Header, Footer, File Name, Page,

Number, Date, Time
2 (a) Header/Footer Code, Left/Right/Center

Alignment, Alignment (of Header/Footer)
2 (b) File, Current File, [Configuration], Line,

Word, Font [Setting], Page Setup, Document,
Page

What’s interesting about the subgroups is that the 3-core
group, the most tightly coupled by definition, has the one

critical concept that you would expect to find in a text
viewer such as Notepad – “Text” as well as some
supporting ones which are major Notepad functions.
Both 2-cores have sets of related functionality, 2-core (a)
deals with the Header/Footer codes and alignment of
Headers and footers and 2-core(b) deals with file
handling and configuration of Notepad’s viewing
functions.
3.4 Robustness of the ontology

A potential weakness of this work is its dependence on
the correctness of the recovered ontology. Theoretically,
small errors in modeling should have limited or
negligible impact on the core concepts. Thus, a single
mismodeled concept or misplaced edge should not affect
the basic clusters or centrality values of the application.
We conducted a small experiment to test this idea. In the
initial model that we generated for Notepad, the concept
Ampersand appeared as a 2-core concept but didn’t have
any direct edges to either group.

Because Ampersand was ambiguous, we took a closer
look at it. It turns out "ampersand" was modeled slightly
incorrectly which explains why it was "isolated" from
either group that were in the set of 2-cores. Ampersand is
used in Header/Footer codes to print page numbers and
so on. There is a special code "&&" required to print an
Ampersand. We generated 4 alternate models based on
varying modeling decisions to test the robustness of the
basic ontology.

Modeling Decision Result
1 Header and Footer

has-a Ampersand
(reflecting that it's
specially printed as
a Header/Footer
code)

Ampersand is an isolate
but identified as part of a
2-core

2 Header and Footer
has-a Ampersand
and Ampersand isa
Text (reflecting that
it's just a character
that is part of Text)

Ampersand belongs to the
2-core group that concerns
Header/Footer codes

3 Header/Footer Code
has-a Ampersand,
Header and Footer
has-a Ampersand,
and Ampersand is-a
Text

Ampersand moves to the 1
3-core group which also
makes Header/Footer
Codes part of the 3-core..

4 Ampersand isa
special character
code.

Ampersand now
disappears from the 2- and
3-cores and becomes a leaf
node

Hsi, I, Potts, C., and Moore, M., "Ontological Excavation: Unearthing the core concepts of the application", Proceedings of WCRE
2003, November 13-16, 2003, pp. 345-352.

This exercise demonstrates that a wrong modeling

decisions can move a single concept from the periphery
to the core. However, it’s important to also point out that
other subgroups were not affected in the sense that there
were still 2 2-cores and 1 3-core throughout each of the
models. So small errors will not perturb the basic
structure of the ontology but can cause the erroneous
promotion of a concept to a core concept.

4. Discussion

There are several potential problems with this
methodology that need to be addressed.

First, the amount of time required to recover the
ontology of an application may be problematic for very
large applications with many features. The cost of
manually producing an interface map in addition to the
work required to ensure the correctness of the ontology
may be high depending on the complexity of the
interacting elements. Recovering an interface map from
an application can be solved using white-box reverse
engineering methods on the sections of the code that
implement the user interface [23]. In cases where the
source code is unavailable, Stroulia’s approach to
recovering legacy interfaces offers a potential avenue for
the semi-automated recovery of the user interface by
tracking the interactions of a user with the interface. [24-
26]. Furthermore, because this work recovers
specifications based on frequently occurring interaction
patterns, it may provide a viable next step to this line of
research which is to assess the overall match of the
morphology to its underlying ontology. Currently, the
automated reverse engineering of a domain is still an
unsolved problem. Thus, even with the automatic
recovery of an interface map, modeling the application’s
ontology will still require human intervention.

Second, the consistency and accuracy of the
ontological model may vary from person to person and
depends wholly on their level of modeling knowledge
and skill. Systematic errors in the excavation process will
likely produce a very different and erroneous ontology.
As we illustrated in our case study, the ontology seems to
be fairly robust against small errors or variations in
modeling so one will be able to identify the core
concepts. Poor modeling decisions are still a problem in
any data modeling activity. One of the interesting side
effects of this methodology is that core concepts, by their
very nature, tend to have more dependencies and
attributes which make them more visible to a
betweenness centrality analysis. Forgetting to include a
relationship to these core concepts should not affect their
overall visibility. We believe that this resistance to errors,
even systematic ones, only improves as the size of the

ontology increases in the number of concepts and
attributes that it contains.

In addition to the methodological issues, some of
which may be overcome by limited automation when the
source code is available, there is the issue of external
validation that was not addressed in our case study. Does
betweenness centrality actually identify the most
important concepts in the ontology? Another potential
danger is that recovering concepts from the user interface
does not guarantee that all the real world domain
concepts understood by the application are properly
excavated. For example, security and privacy policies
may affect how data is retrieved or connected and only
reveals itself in emergent behavior not readily
understandable through simple interactions. In our
studies, we have applied an ad hoc common sense
assessment based on our knowledge of the domain. Given
the simple and constrained nature of the domains we
examined, this could be no worse than asking domain
experts to verify the accuracy of the model. But in
addition to lacking rigor, this type of validation will be
very unsatisfactory with larger and more complex
domains. Part of our future work will be to identify
better techniques for validating these models, possibly
through a combination of existing domain reverse
engineering methods.

In spite of these potential shortcomings, ontological
engineering shows tremendous potential for contributing,
not only to software maintenance, but other areas of
software engineering. It provides a method for reverse-
engineering an ontology that focuses solely on the real
world concepts that the application understands. The
semantic network representation allows this domain-
independent analysis using graph theory to identifying
potential core concepts. The same representation and
analysis process will also aid the study of application
evolution. By reverse-engineering several versions of a
product line, one can examine how the ontology has
changed, which concepts have migrated from periphery
to core, which subgroups of concepts have formed in
recent implementations, and which concepts are no
longer being maintained. The same kind of analysis can
be coupled with requirements analysis to predict how an
application needs to evolve in future versions to meet the
demands of its users.

5. Conclusion

We have developed a methodology for excavating an
application’s ontology and shown how graph theoretic
metrics can be used to identify those core concepts in the
ontology that can have a significant impact on the
application’s evolution. Another promising result may be
the ontology’s structure allows the identification of

Hsi, I, Potts, C., and Moore, M., "Ontological Excavation: Unearthing the core concepts of the application", Proceedings of WCRE
2003, November 13-16, 2003, pp. 345-352.

conceptual subgroup(s) within the ontology. Conceptual
subgroups represent another type of ontological
organization that will have to be accounted for by
developers when designing new features for the
application.

Earlier in the paper, we made a strong claim that
understanding an application’s ontology can benefit
developers in the software maintenance phase and can
enable them to avoid designing mismatches between an
application’s services and user expectations. We have
only shown the first step of that effort; the recovery of an
ontology from the application in question. A complete
analysis that would benefit software developers would
have to include a corresponding model of the real world
domain and of the user’s conceptual model. Obtaining
and modeling both of these remains a difficult problem
and will be addressed in our later work. Ideally, we
would like to be able to compare sets of core and
peripheral concepts between the application ontology and
the domain ontology as well as measure the ontology’s
correspondence to the morphology. We believe that this
ontological approach to software evolution can allow
developers to maintain a reasonable 1:1 correspondence
between application and domain ontologies and aid the
design of the software architecture to accommodate
future extensions without compromising the existing
structures. However, this will have to be shown and
demonstrated in future work.

Currently, we are using ontological excavation as part
of the MesoMORPH project [27]. MesoMORPH is a
system designed to support the activity of meso-
adaptation, the adaptation of a system for a different
context than the one the system was originally designed
to support. Changes to the system in this intermediate or
meso-layer between reengineering and user-driven
customization, ranges from modifications of the user
interface to match a different set of user capabilities or
environments (e.g. augmenting a system with assistive
technologies for disabled users) to altering the underlying
system architecture by adding or subtracting system
components to match a different set of hardware
constraints. Ontological excavation informs this context-
driven evolution by providing metrics that aid
MesoMORPH in determining which concepts must
remain (because they are core concepts) and which ones
can be removed (because they are not required by the new
context).

6. Acknowledgements

This work was sponsored by DARPA as part of the
DASADA project under Dr. John Salasin, project
number F30602-00-02-0516. We would also like David

Yu for his contribution to the technical aspects of this
work.

7. References

[1] M. Lehman and L. Belady, Program Evolution: Processes
of Software Change, 1st ed. Orlando: Academic Press,inc.,
1985.
[2] M. Lehman, “Laws of software evolution revisited,” in
Proc. 5th European Workshop on Software Process
Technology, 1996, pp. 108-124.
[3] J. McGrenere, “"Bloat": The Objective and Subjective
Dimensions,” in Proc. Computer Human Interaction 2000
(CHI 2000), 2000, pp. 337-338.
[4] I. Hsi and C. Potts, “Studying the Evolution and
Enhancement of Software Features,” in Proc. Intl. Conf.
Software Maintenance, 2000, pp. 143-151.
[5] S. Rugaber, “Position Paper Domain Analysis and Reverse
Engineering,” in Proc. Software Engineering Techniques
Workshop on Software Engineering, 1994.
[6] G. Arango and R. Priéto-Diaz, “Domain Analysis Concepts
and Research directions,” in Domain Analysis and Software
Systems Modeling, R. Priéto-Diaz and G. Arango, Eds. Los
Alamitos, CA: IEEE Computer Society Press, 1991, pp. 9-26.
[7] R. d. A. Falbo, G. Guizzardi, and K. C. Duarte, “An
Ontological Approach to Domain Engineering,” in Proc.
International Conference on Software Engineering and
Knowledge Engineering (SEKE'02), 2002, pp. 351-358.
[8] N. Anquetil, “Characterizing the informal knowledge
contained in systems,” in Proc. Eight Working Conference on
Reverse Engineering, 2001, pp. 166-175.
[9] S. J. Greenspan, J. Mylopoulos, and A. Borgida, “Capturing
More World Knowledge in the Requirements Specification,” in
Domain Analysis and Software Systems Modeling, R. Priéto-
Diaz and G. Arango, Eds. Los Alamitos, CA: IEEE Computer
Society Press, 1991, pp. 53-62.
[10] J. M. DeBaud, B. Moopen, and S. Rugaber, “Domain
Analysis and Reverse Engineering,” in Proc. International
Conference on Software Maintenance, 1994, pp. 326-335.
[11] R. Clayton, S. Rugaber, and L. Wills, “Dowsing: a tool
framework for domain-oriented browsing of software artifacts,”
in Proc. 13th IEEE International Conference on Automated
software Engineering, 1998, pp. 204-207.
[12] G. Arango, “Domain Analysis Methods,” in Software
Reusability, W. Schafer, R. Priéto-Diaz, and M. Matsumoto,
Eds. Chichester, England: Ellis Horwood, 1994, pp. 17-49.
[13] R. J. Brachman, D. L. McGuinness, P. F. Patel-Schneider,
and L. A. Resnick, “Living with CLASSIC: When and How to
Use a KL-ONE-Like Language,” in Principles of Semantic
Networks, J. Sowa, Ed.: Morgan Kaufmann Publishers, 1990.
[14] T. R. Gruber, “Ontolingua: A Mechanism to Support
Portable Ontologies,” Stanford University, Technical Report,
June 1992.
[15] D. B. Lenat, “CYC: A Large-Scale Investment in
Knowledge Infrastructure,” Communications of the ACM, vol.
38, pp. 33-48, 1995.
[16] S. Wasserman and K. Faust, Social Network Analysis.
Cambridge: Cambridge University Press, 1994.

Hsi, I, Potts, C., and Moore, M., "Ontological Excavation: Unearthing the core concepts of the application", Proceedings of WCRE
2003, November 13-16, 2003, pp. 345-352.

[17] B. Hillier, Space is the Machine: A Configurational
Theory of Architecture. Cambridge, UK: Cambridge University
Press, 1996.
[18] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen, Object-oriented Modeling and Design. Englewood
Cliffs, NJ: Prentice-Hall, 1991.
[19] R. Elmasri and S. B. Navathe, Fundamentals of Database
Systems. New York, NY: Addison-Wesley, 1994.
[20] G. Booch, Object-Oriented Analysis and Design. Reading,
MA: The Benjamin/Cummings Publishing Company, Inc.,
1994.
[21] S. P. Borgatti, M. G. Everett, and L. C. Freeman, UCINET
5.0 Version 1.00: Analytic Technologies, 1999.
[22] M. G. Everett and S. P. Borgatti, “Peripheries of Cohesive
Subsets,” Social Networks, pp. 397-407, 1999.
[23] M. Moore, “User Interface Reengineering,” in College of
Computing. Atlanta, GA: Georgia Institute of Technology.,
1998.
[24] M. El-Ramly, E. Stroulia, and P. Sorenson, “Recovering
Software Requirements from System-user Interaction Traces,”
in Proc. 14th International Conference on Software
Engineering and Knowledge Engineering, 2002, pp. 447-454.
[25] E. Stroulia, M. El-Ramly, and P. Sorenson, “From Legacy
to Web through Interaction Modeling,” in Proc. International
Conference on Software Maintenance, 2002, pp. 320-329.
[26] E. Stroulia and R. V. Kapoor, “Reverse Engineering
Interaction Plans for Legacy Interface Migration,” in Proc. 4th
International Conference on Computer Aided Design of User
Interfaces, 2002, pp. 295-310.
[27] M. Moore, C. Potts, I. Hsi, and D. Yu. ,). The
MesoMORPH Project.
www.cis.gsu.edu/~mmoore/MesoMORPH [Online]. Available:

