

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

Measuring the Conceptual Fitness of a Computing
Application in a Computing Ecosystem

Idris Hsi
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280 USA

770 541 0321
idris@cc.gatech.edu

ABSTRACT
Developing computing applications that can match a set of
evolving conceptual requirements requires an
understanding of the conceptual fitness of these
applications relative to the domains they purport to serve.
We present the computing ecosystem framework with its
associated concepts, use niches, use potential, and
activation potential. We show how the ecosystem
framework allows us to characterize the usefulness of an
application through the concept of fitness. We propose a
method for measuring the fitness of an application using a
metric called ontological coverage.

We first use a technique called ontological excavation that
identifies the user-visible concepts from applications and
models them in an ontology. We then use a set of use cases
to develop a use case silhouette on the ontology that allows
us to measure the ontological coverage of an application as
an initial approximation of fitness to a use niche. We
present some examples from case studies showing how use
case silhouettes can be used to measure the fitness of an
application and conclude with some proposals for future
work.

KEYWORDS
software engineering, software evolution, usefulness,
computing ecosystem, ontological excavation, conceptual
fitness, use niche, use potential, activation cost, activation
energy

INTRODUCTION
 “Perfect” computing applications are illusory. At best,
they are perfect tools for a moment in time: round pegs for
round holes. Applications optimized for a particular
purpose tend to be poor at adapting to changing
circumstances. Often the environment will change faster
than the system’s ability to adapt: a company may change

marketing focus or adopt a new set of practices; customers
that realize the potential of their new tool may decide that
they need it to do more. Thus the initial requirements for
the application slowly fall out of synch with the actual
requirements and the round peg no longer fits because the
hole has changed shape.

Software developers have attempted to solve this problem
by adding functionality to newer versions of applications.
While the new functionality does serve to meet the new set
of requirements, work by Lehman and Belady have shown
that the systems increase in complexity and become more
difficult to maintain when evolved in this manner [19, 20].
If the application grows past a certain size, its users begin
to have difficulties with it. These difficulties include
applications having too many features, automated features
that are not desired, and problems with navigating the user
interfaces to find the desired features [6, 18, 23, 25, 26].
Users describe such systems as bloated. We formally
define ‘bloat’ as the description applied to applications
when it possesses a disproportionate number of
unnecessary features that interfere with normal or desired
interactions with the application.

At first it would seem that this problem is intractable.
These computing applications must continually be adapted
to maintain user satisfaction but increasing the
functionality perturbs the use of the system. A resolution to
this conundrum can be found in a biological metaphor,
borrowed from Darwin’s studies of evolution, that allows
us to measure an application’s potential success in terms of
its conceptual fitness relative to a use context.

CONCEPTUAL FITNESS
Applications are engineered to solve problems in specific
use contexts. A use context consists of the external
physical (or virtual) environment that contains the
computing application and its users, the goals that the
combined computing application/user system wishes to
achieve, and the various nuances (business rules, customer
demand, user and system capabilities) that govern the
operation and performance of both environment and goal
completion. For example, the use context of a bank

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

customer database consists of the bank itself, the systems
that manage and store the database, the employees charged
with maintaining the stored information, and the rules and
procedures established by bank management for storing
and distributing the data. All use contexts exist within a
problem domain. Arango and Prieto-Díaz state that a
problem domain is a collection of items of real-world
information that has “deep or comprehensive relationships
among the items of information” and a community that
has a stake in solving those problems [1]. Software that
has been designed to function in the use context and the
problem domain will possess a set of concepts and
relationships that we call an ontology [5, 11, 12]. The
ontology of a computing application can be said to be its
theory of the real world. The concepts it embodies
determine and structure its features, which we define as
the user-accessible behaviors and services implemented by
the system.

Ultimately, users evaluate software on its ability to help
them to achieve their goals, whether these goals are for
entertainment, productivity, scientific analysis, or
industrial application. Thus, engineering concerns aside,
the primary challenge for software developers has always
been to ensure that their applications have a high level of
usefulness for their customers and end-users. We define
usefulness as the extent to which an application succeeds
in assisting a set of users to achieve a set of goals, relative
to the amount of effort required to engage those features.
We distinguish usefulness from usability which is an
integral but subordinate attribute of usefulness. A useful
application with poor usability can still enable users to
achieve their goals albeit with great difficulty. An
application with little or no usefulness can be extremely
usable but cannot help the users to achieve their goals.

Developing useful software requires that developers
understand what their users are trying to do in a specific
use context and encode that knowledge into the design.
Yet an application must possess enough features to be
useful to its users but without becoming too complex: a
design tradeoff between functional power and conciseness.
The features are accessed by the users of the system
through its user interface or morphology, which is the
external presentation of the software. Thus what the
software is, how it is presented to the users, and how it
functions must ultimately be determined by its ontology. If
its ontology does not match the user’s understanding of the
problem domain then the application will fail. If the
ontology has been modeled incorrectly, relative to the
problem domain, then the most advanced techniques in
program design, development, and testing will not be able
to produce a useful computing application. In other words,
the usefulness of a computing application is determined by

the conceptual fitness of its ontology to the domain of the
user.

In biology, an organism’s fitness, as a function of both its
survival and reproductive capabilities, depends greatly on
the environment or ecosystem that it inhabits. Thus,
conceptual fitness must also be measured against the
environment that express the domains embodied by the
computing application. We now propose a framework that
we call a computing ecosystem.

THE COMPUTING ECOSYSTEM
In biology, ecosystems describe a defined envelope of
physical, chemical, and biological processes within a space
and time [21]. More generally, an ecosystem is “a system
of interacting species in a particular environment” [17].
We formally define a computing ecosystem as a set of use
contexts that use computing to fulfill goals, contained
within an environment of interest. A computing ecosystem
can be a single person and a handheld PDA or a multi-
national company of database management specialists. In a
computing ecosystem, the organisms are the computing
functions that users apply towards achieving their goals.

The biological fitness of an organism is described as “ the
ability of an individual to produce viable offspring and
contribute to future generations” [21]. In principle, the
fitness of an individual organism takes secondary
importance to overall genetic fitness of the species, as
measured by its population size and, in evolutionary
biology, by how many years that species managed to
survive over the lifetime of the Earth [9, 10]. But this
genetic fitness is really a property that emerges from the
individual organism’s abilities to survive and procreate,
summed over the entire population of the species. Thus,
one cannot understand biological fitness solely by studying
the genetic code. One must examine the resulting
phenotypic expressions – the physiological features of an
organism encoded in the gene. Analyzing the fitness of a
species requires studying not only the individual
organism’s physiological attributes that enable it to
reproduce, the most direct contribution to fitness, but how
its features enable it to interact successfully with its
environment and its fellow organisms in activities like its
ability to gather and consume nutrients, escape predation,
and maintain homeostasis across climatic variations.

Likewise, for computing applications, code and
architecture do not reveal anything about their fitness in a
computing ecosystem. The correct unit of study has to be
the phenotypic expressions of the software or its features.
If an application lacks the features that would make it
useful to its users, then it lacks sufficient fitness for it to
exist in the computing ecosystem. We now need a more
precise characterization of the relationship between an

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

application’s features and concepts and the computing
ecosystem.

THE USE NICHE AND FEATURE FITNESS
Biologists tend to think of the habitats of particular
organisms in a more narrow context – that of the
ecological niche. An ecological niche is a physical
environment that supplies the food and space required for
the survival of a set of species [21]. Species that occupy the
same ecological niche will compete for these resources.
Over time, only the species that have evolved or adapted a
sufficient level of fitness will survive in these niches.

Features in computing applications inhabit use niches, a
bounded space in the computing ecosystem that contain
subsets of the ecosystem’s resources and goals. A use niche
may be as broad as “document writing” and as narrow as
“database sorting” . The fitness of a feature in a use niche
is primarily determined by that feature’s ability to fulfill
the requirements of that niche. However, a feature can
possess the necessary concepts and functions to occupy a
niche but still be unfit due to poor usability, which we
characterize as a conflict between the available energy in
the ecosystem and the usage cost of the feature.

USE POTENTIALS AND ACTIVATION COST
In a use niche, the resources that allow features to exist
can be collectively abstracted to what we call use
potentials. A use potential is the amount of available
energy or effort that the users are willing to expend to
activate the features of the application. On the application
side, features have an activation cost that represents the
corresponding amount of energy or effort required to
engage those services. For example, a GOMS (Goals,
Operations, Methods, Selection) formulation from work in
human-computer interaction would measure this activation
cost in terms of the number of user interface item
selections [7]. If a feature can achieve the goals of a niche
and its activation cost is less than the use potential of the
niche it will occupy, then it has a high potential fitness.

For example, you could write a document, such as a memo,
in a spreadsheet or a word processor. The word processor
has a low activation cost for its text processing functions
because it has been designed that way. The spreadsheet
application has some of the same concepts related to text
but has a higher activation cost because its ontology has
been designed around the management and analysis of
numerical data. For a normal memo, it would make sense
to choose the word processor. However, if you wanted to
write a memo with charts and graphs displaying financial
information, it may be easier to use the spreadsheet
application as the word processor will have a higher
activation cost for those features.

We now present some work that we have done to
characterize use niches, the activation costs of features,
and the fitness of an application relative to a use niche.

CASE STUDIES
We have argued that the fitness of a computing application
can be described in terms of an application’s conceptual
fitness relative to the domain of an ontology. While a
complete measurement of fitness requires the teleological
examination of an application’s actual functions to verify
that it could achieve the goals in that domain, we felt that
conceptual fitness was a sufficient first approximation for
this work since the functions themselves have to be derived
from the concepts.

We studied three applications: Windows 95/98 CD Player,
Microsoft Notepad, and the Protocol Calculator/Calendar
device. The Windows 95/98 CD player plays CDs and
helps the user manage playlists. The Microsoft Notepad is
the default text editor for the Windows operating system.
The Calculator / Calendar made by Protocol is a handheld
device that implements an alarm clock, calendar,
calculator, currency exchange calculator, and countdown
timer. The clock also allows its users to view times in
sixteen different time zones. All three were chosen for
their relatively small feature sets and simplicity.

We first identify the concepts in these applications using a
method that we call ontological excavation. Using analysis
techniques from graph and social network theory, we
identified the core concepts in these applications. We then
obtained a set of use cases from the help files or
instructions of these applications to characterize a
potential use niche of the application. We then use a
technique called use case silhouetting to measure their
ontological coverage of the application.

ONTOLOGICAL EXCAVATION
In previous work, we developed this method for excavating
the concepts and relationships of a computer application
[14, 15]. Ontological excavation uses black-box
techniques; the ontology is reverse engineered from the
user interface of the application rather than the source
code. Black box reverse engineering allows us to identify
just the concepts visible to the user rather than the
concepts relevant to the application’s implementation. We
use the external presentation or morphology of the
application as our unit of analysis.

The steps are:

1. Model the user interface in a morphological map
of the application’s interactors, displays, and
containers.

2. Generate a list of morphological elements.
3. For each element, identify the concepts (entity

types and attributes) that it invokes.

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

4. Through dynamic interaction with the
application, identify the relationships between the
concepts.

5. Model the concepts and relationships into a
semantic network representing the application’s
ontology.

In the following sections, we summarize the major steps in
excavating the ontology from the application.

3.1. THE MORPHOLOGICAL MAP

Figure 1 – Examples of containers, interactors, and displays from the
Windows 95/98 CD Player

Containers

Interactors

Displays
CD Status Display

Play Button

File Edit … ...

Menu Bar

Main Toolbar

Track Drop-Down
List

We model the user interface in a morphological map. This
map consists of the interface’s interactive elements or
interactors (e.g. buttons, text fields, check boxes),
containers, a morphological element that contains and
structures interactors (e.g. windows, dialog boxes,
toolbars), and displays, morphological elements that
present both static and dynamic data about the computing
application’s states to the user. Figure 1 shows the
Windows 95/98 CD Player application along with
examples of containers, interactors and displays.

We build this map by traversing and activating all the user
interface elements in a systematic, depth-first fashion.
Each element is represented by a visual icon and given
information corresponding to its label in the user interface.
These visual icons are linked using arrows to show either
their container (e.g. a toolbar containing buttons) or their
point of activation (e.g. a menu item opening a dialogue
box). A portion of the Windows 95/98 CD Player
morphology is shown in Figure 2.

Currently, this process is performed manually and uses
Microsoft Visio to store the representation. While methods
do exist for automatically reverse engineering the user
interface structure [22], we have not yet integrated them
into our work.

Figure 2 – Par t of the menu bar in the Windows 95/98 CD Player
Morphology.

CD Player

Main MB:
Disc M

Main MB:
View M

D
is

c
M

:
E

d
it

P
la

yl
is

t
M

I

D
is

c
M

: E
xi

t
M

I

V
ie

w
 M

:
To

o
lb

ar
C

M
I

V
ie

w
 M

:
D

is
c/

Tr
ac

k
In

fo
 C

M
I

V
ie

w
 M

: S
ta

tu
s

B
ar

 C
M

I

V
ie

w
 M

: T
ra

ck
T

im
e

E
la

p
se

d
C

M
I

V
ie

w
 M

: T
ra

ck
Ti

m
e

R
em

ai
n

in
g

C
M

I

V
ie

w
 M

:
V

o
lu

m
e

C
o

nt
ro

l M
I

Main MB

V
ie

w
 M

:
D

is
c

Ti
m

e
R

em
ai

n
in

g
C

M
I

IDENTIFYING THE CONCEPTS
Using the morphological map as an information source, we
first identify the concepts indicated by the labels attached
to those elements, looking for noun phrases and the
indirect objects implied by verbs, a process borrowed from
object-oriented analysis methods [2, 27]. For example, a
“File Menu” implies that there is a concept of “File” . A
“Font” dialog box informs the concept “Font Size” . In
cases where a noun does not exist in the label, concept
identification requires interaction with the system. For
example, “Play” on a CD Player plays a “Track” on a
“Disc” . Once we identify a concept, we determine whether
it is an entity type, attribute, or instance.

• An entity is a thing that can be distinctly identified [8].
A set of entities that share a set of attributes is an entity
type [11]. Example: In Figure 3, Disc and Track are
entity types.

• An attribute is an intrinsic property of a thing in the real
world [29]. Basically, it is a concept that lacks
independent existence except as a property of an entity
type. Example: In Figure 3, Track Name and Track
Number are attributes of Track.

• An instance is a concrete manifestation of an entity type
[3].

We model attributes as nodes in our network rather than
collapse them into the entity types as one would do in an
object model. This is similar to the methods used in NIAM
(Natural language Information Analysis Method) [28] and
ORM (Object Role Modeling) [13, 24]. For example, a
“Disc” in the CD Player has an “Artist” and a “Title” as
seen in Figure 3. In our observations of Microsoft Word’s
evolution, we noticed several times that concepts that
might have been modeled as attributes in one version
would become full fledged entity types in the next.
Modeling attributes in this manner allows us to make
better comparisons of growth and complexity across
application versions and examples.

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

IDENTIFYING RELATIONSHIPS
After identifying the concepts from the morphology, we
identify the relationships between them by interacting with
the system and by reconstructing them from observations
of both static information and dynamic behavior. For
constructing a semantic network, we use the basic
relationships from object modeling: associations,
generalization (is-a), and aggregation (has-a) [3]. We do
not model constraints such as cardinality or dependencies.
An example of the CD Player ontology can be found in
Figure 3.

ONTOLOGICAL ANALYSIS AND RESULTS
To analyze the ontologies, we identified techniques from
graph theory, specifically those used in social network
analysis [30] to identify the core concepts and peripheral

concepts. A core concept is essential to the application’s
ontology while a peripheral one is not. We identify these
using node betweenness centrality [30] which measures a
node’s structural importance by the number of times it
appears on a shortest path between all pairs of nodes.

We wrote a Visual Basic macro for Visio that refines a
graph into an adjacency matrix that could be read by an
application called UCINET, a tool for social network
analysis [4]. The social and behavioral science
communities model relationships between social entity
types as social networks. Social network analysis methods
apply algorithms from graph theory to identify both
patterns and variables in the structural relationships of
these networks [30].

Figure 3 – The Windows 95/98 CD Player Ontology

Disc

Artist Title

[Current Disc]

Drive

Track

Track Name

Track
Number

[Current
Track]

[Playing_or_
Paused]

has-a has-a

has-a

has-a

has-a

has-a

has-a

is-a

is-a

Playlist

has-a

Available Tracks Of

Custom Playlist Of

Track Time
Elapsed

Track Time
Remaining

Track Time

Playlist Time
Remaining

has-a
has-a
has-a

has-a

[Play Mode]

Random
Order

Continuous
Order

Intro Mode

has-a

has-a
has-a

has-a

has-a
Intro Play

Length

has-a

CORE CONCEPTS FROM THE CASE STUDIES
We identified the following core concepts from the
applications along with a number of peripheral concepts
that are not listed here to save space.

Table 1 – Core Concepts found in the case studies. Concepts are listed
in order of their betweenness centrality values

Application Candidate Core Concepts
CD Player [Current Track], [Play Mode], Track, Disc,

[Current Disc], Playlist
Palm Pilot
Scheduler

Event, Date, To Do Item, Hot Synch, Day, Month,
Time, Alarm, Repetition, Note, Every

Notepad Page Setup, Font [Setting], Paper, Text, Paper Size,
Font, Script, Header, Footer, [Configuration],
[Header/Footer Code], Margins, Alignment, Font
Style

Protocol
Calculator /
Calendar

[Time Zone], Time, Home Time

The Protocol Calculator / Calendar was found to have
multiple components (isolated subgraphs) in its ontology.
We performed a separate analysis on each subgraph and
obtained the following core concepts per subgraph:

Table 2 – Core concepts found in Protocol Calculator / Calendar .
Note: Subgraph 4 only has 2 nodes.

Subgraph Core Concepts
1 Date, Month, Year, Calendar
2 [Time Zone], Time, Home Time, [Time Display Mode],

Alarm Time, Alarm
3 [Mathematical Operation]
4 Currency Exchange [Calculator], Exchange Rate *

Through this subgraph analysis, we identified four
independent subgroups in the ontology and only three core
concepts. Within those subgroups, our analysis revealed
core concepts that define each of them respectively.

USE CASES AND USE NICHES
Use cases come from the Unified Software Process where
they are used to express requirements and guide developers
in the design, construction, and testing of the system [16].

“ A use case specifies a sequence of actions,
including variants, that the system can perform
and that yields an observable result of value to
a particular actor.” [16]

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

In software development, specifically in the requirements
phase, the developer will gather narratives from users and
structure them into these use cases.

A set of use cases can be selected to describe a set of
procedures required to achieve a specific goal, a set of
related goals, or to represent the all activities that will take
place in a use context. Thus, use cases are ideally suited to
represent both the purposes contained in a use niche and
the activation cost necessary to realize the fulfillment of
those purposes. To examine the relationship between
conceptual fitness and use niches, we apply a technique
called use case silhouetting that takes a set of use cases
and measures the amount of ontological coverage by those
use cases [14].

THE USE CASE SILHOUETTE
In engaging the services of a computing application
through its morphology, users use or invoke concepts in its
ontology. Ontological coverage measures the percentage of
the ontology covered by those concepts for the desired unit
of analysis. For example, one could measure the amount of
ontological coverage for a given user’s actions, a scenario,
a goal, a specific task, an organization, and so on. We can
also measure the importance of these individual concepts
by examining the frequency by which they are activated. If
we find that the unit of analysis has a high ontological
coverage, we could infer that the application has a high
usefulness insofar as its conceptual correspondence is
concerned. We refer to the process of collecting data on
concept frequency as silhouetting.

Figure 4 – The Silhouette Metaphor

The application’s morphology (e.g. the user interface)
provides affordances that permit access to the services.
Viewed another way, these morphological elements
provide portals in the ‘skin’ of the application through
which the underlying conceptual model can be seen.
Activating particular elements in the morphology casts a
‘silhouette’ on the concepts below where only specific
concepts are highlighted as we show in Figure 4. Using
use case silhouettes, we can measure the ontological
coverage for a proposed system for a set of use cases that
reflect a specific scenario, user, or set of requirements.

A use case silhouette is developed by recording the number
of times a concept is referenced in a particular use case.
This can be done in a number of ways. For high level use
cases, where the interface is not mentioned, we can simply
examine the concepts activated at each step of the use case.
For example, a use case action that says “The customer
requests a transaction slip from the system.” tells us that
the ‘customer’ , ‘ transaction’ , and ‘ transaction slip’
concepts have been activated by the as-yet nonexistent user
interface. For low level use cases that explicitly describe
how the user interface is activated, we simply account for
each morphological element mentioned in the sequence of
actions and trace the concepts that they invoke. For
example, a use case action that says “To change the size of
a character, on the Formatting toolbar, click a point size in
the Font Size box.” invokes the concepts ‘character’ ,
‘ font’ , and ‘point size’ through the morphological
elements Formatting Toolbar and Font Size Drop Down
Box.

Here is sample text from one of the use cases of the
Windows 95/98 CD Player (CDs: storing track titles):

���������	��
���
�
�������������� ���
����������	������

1. Make sure your CD is in the drive.
2. On the Disc menu, click Edit Play List.
3. In Artist, type the artist's name.
4. In Title, type the title of your CD.
5. In Available Tracks, click the track whose name

you want to store.

From this use case, we identified the morphological
elements Disc Menu, Edit Play List Menu Item, Disc
Settings Dialog Box, Artist Text Field, Title Text Field,
and Available Tracks List. From these elements we
identified the concepts Disc, Artist, Title, Track (2 times),
Track Number, and Playlist (3 times).

We can learn the following from use case silhouettes:

• The total amount of ontological coverage provided by a
set of use cases. – Assuming that the use case set
provides a complete set of usages by a user or a specific
use context, what is the percent of ontological coverage
reached? If the coverage is low, then the application may
not have high conceptual fitness for this set of use cases.

• The parts of an ontology that are covered by those use
cases and to what degree. – A set of use cases may
emphasize certain parts of an ontology over others. Even
though all concepts may eventually be engaged, some
concepts may see more silhouetting than others. These
may correspond to the core concepts of the application or
indicate concepts that are important only to that set of
use cases.

• The amount of ontological coverage by a particular use
case. – An individual use case may have low or high
engagement with the application’s ontology, measured
by the number of concepts, especially core concepts, that

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

it activates. A frequently used use case with high
engagement with an application must be considered
carefully during design because the concepts that it uses
could affect the overall ontology even if those concepts
lack importance by the structural measures of centrality.

• The importance of a particular concept relative to a set
of use cases. – A concept frequently invoked by the use
cases may or may not have structural importance in the
ontology. In either case, its design will impact the
performance of those use cases.

Each use case describes a goal that the user wants to
achieve and the sequence of actions performed on the
morphological elements of an application required to
achieve this goal. Because ontological excavation links
each morphological element to a set of concepts, we can
count the concepts activated across all the use cases to
collect statistical data of activation frequency. This data
allows us to measure both general and specific ontological
coverage. General ontological coverage looks at how many
concepts in the ontology were activated by a set of use
cases. Specific ontological coverage examines how often
each concept was activated by a use case to determine a
concept’s relative importance in the ontology for that
given set of use cases.

USE CASE SILHOUETTE STUDIES
For each application, we identified use cases from the help
or instruction sets. Because these were low level use cases,
they described each of the morphological elements that
would be triggered during the use case. We used the
relationships between the morphological elements and the
concepts to identify which the concepts being silhouetted
by the operations in the use case. For each application, we
present tables showing the ontological coverage of the set
of use cases, some of the use cases and their metrics, and a
list of the most frequently accessed concepts and their
occurrence percentage relative to the total number of
concepts invoked (including duplicates).

THE WINDOWS 95/98 CD PLAYER
The Windows CD Player allows the user to play CDs, to
manage information about that CD, which has to be
entered manually by the user, and to manage custom
playlists.

Table 3 – CD Player Use Case Silhouette Statistics

Source Help file associated with application
of use cases: 23
concepts invoked: 16
Total # concepts 20
Ontological coverage: 80%

Table 4 – CD Player Sample Use Cases and their Ontological Coverage

Use Case Name # Unique
Concepts

%
Coverage

Adding Tracks to Play Lists 5 24 %
Deleting Tracks from Play Lists 3 14%
Moving Between Tracks 2 10 %

Use Case Name # Unique
Concepts

%
Coverage

Options 6 29 %
Stopping a CD 1 5 %

Table 5 – CD Player Frequency of Concept appearance in use case set.
Core concepts are italicized.

Name
Times

Accessed in
Use Case Set

% of
Total # of
concepts
invoked

Playlist 18 26 %
[Current Track] 10 14 %
[Current Disc] 8 11 %
Track 8 11 %
[Play Mode] 7 6 %
Artist 4 6 %
Title 3 4 %

By its ontological coverage, we can claim that the CD
Player displays relatively high conceptual fitness to its use
cases. One possible discrepancy with regard to potential
actual use of the application is the prominence of the
Playlist concept relative to the concepts of Current Track
and Current Disc. Because the use cases were derived from
help files, more complicated features, like managing
playlists, required more steps to describe, producing a
larger silhouette on the ontology. The concepts not covered
in the use cases concerned different play modes of the CD
player, such as Continuous Order.

MICROSOFT NOTEPAD
MS Notepad is a text editor that comes with the Windows
operating systems. Notepad accepts a variety of types of
text files in different encodings and displays and prints a
document using application settings that are applied to
every text file read by Notepad. These display and print
settings do not get saved with the program. It also support
a Log which is a code entered on the first line of a text file
so that the current day and time get printed with the
document.

Table 6 – MS Notepad Use Case Silhouette Statistics

Source
Help files associated with
application

of use cases: 32
concepts invoked: 66
Total # concepts 82
Ontological
coverage:

80%

Table 7 – Notepad Sample Use Cases and their Ontological Coverage

Use Case Name # Unique
Concepts

%
Coverage

Adding a Log 7 9 %
Change Page Setup 11 13 %
Changing Fonts 10 12 %
Creating Headers and Footers 25 30 %
Editing Text 2 2 %
Print Document 2 2 %

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

Table 8 – Notepad Frequency of Concept appearance in use case set.
Core concepts are italicized.

Name
Times Accessed in Use

Case Set

% of Total # of
concepts
invoked

Document 16 10%
Text 15 9%
Current File 13 8%
Page Setup 12 7%
[Configuration] 4 2%
Case 4 2%
Orientation 4 2%
[Header/Footer
Code] 4 2%

The use cases for Notepad also showed Notepad to have a
high conceptual fitness based on its ontological coverage.
The concepts not accessed by Notepad included types of
paper, the Character concept, and the File concept,
presumably because they were too low of a level to
articulate in a use case. A surprising result of the Notepad
Use Case silhouette was the prominence of printing
features, such as setting Header and Footer parameters,
and display features, such as changing the font. Both of
these features seem extremely important in the silhouette
but, like Playlists in the CD player, are known to be
subordinate to the main functions of Notepad which
concern text editing.

PROTOCOL CALCULATOR / CALENDAR
The Protocol Calendar / Calculator is a device that
implements an alarm clock, calendar, calculator, currency
exchange calculator, and countdown timer. The clock also
allows its users to view times in sixteen different time
zones.

Table 9 – Calendar / Calculator Use Case Silhouette Statistics

Source Instructions included with device
of use cases: 11
concepts invoked: 48
Total # concepts 48
Ontological coverage: 100%

Table 10 – Calculator / Calendar Sample Use Cases and their
Ontological Coverage

Use Case Name # Unique
Concepts

%
Coverage

Setting the Calendar 5 10 %
Set Count-Down Timer 4 8 %
Set Alarm 5 10 %
Calculator 11 23 %
Set Keytone On / Off 1 2 %

Table 11 – Calculator / Calendar Frequency of Concept appearance in
use case set. Core concepts are italicized.

Name
Times
Accessed

% of
Total #

of
concepts
invoked

[Time Zone] 16 13%
Count Down Timer 9 8%

Name
Times
Accessed

% of
Total #

of
concepts
invoked

Hour 7 6%
Minute 7 6%
Second 7 6%
[Mathematical Operation] 6 5%

The Calendar / Calculator, by ontological coverage
measures showed the highest conceptual fitness to its use
cases. From the list of concepts we can see that the
device’s primary function seems to be timekeeping. Even
so, the calculator use case has a large silhouette on the
ontology but mainly because it encapsulates all the basic
mathematical operations that one would expect to find on a
basic calculator.

DISCUSSION
We have shown how use case silhouetting can provide a
reasonable first approximation of an application’s
conceptual fitness by measuring the ontological coverage
of those use cases. This analysis is clearly sensitive to use
case selection and, to a lesser extent, the fidelity of the
ontology excavated from the application. In the examples
above, the use cases were obtained from the help files of
the applications, the ontological coverage was likely to be
very complete as they have to assume that all the functions
will be used. This critique does not invalidate the potential
benefits of this analysis. A complete analysis would simply
determine use case frequency to modify the results – the
number of times that a user would invoke the use case
within a specified time frame. For the CD Player, one
would expect the basic use cases such as Play Track to be
used more often than Playlist management use cases.

ENGINEERING FITNESS INTO APPLICATIONS
In the introduction, we proposed the problem of evolving
computing applications so that their fitness improves over
time without a corresponding increase in complexity. We
now argue, using a thought experiment, how the
computing ecosystem framework and its subordinate
concepts – use niches, use potentials, and activation cost –
can characterize both system fitness and how that fitness
can decrease or increase over time.

A thought experiment for understanding use niches is to
imagine a suite of desktop productivity tools (e.g.
Microsoft Office), not as a collection of programs, but as a
collection of functions unbundled from their arbitrary
boundaries. Instead of a word processor, a database tool, a
spreadsheet application, and so on, there are simply a
collection of functions for processing text, managing
graphics, saving files, copying objects, sorting data, and so
on. Now imagine some environment that uses these tools,
like an accounting office or academic department. Over a
year, we could collect data on the use of these functions
and eventually we would have a characteristic profile that

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

could represent the fitness of all of the productivity suite’s
features relative to that computing ecosystem.

With a detailed analysis of the computing ecosystem, one
might discover unused use potentials and untapped niches.
For example, prior to Microsoft Powerpoint, people would
develop presentations by handwriting them on slides or
printing slides using some word processor. This showed
that a use niche existed for applying computing to the
problem of presentation development with a high use
potential but few existing features that could take
advantage of this. When Powerpoint was released, it
supplied features that displayed a high fitness for the use
niche of presentation creation that the word processor’s
features could no longer occupy that niche.

Thus, with a hypothetical profile of an idealized
application with high conceptual fitness coupled with
knowledge of potential features that will be required in the
future, one could imagine reengineering applications to
contain only those features that have some fitness in the
ecosystem to reduce perceptions of bloat and to reduce
unnecessary complexity in the system. We can imagine
that if someone wanted their product to remain competitive
against similar applications, they would want to engineer
the architecture to support features that may be required in
the future or to reduce the activation cost of frequently
used features to improve that application’s fitness.

While we have not shown in this work that such an
endeavor actually guarantees a system with a high
conceptual fitness or that this fitness translates to
usefulness for the users, the biological metaphor does
afford some understanding of how the usefulness of a
computing application can be characterized in terms of its
conceptual fitness to a use context.

CONCLUSION
We have described the problem of engineering useful
computing applications in an evolving environment. To
address this problem, we have presented a number of ideas
in this paper:

• Usefulness is a desirable property of computing
applications and is the extent to which an application
succeeds in assisting a set of users to achieve a set of
goals, relative to the amount of effort required to engage
those features.

• Computing applications are designed to solve problems
for specific problem domains. Thus, the usefulness of a
computing application is a function of its conceptual
fitness to a domain.

• A use context consists of the external physical (or
virtual) environment that contains the computing
application and its users, the goals that the combined
computing application/user system wishes to achieve,

and the various nuances that govern the operation and
performance of both environment and goal completion.

• A computing ecosystem is a set of use contexts that use
computing to fulfill goals, contained within an
environment of interest.

• A use niche is a bounded space in a computing
ecosystem that contains a subset of the ecosystem’s
resources, expressed as use potentials, and goals.

• A use potential is the amount of available energy or
effort for activating the services of a feature.

• Activation cost is the amount of effort required to
activate a feature

• Fitness within a use niche requires that the activation
cost of a feature be less than the use potential.

• Use cases offer a method for characterizing the
requirements of a use niche or a computing ecosystem.

• Use case silhouetting and ontological coverage can be
used to measure the conceptual fitness of an application
relative to a use niche or computing ecosystem.

Our future work will include the development of methods
for characterizing computing ecosystems and their use
niches from a combination of requirements engineering
and ethnographic techniques, studies to correlate
application fitness to actual use, and the development of a
ontology-driven, component architecture that will allow
ontological grafting and pruning to improve application
fitness to an evolving computing ecosystem.

ACKNOWLEDGMENTS
We thank Colin Potts for his invaluable guidance and
support on the formulation of this work.

REFERENCES
1. Arango, G. and Prieto-Díaz, R. Domain Analysis

Concepts and Research directions. in Priéto-Diaz, R.
and Arango, G. eds. Domain Analysis and Software
Systems Modeling, IEEE Computer Society Press, Los
Alamitos, CA, 1991, 9-26.

2. Booch, G. Object-Oriented Analysis and Design. The
Benjamin/Cummings Publishing Company, Inc.,
Reading, MA, 1994.

3. Booch, G., Rumbaugh, J. and Jacobson, I. The Unified
Modeling Language User Guide. Addison-Wesley,
Reading, MA, 1999.

4. Borgatti, S.P., Everett, M.G. and Freeman, L.C.
UCINET 5.0 Version 1.00. Analytic Technologies,
1999.

5. Brachman, R.J., McGuinness, D.L., Patel-Schneider,
P.F. and Resnick, L.A. Living with CLASSIC: When
and How to Use a KL-ONE-Like Language. in Sowa, J.
ed. Principles of Semantic Networks, Morgan
Kaufmann Publishers, 1990.

Idris Hsi, "Measuring the Conceptual Fitness of a Computing Application in a Computing Ecosystem", Proceedings of the ACM Workshop on Interdisciplinary
Software Engineering Research (WISER’04) at the 12 Annual Foundations of Software Engineering (FSE-12), November 5, 2004, pp. 27-36.

6. Brooks, F. The Mythical Man-Month. Addison-Wesley,
Reading, MA, 1995.

7. Card, S.K., Moran, T.P. and Newell, A. The
Psychology of Human-Computer Interaction. Lawrence
Erlbaum Associates, Hillsdale, NJ, 1983.

8. Chen, P.P. The Entity-Relationship Model - Toward a
Unified View of Data. ACM Transactions on Database
Systems, 1 (1). 9-36.

9. Dawkins, R. The Blind Watchmaker. W.W. Norton and
Company, New York, 1987.

10. Dawkins, R. The Selfish Gene. Oxford University
Press, New York, 1989.

11. Elmasri, R. and Navathe, S.B. Fundamentals of
Database Systems. Addison-Wesley, New York, NY,
1994.

12. Falbo, R.d.A., Guizzardi, G. and Duarte, K.C., An
Ontological Approach to Domain Engineering. in
International Conference on Software Engineering and
Knowledge Engineering (SEKE'02), (Ischia, Italy,
2002), ACM Press, 351-358.

13. Halpin, T. Conceptual Schema and Relational
Database Design. Prentice Hall, Sydney, AUS, 1995.

14. Hsi, I. Analyzing the Conceptual Coherence of
Computing Applications Through Ontological
Excavation, Thesis Proposal, College of Computing,
Georgia Institute of Technology, Atlanta, 2004.

15. Hsi, I., Potts, C. and Moore, M., Ontological
Excavation: Unearthing the core concepts of the
application. in Working Conference on Reverse
Engineering, (Victoria, Canada, 2003), IEEE
Computer Society, 354-352.

16. Jacobson, I., Booch, G. and Rumbaugh, J. The Unified
Software Development Process. Addison-Wesley,
Reading, MA, 1999.

17. Kohl, H. From Archetype to Zetigeist. Little, Brown
and Company, Boston, MA, 1992.

18. Laurel, B. (ed.), The Art of Human-Computer Interface
Design. Addison-Wesley, Reading, MA, 1990.

19. Lehman, M., Laws of software evolution revisited. in
5th European Workshop on Software Process
Technology, (Nancy, France, 1996), 108-124.

20. Lehman, M. and Belady, L. Program Evolution:
Processes of Software Change. Academic Press,inc.,
Orlando, 1985.

21. Mackenzie, A., Ball, A.S. and Virdee, S.R. Instant
Notes in Ecology. BIOS Scientific Publishers Ltd,
Oxford, UK, 1998.

22. Memon, A., Banerjee, I. and Nagarajan, A., GUI
Ripping: Reverse Engineering of Graphical User
Interfaces for Testing. in Tenth Working Conference on
Reverse Engineering, (Victoria, BC Canada, 2003),
IEEE Computer Society, 260-269.

23. Nielsen, J. Usability Engineering. Academic Press,
Cambridge, MA, 1993.

24. Nijssen, G.M. and Halpin, T.A. Conceptual Schema
and Relational Database Design. Prentice Hall, New
York, 1989.

25. Norman, D. The Invisible Computer. MIT Press,
Cambridge, MA, 1998.

26. Norman, D.A. The Design of Everyday Things.
Doubleday, New York, NY, 1988.

27. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W. Object-oriented Modeling and Design.
Prentice-Hall, Englewood Cliffs, NJ, 1991.

28. Verheijen, G.M.A. and Van Bekkum, J. NIAM: An
Information Analysis Method. in Olle, T.W., Sol, H.G.
and Verrijn-Stuart, A.A. eds. Information Systems
Design Methodologies, North-Holland Publishing
Company, Amsterdam, 1982.

29. Wand, Y., Storey, V.C. and Weber, R. An Ontological
Analysis of the Relationship Construct in Conceptual
Modeling. ACM Transactions on Database Systems, 24
(4). 494-528.

30. Wasserman, S. and Faust, K. Social Network Analysis.
Cambridge University Press, Cambridge, 1994.

