
Acid Manual

Phil Winterbottom
philw@plan9.bell-labs.com

Introduction

Acid is a general purpose, source level symbolic debugger. The debugger is built
around a simple command language. The command language, distinct from the lan
guage of the program being debugged, provides a flexible user interface that allows the
debugger interface to be customized for a specific application or architecture. More
over, it provides an opportunity to write test and verification code independently of a
program�s source code. Acid is able to debug multiple processes provided they share a
common set of symbols, such as the processes in a threaded program.

Like other language-based solutions, Acid presents a poor user interface but pro
vides a powerful debugging tool. Application of Acid to hard problems is best
approached by writing functions off-line (perhaps loading them with the include
function or using the support provided by acme(1)), rather than by trying to type intri
cate Acid operations at the interactive prompt.

Acid allows the execution of a program to be controlled by operating on its state
while it is stopped and by monitoring and controlling its execution when it is running.
Each program action that causes a change of execution state is reflected by the execu
tion of an Acid function, which may be user defined. A library of default functions pro
vides the functionality of a normal debugger.

A Plan 9 process is controlled by writing messages to a control file in the proc(3)
file system. Each control message has a corresponding Acid function, which sends the
message to the process. These functions take a process id (pid) as an argument. The
memory and text file of the program may be manipulated using the indirection opera
tors. The symbol table, including source cross reference, is available to an Acid pro
gram. The combination allows complex operations to be performed both in terms of
control flow and data manipulation.

Input format and whatis

Comments start with // and continue to the end of the line. Input is a series of
statements and expressions separated by semicolons. At the top level of the inter
preter, the builtin function print is called automatically to display the result of all
expressions except function calls. A unary + may be used as a shorthand to force the
result of a function call to be printed.

Also at the top level, newlines are treated as semicolons by the parser, so semi
colons are unnecessary when evaluating expressions.

When Acid starts, it loads the default program modules, enters interactive mode,
and prints a prompt. In this state Acid accepts either function definitions or statements
to be evaluated. In this interactive mode statements are evaluated immediately, while
function definitions are stored for later invocation.

The whatis operator can be used to report the state of identifiers known to the
interpreter. With no argument, whatis reports the name of all defined Acid functions;

 2

when supplied with an identifier as an argument it reports any variable, function, or type
definition associated with the identifier. Because of the way the interpreter handles
semicolons, the result of a whatis statement can be returned directly to Acid without
adding semicolons. A syntax error or interrupt returns Acid to the normal evaluation
mode; any partially evaluated definitions are lost.

Using the Library Functions

After loading the program binary, Acid loads the portable and architecture-specific
library functions that form the standard debugging environment. These files are Acid
source code and are human-readable. The following example uses the standard debug
ging library to show how language and program interact:

% acid /bin/ls
/bin/ls:mips plan 9 executable

/sys/lib/acid/port
/sys/lib/acid/mips
acid: new()
75721: system call _main ADD $-0x14,R29
75721: breakpoint main+0x4 MΧVW R31,0x0(R29)
acid: bpset(ls)
acid: cont()
75721: breakpoint ls ADD $-0x16c8,R29
acid: stk()
At pc:0x0000141c:ls /sys/src/cmd/ls.c:87
ls(s=0x0000004d,multi=0x00000000) /sys/src/cmd/ls.c:87

called from main+0xf4 /sys/src/cmd/ls.c:79
main(argc=0x00000000,argv=0x7ffffff0) /sys/src/cmd/ls.c:48

called from _main+0x20 /sys/src/libc/mips/main9.s:10
acid: PC
0xc0000f60
acid: *PC
0x0000141c
acid: ls
0x0000141c

The function new() creates a new process and stops it at the first instruction. This
change in state is reported by a call to the Acid function stopped, which is called by
the interpreter whenever the debugged program stops. Stopped prints the status line
giving the pid, the reason the program stopped and the address and instruction at the
current PC. The function bpset makes an entry in the breakpoint table and plants a
breakpoint in memory. The cont function continues the process, allowing it to run
until some condition causes it to stop. In this case the program hits the breakpoint
placed on the function ls in the C program. Once again the stopped routine is called
to print the status of the program. The function stk prints a C stack trace of the cur
rent process. It is implemented using a builtin Acid function that returns the stack trace
as a list; the code that formats the information is all written in Acid. The Acid variable
PC holds the address of the cell where the current value of the processor register PC is
stored. By indirecting through the value of PC the address where the program is
stopped can be found. All of the processor registers are available by the same mecha
nism.

Types

An Acid variable has one of four types: integer, float, list, or string. The type of a
variable is inferred from the type of the right-hand side of the assignment expression
which last set its value. Referencing a variable that has not yet been assigned draws a
"used but not set" error. Many of the operators may be applied to more than one type;

 3

for these operators the action of the operator is determined by the types of its
operands. The action of each operator is defined in the Expressions section of this man
ual.

Variables

Acid has three kinds of variables: variables defined by the symbol table of the
debugged program, variables that are defined and maintained by the interpreter as the
debugged program changes state, and variables defined and used by Acid programs.

Some examples of variables maintained by the interpreter are the register pointers
listed by name in the Acid list variable registers, and the symbol table listed by
name and contents in the Acid variable symbols.

The variable pid is updated by the interpreter to select the most recently created
process or the process selected by the setproc builtin function.

Formats

In addition to a type, variables have formats. The format is a code letter that deter
mines the printing style and the effect of some of the operators on that variable. The
format codes are derived from the format letters used by db(1). By default, symbol table
variables and numeric constants are assigned the format code X, which specifies 32-bit
hexadecimal. Printing a variable with this code yields the output 0x00123456. The
format code of a variable may be changed from the default by using the builtin function
fmt. This function takes two arguments, an expression and a format code. After the
expression is evaluated the new format code is attached to the result and forms the
return value from fmt. The backslash operator is a short form of fmt. The format
supplied by the backslash operator must be the format character rather than an expres
sion. If the result is assigned to a variable the new format code is maintained in the
variable. For example:

acid: x=10
acid: print(x)
0x0000000a
acid: x = fmt(x, 'D')
acid: print(x, fmt(x, 'X'))
10 0x0000000a
acid: x
10
acid: x\o
12

The supported format characters are:

o Print two-byte integer in octal.

Χ Print four-byte integer in octal.

q Print two-byte integer in signed octal.

Q Print four-byte integer in signed octal.

B Print four-byte integer in binary.

d Print two-byte integer in signed decimal.

D Print four-byte integer in signed decimal.

Y Print eight-byte integer in signed decimal.

Z Print eight-byte integer in unsigned decimal.

x Print two-byte integer in hexadecimal.

X Print four-byte integer in hexadecimal.

Y Print eight-byte integer in hexadecimal.

 4

u Print two-byte integer in unsigned decimal.

U Print four-byte integer in unsigned decimal.

f Print single-precision floating point number.

F Print double-precision floating point number.

g Print a single precision floating point number in string format.

G Print a double precision floating point number in string format.

b Print byte in hexadecimal.

c Print byte as an ASCII character.

C Like c, with printable ASCII characters represented normally and others
printed in the form \xnn.

s Interpret the addressed bytes as UTF characters and print successive charac
ters until a zero byte is reached.

r Print a two-byte integer as a rune.

R Print successive two-byte integers as runes until a zero rune is reached.

i Print as machine instructions.

I As i above, but print the machine instructions in an alternate form if possi
ble: sunsparc and mipsco reproduce the manufacturers� syntax.

a Print the value in symbolic form.

Complex types

Acid permits the definition of the layout of memory. The usual method is to use
the -a flag of the compilers to produce Acid-language descriptions of data structures
(see 2c(1)) although such definitions can be typed interactively. The keywords
complex, adt, aggr, and union are all equivalent; the compiler uses the synonyms
to document the declarations. A complex type is described as a set of members, each
containing a format letter, an offset in the structure, and a name. For example, the C
structure

struct List {
int type;
struct List *next;

};

is described by the Acid statement

complex List {
'D' 0 type;
'X' 4 next;

};

Scope

Variables are global unless they are either parameters to functions or are declared
as local in a function body. Parameters and local variables are available only in the
body of the function in which they are instantiated. Variables are dynamically bound: if
a function declares a local variable with the same name as a global variable, the global
variable will be hidden whenever the function is executing. For example, if a function f
has a local called main, any function called below f will see the local version of main,
not the external symbol.

 5

Addressing

Since the symbol table specifies addresses, to access the value of program vari
ables an extra level of indirection is required relative to the source code. For consis
tency, the registers are maintained as pointers as well; Acid variables with the names of
processor registers point to cells holding the saved registers.

The location in a file or memory image associated with an address is calculated
from a map associated with the file. Each map contains one or more quadruples (t, b, e,
f), defining a segment named t (usually text, data, regs, or fpregs) mapping
addresses in the range b through e to the part of the file beginning at offset f. The
memory model of a Plan 9 process assumes that segments are disjoint. There can be
more than one segment of a given type (e.g., a process may have more than one text
segment) but segments may not overlap. An address a is translated to a file address by
finding a segment for which b + a < e; the location in the file is then address + f � b.

Usually, the text and initialized data of a program are mapped by segments called
text and data. Since a program file does not contain bss, stack, or register data,
these data are not mapped by the data segment. The text segment is mapped similarly
in the memory image of a normal (i.e., non-kernel) process. However, the segment
called *data maps memory from the beginning to the end of the program�s data
space. This region contains the program�s static data, the bss, the heap and the stack.
A segment called *regs maps the registers; *fpregs maps the floating point regis
ters.

Sometimes it is useful to define a map with a single segment mapping the region
from 0 to 0xFFFFFFFF; such a map allows the entire file to be examined without address
translation. The builtin function map examines and modifies Acid�s map for a process.

Name Conflicts

Name conflicts between keywords in the Acid language, symbols in the program,
and previously defined functions are resolved when the interpreter starts up. Each name
is made unique by prefixing enough $ characters to the front of the name to make it
unique. Acid reports a list of each name change at startup. The report looks like this:

/bin/sam: mips plan 9 executable
/lib/acid/port
/lib/acid/mips
Symbol renames:

append=$append T/0xa4e40
acid:

The symbol append is both a keyword and a text symbol in the program. The message
reports that the text symbol is now named $append.

Expressions

Operators have the same binding and precedence as in C. For operators of equal
precedence, expressions are evaluated from left to right.

Boolean expressions

If an expression is evaluated for a boolean condition the test performed depends
on the type of the result. If the result is of integer or floating type the result is true if the
value is non-zero. If the expression is a list the result is true if there are any members
in the list. If the expression is a string the result is true if there are any characters in
the string.

 6

primary-expression:
identifier
identifier : identifier
constant
(expression)
{ elist }

elist:
expression
elist , expression

An identifier may be any legal Acid variable. The colon operator returns the address of
parameters or local variables in the current stack of a program. For example:

*main:argc

prints the number of arguments passed into main. Local variables and parameters can
only be referenced after the frame has been established. It may be necessary to step a
program over the first few instructions of a breakpointed function to properly set the
frame.

Constants follow the same lexical rules as C. A list of expressions delimited by
braces forms a list constructor. A new list is produced by evaluating each expression
when the constructor is executed. The empty list is formed from {}.

acid: x = 10
acid: l = { 1, x, 2\D }
acid: x = 20
acid: l
{0x00000001 , 0x0000000a , 2 }

Lists

Several operators manipulate lists.

list-expression:
primary-expression
head primary-expression
tail primary-expression
append expression , primary-expression
delete expression , primary-expression

The primary-expression for head and tail must yield a value of type list. If there are
no elements in the list the value of head or tail will be the empty list. Otherwise
head evaluates to the first element of the list and tail evaluates to the rest.

acid: head {}
{}
acid: head {1, 2, 3, 4}
0x00000001
acid: tail {1, 2, 3, 4}
{0x00000002 , 0x00000003 , 0x00000004 }

The first operand of append and delete must be an expression that yields a list.
Append places the result of evaluating primary-expression at the end of the list. The
primary-expression supplied to delete must evaluate to an integer; delete removes
the n�th item from the list, where n is integral value of primary-expression. List indices
are zero-based.

 7

acid: append {1, 2}, 3
{0x00000001 , 0x00000002 , 0x00000003 }
acid: delete {1, 2, 3}, 1
{0x00000001 , 0x00000003 }

Assigning a list to a variable copies a reference to the list; if a list variable is copied
it still points at the same list. To copy a list, the elements must be copied piecewise
using head and append.

Χperators

postfix-expression:
list-expression
postfix-expression [expression]
postfix-expression (argument-list)
postfix-expression . tag
postfix-expression -> tag
postfix-expression ++
postfix-expression --

argument-list:
expression
argument-list , expression

The [expression] operator performs indexing. The indexing expression must result in
an expression of integer type, say n. The operation depends on the type of postfix-
expression. If the postfix-expression yields an integer it is assumed to be the base
address of an array in the memory image. The index offsets into this array; the size of
the array members is determined by the format associated with the postfix-expression.
If the postfix-expression yields a string the index operator fetches the n�th character of
the string. If the index points beyond the end of the string, a zero is returned. If the
postfix-expression yields a list then the indexing operation returns the n�th item of the
list. If the list contains less than n items the empty list {} is returned.

The ++ and -- operators increment and decrement integer variables. The amount
of increment or decrement depends on the format code. These postfix operators return
the value of the variable before the increment or decrement has taken place.

unary-expression:
postfix-expression
++ unary-expression
-- unary-expression

unary-operator: one of
* @ + - ~ !

The operators * and @ are the indirection operators. @ references a value from the text
file of the program being debugged. The size of the value depends on the format code.
The * operator fetches a value from the memory image of a process. If either operator
appears on the left-hand side of an assignment statement, either the file or memory will
be written. The file can only be modified when Acid is invoked with the -w option. The
prefix ++ and -- operators perform the same operation as their postfix counterparts
but return the value after the increment or decrement has been performed. Since the ++
and * operators fetch and increment the correct amount for the specified format, the
following function prints correct machine instructions on a machine with variable length
instructions, such as the 68020 or 386:

 8

defn asm(addr)
{

addr = fmt(addr, 'i');
loop 1, 10 do

print(*addr++, "\n");
}

The operators ~ and ! perform bitwise and logical negation respectively. Their operands
must be of integer type.

cast-expression:
unary-expression
unary-expression \ format-char
(complex-name) unary-expression

A unary expression may be preceded by a cast. The cast has the effect of associating the
value of unary-expression with a complex type structure. The result may then be deref
erenced using the . and -> operators.

An Acid variable may be associated with a complex type to enable accessing the
type�s members:

acid: complex List {
'D' 0 type;
'X' 4 next;

};
acid: complex List lhead
acid: lhead.type
10
acid: lhead = ((List)lhead).next
acid: lhead.type
-46

Note that the next field cannot be given a complex type automatically.

When entered at the top level of the interpreter, an expression of complex type is
treated specially. If the type is called T and an Acid function also called T exists, then
that function will be called with the expression as its argument. The compiler options
-a and -aa will generate Acid source code defining such complex types and functions;
see 2c(1).

A unary-expression may be qualified with a format specifier using the \ operator.
This has the same effect as passing the expression to the fmt builtin function.

multiplicative-expression:
cast-expression
multiplicative-expression * multiplicative-expression
multiplicative-expression / multiplicative-expression
multiplicative-expression % multiplicative-expression

These operate on integer and float types and perform the expected operations: * multi
plication, / division, % modulus.

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

These operators perform as expected for integer and float operands. Unlike in C, + and
- do not scale the addition based on the format of the expression. This means that
i=i+1 will always add 1 but i++ will add the size corresponding to the format stored
with i. If both operands are of either string or list type then addition is defined as

 9

concatenation. Subtraction is undefined for these two types.

shift-expression:
additive-expression
shift-expression << additive-expression
shift-expression >> additive-expression

The >> and << operators perform bitwise right and left shifts respectively. Both require
operands of integer type.

relational-expression:
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

equality-expression:
relational-expression
relational-expression == equality-expression
relational-expression != equality-expression

The comparison operators are < (less than), > (greater than), <= (less than or equal to),
>= (greater than or equal to), == (equal to) and != (not equal to). The result of a com
parison is 0 if the condition is false, otherwise 1. The relational operators can only be
applied to operands of integer and float type. The equality operators apply to all types.
Comparing mixed types is legal. Mixed integer and float compare on the integral value.
Other mixtures are always unequal. Two lists are equal if they have the same number of
members and a pairwise comparison of the members results in equality.

AND-expression:
equality-expression
AND-expression & equality-expression

XΧR-expression:
AND-expression
XΧR-expression ^ AND-expression

ΧR-expression:
XΧR-expression
ΧR-expression | XΧR-expression

These operators perform bitwise logical operations and apply only to the integer type.
The operators are & (logical and), ^ (exclusive or) and | (inclusive or).

logical-AND-expression:
ΧR-expression
logical-AND-expression && ΧR-expression

logical-ΧR-expression:
logical-AND-expression
logical-ΧR-expression || logical-AND-expression

The && operator returns 1 if both of its operands evaluate to boolean true, otherwise 0.
The || operator returns 1 if either of its operands evaluates to boolean true, otherwise
0.

 10

Statements

if expression then statement else statement
if expression then statement

The expression is evaluated as a boolean. If its value is true the statement after the
then is executed, otherwise the statement after the else is executed. The else por
tion may be omitted.

while expression do statement

In a while loop, the statement is executed while the boolean expression evaluates true.

loop startexpr, endexpr do statement

The two expressions startexpr and endexpr are evaluated prior to loop entry. Statement
is evaluated while the value of startexpr is less than or equal to endexpr. Both expres
sions must yield integer values. The value of startexpr is incremented by one for each
loop iteration. Note that there is no explicit loop variable; the expressions are just val
ues.

return expression

return terminates execution of the current function and returns to its caller. The
value of the function is given by expression. Since return requires an argument, nil-
valued functions should return the empty list {}.

local variable

The local statement creates a local instance of variable, which exists for the duration
of the instance of the function in which it is declared. Binding is dynamic: the local vari
able, rather than the previous value of variable, is visible to called functions. After a
return from the current function the previous value of variable is restored.

If Acid is interrupted, the values of all local variables are lost, as if the function
returned.

defn function-name (parameter-list) body

parameter-list:
variable
parameter-list , variable

body:
{ statement }

Functions are introduced by the defn statement. The definition of parameter names
suppresses any variables of the same name until the function returns. The body of a
function is a list of statements enclosed by braces.

Code variables

Acid permits the delayed evaluation of a parameter to a function. The parameter
may then be evaluated at any time with the eval operator. Such parameters are called
code variables and are defined by prefixing their name with an asterisk in their declara
tion.

For example, this function wraps up an expression for later evaluation:

 11

acid: defn code(*e) { return e; }
acid: x = code(v+atoi("100")\D)
acid: print(x)
(v+atoi("100"))\D;
acid: eval x
<stdin>:5: (error) v used but not set
acid: v=5
acid: eval x
105

Source Code Management

Acid provides the means to examine source code. Source code is represented by
lists of strings. Builtin functions provide mapping from address to lines and vice-versa.
The default debugging environment has the means to load and display source files.

Builtin Functions

The Acid interpreter has a number of builtin functions, which cannot be redefined.
These functions perform machine- or operating system-specific functions such as sym
bol table and process management. The following section presents a description of
each builtin function. The notation {} is used to denote the empty list, which is the
default value of a function that does not execute a return statement. The type and
number of parameters for each function are specified in the description; where a param
eter can be of any type it is specified as type item.

integer access(string) Check if a file can be read

Access returns the integer 1 if the file name in string can be read by the builtin
functions file, readfile, or include, otherwise 0. A typical use of this func
tion is to follow a search path looking for a source file; it is used by findsrc.

if access("main.c") then
return file("main.c");

float atof(string) Convert a string to float

atof converts the string supplied as its argument into a floating point number.
The function accepts strings in the same format as the C function of the same
name. The value returned has the format code f. atof returns the value 0.0 if it
is unable to perform the conversion.

acid: +atof("10.4e6")
1.04e+07

integer atoi(string) Convert a string to an integer

atoi converts the argument to an integer value. The function accepts strings in
the same format as the C function of the same name. The value returned has the
format code D. atoi returns the integer 0 if it is unable to perform a conversion.

acid: +atoi("-1255")
-1255

{} error(string) Generate an interpreter error

error generates an error message and returns the interpreter to interactive
mode. If an Acid program is running, it is aborted. Processes being debugged are
not affected. The values of all local variables are lost. error is commonly used to
stop the debugger when some interesting condition arises in the debugged pro
gram.

 12

while 1 do {
step();
if *main != @main then

error("memory corrupted");
}

list file(string) Read the contents of a file into a list

file reads the contents of the file specified by string into a list. Each element in
the list is a string corresponding to a line in the file. file breaks lines at the new
line character, but the newline characters are not returned as part each string.
file returns the empty list if it encounters an error opening or reading the data.

acid: print(file("main.c")[0])
#include<u.h>

integer filepc(string) Convert source address to text address

filepc interprets its string argument as a source file address in the form of a file
name and line offset. filepc uses the symbol table to map the source address
into a text address in the debugged program. The integer return value has the for
mat X. filepc returns an address of -1 if the source address is invalid. The
source file address uses the same format as acme(1). This function is commonly
used to set breakpoints from the source text.

acid: bpset(filepc("main:10"))
acid: bptab()

0x00001020 usage ADD $-0xc,R29

item fmt(item,fmt) Set print, @ and * formats

fmt evaluates the expression item and sets the format of the result to fmt. The
format of a value determines how it will be printed and what kind of object will be
fetched by the * and @ operators. The \ operator is a short-hand form of the fmt
builtin function. The fmt function leaves the format of the item unchanged.

acid: main=fmt(main, 'i') // as instructions
acid: print(main\X, "\t", *main)
0x00001020 ADD $-64,R29

list fnbound(integer) Find start and end address of a function

fnbound interprets its integer argument as an address in the text of the
debugged program. fnbound returns a list containing two integers correspond
ing to the start and end addresses of the function containing the supplied address.
If the integer address is not in the text segment of the program then the empty list
is returned. fnbound is used by next to detect stepping into new functions.

acid: print(fnbound(main))
{0x00001050, 0x000014b8}

{} follow(integer) Compute follow set

The follow set is defined as the set of program counter values that could result
from executing an instruction. follow interprets its integer argument as a text
address, decodes the instruction at that address and, with the current register set,
builds a list of possible next program counter values. If the instruction at the speci
fied address cannot be decoded follow raises an error. follow is used to plant
breakpoints on all potential paths of execution. The following code fragment plants
breakpoints on top of all potential following instructions.

 13

lst = follow(*PC);
while lst do
{

*head lst = bpinst;
lst = tail lst;

}

{} include(string) Take input from a new file

include opens the file specified by string and uses its contents as command
input to the interpreter. The interpreter restores input to its previous source when
it encounters either an end of file or an error. include can be used to incremen
tally load symbol table information without leaving the interpreter.

acid: include("/sys/src/cmd/acme/syms")

{} interpret(string) Take input from a string

interpret evaluates the string expression and uses its result as command input
for the interpreter. The interpreter restores input to its previous source when it
encounters either the end of string or an error. The interpret function allows
Acid programs to write Acid code for later evaluation.

acid: interpret("main+10;")
0x0000102a

string itoa(integer[,string]) Convert integer to string

itoa takes an integer argument and converts it into an ASCII string in the D for
mat. an alternate format string may be provided in the % style of print(2). This
function is commonly used to build rc command lines.

acid: rc("cat /proc/"+itoa(pid)+"/segment")
Stack 7fc00000 80000000 1
Data 00001000 00009000 1
Data 00009000 0000a000 1
Bss 0000a000 0000c000 1

{} kill(integer) Kill a process

kill writes a kill control message into the control file of the process specified by
the integer pid. If the process was previously installed by setproc it will be
removed from the list of active processes. If the integer has the same value as
pid, then pid will be set to 0. To continue debugging, a new process must be
selected using setproc. For example, to kill all the active processes:

while proclist do {
kill(head proclist);
proclist = tail proclist;

}

 14

list map(list) Set or retrieve process memory map

map either retrieves all the mappings associated with a process or sets a single
map entry to a new value. If the list argument is omitted then map returns a list of
lists. Each sublist has four values and describes a single region of contiguous
addresses in the memory or file image of the debugged program. The first entry is
the name of the mapping. If the name begins with * it denotes a map into the
memory of an active process. The second and third values specify the base and
end address of the region and the fourth number specifies the offset in the file cor
responding to the first location of the region. A map entry may be set by supplying
a list in the same format as the sublist described above. The name of the mapping
must match a region already defined by the current map. Maps are set automati
cally for Plan 9 processes and some kernels; they may need to be set by hand for
other kernels and programs that run on bare hardware.

acid: map({"text", _start, end, 0x30})

integer match(item,list) Search list for matching value

match compares each item in list using the equality operator == with item. The
item can be of any type. If the match succeeds the result is the integer index of the
matching value, otherwise -1.

acid: list={8,9,10,11}
acid: print(list[match(10, list)]\D)
10

{} newproc(string) Create a new process

newproc starts a new process with an argument vector constructed from string.
The argument vector excludes the name of the program to execute and each argu
ment in string must be space separated. A new process can accept no more than
512 arguments. The internal variable pid is set to the pid of the newly created
process. The new pid is also appended to the list of active processes stored in the
variable proclist. The new process is created then halted at the first instruc
tion, causing the debugger to call stopped. The library functions new and win
should be used to start processes when using the standard debugging environ
ment.

acid: newproc("-l .")
56720: system call _main ADD $-0x14,R29

string pcfile(integer) Convert text address to source file name

pcfile interprets its integer argument as a text address in the debugged pro
gram. The address and symbol table are used to generate a string containing the
name of the source file corresponding to the text address. If the address does not
lie within the program the string ?file? is returned.

acid: print("Now at ", pcfile(*PC), ":", pcline(*PC))
Now at ls.c:46

integer pcline(integer) Convert text address to source line number

pcline interprets its integer argument as a text address in the debugged pro
gram. The address and symbol table are used to generate an integer containing the
line number in the source file corresponding to the text address. If the address
does not lie within the program the integer 0 is returned.

acid: +file("main.c")[pcline(main)]
main(int argc, char *argv[])

 15

{} print(item,item,...) Print expressions

print evaluates each item supplied in its argument list and prints it to standard
output. Each argument will be printed according to its associated format character.
When the interpreter is executing, output is buffered and flushed every 5000 state
ments or when the interpreter returns to interactive mode. print accepts a maxi
mum of 512 arguments.

acid: print(10, "decimal ", 10\D, "octal ", 10\o)
0x0000000a decimal 10 octal 000000000012
acid: print({1, 2, 3})
{0x00000001 , 0x00000002 , 0x00000003 }
acid: print(main, main\a, "\t", @main\i)
0x00001020 main ADD $-64,R29

{} printto(string,item,item,...) Print expressions to file

printto offers a limited form of output redirection. The first string argument is
used as the path name of a new file to create. Each item is then evaluated and
printed to the newly created file. When all items have been printed the file is
closed. printto accepts a maximum of 512 arguments.

acid: printto("/env/foo", "hello")
acid: rc("echo -n $foo")
hello

string rc(string) Execute a shell command

rc evaluates string to form a shell command. A new command interpreter is
started to execute the command. The Acid interpreter blocks until the command
completes. The return value is the empty string if the command succeeds, other
wise the exit status of the failed command.

acid: rc("B "+itoa(-pcline(addr))+" "+pcfile(addr));

string readfile(string) Read file contents into a string

readfile takes the contents of the file specified by string and returns its con
tents as a new string. If readfile encounters a zero byte in the file, it termi
nates. If readfile encounters an error opening or reading the file then the
empty list is returned. readfile can be used to read the contents of device files
whose lines are not terminated with newline characters.

acid: ""+readfile("/dev/label")
helix

string reason(integer) Print cause of program stoppage

reason uses machine-dependent information to generate a string explaining why
a process has stopped. The integer argument is the value of an architecture depen
dent status register, for example CAUSE on the MIPS.

acid: print(reason(*CAUSE))
system call

integer regexp(pattern,string) Regular expression match

regexp matches the pattern string supplied as its first argument with the string
supplied as its second. If the pattern matches the result is the value 1, otherwise
0.

acid: print(regexp(".*bar", "foobar"))
1

 16

{} setproc(integer) Set debugger focus

setproc selects the default process used for memory and control operations. It
effectively shifts the focus of control between processes. The integer argument
specifies the pid of the process to look at. The variable pid is set to the pid of the
selected process. If the process is being selected for the first time its pid is added
to the list of active processes proclist.

acid: setproc(68382)
acid: procs()
>68382: Stopped at main+0x4 setproc(68382)

{} start(integer) Restart execution

start writes a start message to the control file of the process specified by the
pid supplied as its integer argument. start draws an error if the process is not
in the Stopped state.

acid: start(68382)
acid: procs()
>68382: Running at main+0x4 setproc(68382)

{} startstop(integer) Restart execution, block until stopped

startstop performs the same actions as a call to start followed by a call to
stop. The integer argument specifies the pid of the process to control. The pro
cess must be in the Stopped state. Execution is restarted, the debugger then
waits for the process to return to the Stopped state. A process will stop if a start
stop message has been written to its control file and any of the following condi
tions becomes true: the process executes or returns from a system call, the pro
cess generates a trap or the process receives a note. startstop is used to
implement single stepping.

acid: startstop(pid)
75374: breakpoint ls ADD $-0x16c8,R29

string status(integer) Return process state

status uses the pid supplied by its integer argument to generate a string
describing the state of the process. The string corresponds to the state returned
by the sixth column of the ps(1) command. A process must be in the Stopped
state to modify its memory or registers.

acid: ""+status(pid)
Stopped

{} stop(integer) Wait for a process to stop

stop writes a stop message to the control file of the process specified by the pid
supplied as its integer argument. The interpreter blocks until the debugged pro
cess enters the Stopped state. A process will stop if a stop message has been
written to its control file and any of the following conditions becomes true: the pro
cess executes or returns from a system call, the process generates a trap, the pro
cess is scheduled or the process receives a note. stop is used to wait for a pro
cess to halt before planting a breakpoint since Plan 9 only allows a process�s mem
ory to be written while it is in the Stopped state.

 17

defn bpset(addr) {
if (status(pid)!="Stopped") then {

print("Waiting...\n");
stop(pid);

}
...

}

list strace(pc,sp,linkreg) Stack trace

strace generates a list of lists corresponding to procedures called by the
debugged program. Each sublist describes a single stack frame in the active pro
cess. The first element is an integer of format X specifying the address of the
called function. The second element is the value of the program counter when the
function was called. The third and fourth elements contain lists of parameter and
automatic variables respectively. Each element of these lists contains a string with
the name of the variable and an integer value of format X containing the current
value of the variable. The arguments to strace are the current value of the pro
gram counter, the current value of the stack pointer, and the address of the link
register. All three parameters must be integers. The setting of linkreg is architec
ture dependent. On the MIPS linkreg is set to the address of saved R31, on the
SPARC to the address of saved R15. For the other architectures linkreg is not
used, but must point to valid memory.

acid: print(strace(*PC, *SP, linkreg))
{{0x0000141c, 0xc0000f74,
{{"s", 0x0000004d}, {"multi", 0x00000000}},
{{"db", 0x00000000}, {"fd", 0x000010a4},
{"n", 0x00000001}, {"i", 0x00009824}}}}

{} waitstop(integer) Wait for a process to stop

waitstop writes a waitstop message to the control file of the process specified
by the pid supplied as its integer argument. The interpreter will remain blocked
until the debugged process enters the Stopped state. A process will stop if a
waitstop message has been written to its control file and any of the following con
ditions becomes true: the process generates a trap or receives a note. Unlike
stop, the waitstop function is passive; it does not itself cause the program to
stop.

acid: waitstop(pid)
75374: breakpoint ls ADD $-0x16c8,R29

Library Functions

A standard debugging environment is provided by modules automatically loaded
when Acid is started. These modules are located in the directory /sys/lib/acid.
These functions may be overridden, personalized, or added to by code defined in
$home/lib/acid. The implementation of these functions can be examined using
the whatis operator and then modified during debugging sessions.

{} Bsrc(integer) Load editor with source

Bsrc interprets the integer argument as a text address. The text address is used
to produce a pathname and line number suitable for the B command to send to the
text editor sam(1) or acme(1). Bsrc builds an rc(1) command to invoke B, which
either selects an existing source file or loads a new source file into the editor. The
line of source corresponding to the text address is then selected. In the following
example stopped is redefined so that the editor follows and displays the source
line currently being executed.

 18

defn stopped(pid) {
pstop(pid);
Bsrc(*PC);

}

{} Fpr() Display double precision floating registers

For machines equipped with floating point, Fpr displays the contents of the float
ing point registers as double precision values.

acid: Fpr()
F0 0. F2 0.
F4 0. F6 0.
F8 0. F10 0.
...

{} Ureg(integer) Display contents of Ureg structure

Ureg interprets the integer passed as its first argument as the address of a kernel
Ureg structure. Each element of the structure is retrieved and printed. The size
and contents of the Ureg structure are architecture dependent. This function can
be used to decode the first argument passed to a notify(2) function after a process
has received a note.

acid: Ureg(*notehandler:ur)
status 0x3000f000
pc 0x1020
sp 0x7ffffe00
cause 0x00004002

...

{} acidinit() Interpreter startup

acidinit is called by the interpreter after all modules have been loaded at ini
tialization time. It is used to set up machine specific variables and the default
source path. acidinit should not be called by user code.

{} addsrcdir(string) Add element to source search path

addsrcdir interprets its string argument as a new directory findsrc should
search when looking for source code files. addsrcdir draws an error if the
directory is already in the source search path. The search path may be examined by
looking at the variable srcpath.

acid: rc("9fs fornax")
acid: addsrcpath("/n/fornax/sys/src/cmd")

{} asm(integer) Disassemble machine instructions

asm interprets its integer argument as a text address from which to disassemble
machine instructions. asm prints the instruction address in symbolic and hexadec
imal form, then prints the instructions with addressing modes. Up to twenty
instructions will be disassembled. asm stops disassembling when it reaches the
end of the current function. Instructions are read from the file image using the @
operator.

acid: asm(main)
main 0x00001020 ADD $-0x64,R29
main+0x4 0x00001024 MΧVW R31,0x0(R29)
main+0x8 0x00001028 MΧVW R1,argc+4(FP)
main+0xc 0x0000102c MΧVW $bin(SB),R1

 19

{} bpdel(integer) Delete breakpoint

bpdel removes a previously set breakpoint from memory. The integer supplied
as its argument must be the address of a previously set breakpoint. The break
point address is deleted from the active breakpoint list bplist, then the original
instruction is copied from the file image to the memory image so that the break
point is removed.

acid: bpdel(main+4)

{} bpset(integer) Set a breakpoint

bpset places a breakpoint instruction at the address specified by its integer argu
ment, which must be in the text segment. bpset draws an error if a breakpoint
has already been set at the specified address. A list of current breakpoints is main
tained in the variable bplist. Unlike in db(1), breakpoints are left in memory
even when a process is stopped, and the process must exist, perhaps by being cre
ated by either new or win, in order to place a breakpoint. (Db accepts breakpoint
commands before the process is started.) On the MIPS and SPARC architectures,
breakpoints at function entry points should be set 4 bytes into the function
because the instruction scheduler may fill JAL branch delay slots with the first
instruction of the function.

acid: bpset(main+4)

{} bptab() List active breakpoints

bptab prints a list of currently installed breakpoints. The list contains the break
point address in symbolic and hexadecimal form as well as the instruction the
breakpoint replaced. Breakpoints are not maintained across process creation using
new and win. They are maintained across a fork, but care must be taken to keep
control of the child process.

acid: bpset(ls+4)
acid: bptab()

0x00001420 ls+0x4 MΧVW R31,0x0(R29)

{} casm() Continue disassembly

casm continues to disassemble instructions from where the last asm or casm
command stopped. Like asm, this command stops disassembling at function
boundaries.

acid: casm()
main+0x10 0x00001030 MΧVW $0x1,R3
main+0x14 0x00001034 MΧVW R3,0x8(R29)
main+0x18 0x00001038 MΧVW $0x1,R5
main+0x1c 0x0000103c JAL Binit(SB)

{} cont() Continue program execution

cont restarts execution of the currently active process. If the process is stopped
on a breakpoint, the breakpoint is first removed, the program is single stepped,
the breakpoint is replaced and the program is then set executing. This may cause
stopped() to be called twice. cont causes the interpreter to block until the
process enters the Stopped state.

acid: cont()
95197: breakpoint ls+0x4 MΧVW R31,0x0(R29)

 20

{} dump(integer,integer,string) Formatted memory dump

dump interprets its first argument as an address, its second argument as a count
and its third as a format string. dump fetches an object from memory at the cur
rent address and prints it according to the format. The address is incremented by
the number of bytes specified by the format and the process is repeated count
times. The format string is any combination of format characters, each preceded by
an optional count. For each object, dump prints the address in hexadecimal, a
colon, the object and then a newline. dump uses mem to fetch each object.

acid: dump(main+35, 4, "X2bi")
0x00001043: 0x0c8fa700 108 143 lwc2 r0,0x528f(R4)
0x0000104d: 0xa9006811 0 0 swc3 r0,0x0(R24)
0x00001057: 0x2724e800 4 37 ADD $-0x51,R23,R31
0x00001061: 0xa200688d 6 0 NΧΧP
0x0000106b: 0x2710c000 7 0 BREAK

{} findsrc(string) Use source path to load source file

findsrc interprets its string argument as a source file. Each directory in the
source path is searched in turn for the file. If the file is found, the source text is
loaded using file and stored in the list of active source files called srctext.
The name of the file is added to the source file name list srcfiles. Users are
unlikely to call findsrc from the command line, but may use it from scripts to
preload source files for a debugging session. This function is used by src and
line to locate and load source code. The default search path for the MIPS is ./,
/sys/src/libc/port, /sys/src/libc/9sys, /sys/src/libc/mips.

acid: findsrc(pcfile(main));

{} fpr() Display single precision floating registers

For machines equipped with floating point, fpr displays the contents of the float
ing point registers as single precision values. When the interpreter stores or manip
ulates floating point values it converts into double precision values.

acid: fpr()
F0 0. F1 0.
F2 0. F3 0.
F4 0. F5 0.
...

{} func() Step while in function

func single steps the active process until it leaves the current function by either
calling another function or returning to its caller. func will execute a single
instruction after leaving the current function.

acid: func()
95197: breakpoint ls+0x8 MΧVW R1,R8
95197: breakpoint ls+0xc MΧVW R8,R1
95197: breakpoint ls+0x10 MΧVW R8,s+4(FP)
95197: breakpoint ls+0x14 MΧVW $0x2f,R5
95197: breakpoint ls+0x18 JAL utfrrune(SB)
95197: breakpoint utfrruneADD $-0x18,R29

{} gpr() Display general purpose registers

gpr prints the values of the general purpose processor registers.

 21

acid: gpr()
R1 0x00009562 R2 0x000010a4 R3 0x00005d08
R4 0x0000000a R5 0x0000002f R6 0x00000008
...

{} labstk(integer) Print stack trace from label

labstk performs a stack trace from a Plan 9 label. The kernel, C compilers store
continuations in a common format. Since the compilers all use caller save conven
tions a continuation may be saved by storing a PC and SP pair. This data structure
is called a label and is used by the the C function longjmp and the kernel to
schedule threads and processes. labstk interprets its integer argument as the
address of a label and produces a stack trace for the thread of execution. The value
of the function ALEF_tid is a suitable argument for labstk.

acid: labstk(*mousetid)
At pc:0x00021a70:Rendez_Sleep+0x178 rendez.l:44
Rendez_Sleep(r=0xcd7d8,bool=0xcd7e0,t=0x0) rendez.l:5

called from ALEF_rcvmem+0x198 recvmem.l:45
ALEF_rcvmem(c=0x000cd764,l=0x00000010) recvmem.l:6
...

{} lstk() Stack trace with local variables

lstk produces a long format stack trace. The stack trace includes each function
in the stack, where it was called from, and the value of the parameters and auto
matic variables for each function. lstk displays the value rather than the address
of each variable and all variables are assumed to be an integer in format X. To
print a variable in its correct format use the : operator to find the address and
apply the appropriate format before indirection with the * operator. It may be nec
essary to single step a couple of instructions into a function to get a correct stack
trace because the frame pointer adjustment instruction may get scheduled down
into the body of the function.

acid: lstk()
At pc:0x00001024:main+0x4 ls.c:48
main(argc=0x00000001,argv=0x7fffefec) ls.c:48

called from _main+0x20 main9.s:10
_argc=0x00000000
_args=0x00000000
fd=0x00000000
buf=0x00000000
i=0x00000000

{} mem(integer,string) Print memory object

mem interprets its first integer argument as the address of an object to be printed
according to the format supplied in its second string argument. The format string
can be any combination of format characters, each preceded by an optional count.

acid: mem(bdata+0x326, "2c2Xb")
P = 0xa94bc464 0x3e5ae44d 19

{} new() Create new process

new starts a new copy of the debugged program. The new program is started with
the program arguments set by the variable progargs. The new program is
stopped in the second instruction of main. The breakpoint list is reinitialized.
new may be used several times to instantiate several copies of a program simulta
neously. The user can rotate between the copies using setproc.

 22

acid: progargs="-l"
acid: new()
60: external interrupt_main ADD $-0x14,R29
60: breakpoint main+0x4MΧVW R31,0x0(R29)

{} next() Step through language statement

next steps through a single language level statement without tracing down
through each statement in a called function. For each statement, next prints the
machine instructions executed as part of the statement. After the statement has
executed, source lines around the current program counter are displayed.

acid: next()
60: breakpoint Binit+0x4 MΧVW R31,0x0(R29)
60: breakpoint Binit+0x8 MΧVW f+8(FP),R4
binit.c:93
88
89 int
90 Binit(Biobuf *bp, int f, int mode)
91 {
>92 return Binits(bp, f, mode, bp->b, BSIZE);
93 }

{} notestk(integer) Stack trace after receiving a note

notestk interprets its integer argument as the address of a Ureg structure
passed by the kernel to a notify(2) function during note processing. notestk
uses the PC, SP, and link register from the Ureg to print a stack trace corre
sponding to the point in the program where the note was received. To get a valid
stack trace on the MIPS and SPARC architectures from a notify routine, the program
must stop in a new function called from the notify routine so that the link register
is valid and the notify routine�s parameters are addressable.

acid: notestk(*notify:ur)
Note pc:0x00001024:main+0x4 ls.c:48
main(argc=0x00000001,argv=0x7fffefec) ls.c:48

called from _main+0x20 main9.s:10
_argc=0x00000000
_args=0x00000000

{} pfl(integer) Print source file and line

pfl interprets its argument as a text address and uses it to print the source file
and line number corresponding to the address. The output has the same format as
file addresses in acme(1).

acid: pfl(main)
ls.c:48

{} procs() Print active process list

procs prints a list of active process attached to the debugger. Each process pro
duces a single line of output giving the pid, process state, the address the process
is currently executing, and the setproc command required to make that process
current. The current process is marked in the first column with a > character. The
debugger maintains a list of processes in the variable proclist.

acid: procs()
>62: Stopped at main+0x4 setproc(62)
60: Stopped at Binit+0x8 setproc(60)

 23

{} pstop(integer) Print reason process stopped

pstop prints the status of the process specified by the integer pid supplied as its
argument. pstop is usually called from stopped every time a process enters
the Stopped state.

acid: pstop(62)
0x0000003e: breakpointmain+0x4MΧVW R31,0x0(R29)

{} regs() Print registers

regs prints the contents of both the general and special purpose registers. regs
calls spr then gpr to display the contents of the registers.

{} source() Summarize source data base

source prints the directory search path followed by a list of currently loaded
source files. The source management functions src and findsrc use the search
path to locate and load source files. Source files are loaded incrementally into a
source data base during debugging. A list of loaded files is stored in the variable
srcfiles and the contents of each source file in the variable srctext.

acid: source()
/n/bootes/sys/src/libbio/
/sys/src/libc/port/
/sys/src/libc/9sys/
/sys/src/libc/mips/

binit.c

{} spr() Print special purpose registers

spr prints the contents of the processor control and memory management regis
ters. Where possible, the contents of the registers are decoded to provide extra
information; for example the CAUSE register on the MIPS is printed both in hex
adecimal and using the reason function.

acid: spr()
PC 0x00001024 main+0x4 ls.c:48
SP 0x7fffef68 LINK 0x00006264 _main+0x28 main9.s:12
STATUS 0x0000ff33 CAUSE 0x00000024 breakpoint
TLBVIR 0x000000d3 BADVADR 0x00001020
HI 0x00000004 LΧ 0x00001ff7

{} src(integer) Print lines of source

src interprets its integer argument as a text address and uses this address to
print 5 lines of source before and after the address. The current line is marked with
a > character. src uses the source search path maintained by source and
addsrcdir to locate the required source files.

 24

acid: src(*PC)
ls.c:47
42 Biobuf bin;
43
44 #define HUNK 50
45
46 void
>47 main(int argc, char *argv[])
48 {
49 int i, fd;
50 char buf[64];
51
52 Binit(&bin, 1, ΧWRITE);

{} step() Single step process

step causes the debugged process to execute a single machine level instruction.
If the program is stopped on a breakpoint set by bpset it is first removed, the sin
gle step executed, and the breakpoint replaced. step uses follow to predict
the address of the program counter after the current instruction has been exe
cuted. A breakpoint is placed at each of these predicted addresses and the process
is started. When the process stops the breakpoints are removed.

acid: step()
62: breakpoint main+0x8MΧVW R1,argc+4(FP)

{} stk() Stack trace

stk produces a short format stack trace. The stack trace includes each function in
the stack, where it was called from, and the value of the parameters. The short for
mat omits the values of automatic variables. Parameters are assumed to be integer
values in the format X; to print a parameter in the correct format use the : to
obtain its address, apply the correct format, and use the * indirection operator to
find its value. It may be necessary to single step a couple of instructions into a
function to get a correct stack trace because the frame pointer adjustment instruc
tion may get scheduled down into the body of the function.

acid: stk()
At pc:0x00001028:main+0x8 ls.c:48
main(argc=0x00000002,argv=0x7fffefe4) ls.c:48

called from _main+0x20 main9.s:10

{} stmnt() Execute a single statement

stmnt executes a single language level statement. stmnt displays each machine
level instruction as it is executed. When the executed statement is completed the
source for the next statement is displayed. Unlike next, the stmnt function will
trace down through function calls.

acid: stmnt()
62: breakpoint main+0x18 MΧVW R5,0xc(R29)
62: breakpoint main+0x1c JAL Binit(SB)
62: breakpoint Binit ADD $-0x18,R29
binit.c:91
89 int
90 Binit(Biobuf *bp, int f, int mode)
>91 {

 25

{} stopped(integer) Report status of stopped process

stopped is called automatically by the interpreter every time a process enters the
Stopped state, such as when it hits a breakpoint. The pid is passed as the
integer argument. The default implementation just calls pstop, but the function
may be changed to provide more information or perform fine control of execution.
Note that stopped should return; for example, calling step in stopped will
recur until the interpreter runs out of stack space.

acid: defn stopped(pid) {
if *lflag != 0 then error("lflag modified");
}

acid: progargs = "-l"
acid: new();
acid: while 1 do step();
<stdin>:7: (error) lflag modified
acid: stk()
At pc:0x00001220:main+0x200 ls.c:54
main(argc=0x00000001,argv=0x7fffffe8) ls.c:48

called from _main+0x20 main9.s:10

{} symbols(string) Search symbol table

symbols uses the regular expression supplied by string to search the symbol
table for symbols whose name matches the regular expression.

acid: symbols("main")
main T 0x00001020
_main T 0x0000623c

{} win() Start new process in a window

win performs exactly the same function as new but uses the window system to
create a new window for the debugged process. The variable progargs supplies
arguments to the new process. The environment variable $8½srv must be set to
allow the interpreter to locate the mount channel for the window system. The win
dow is created in the top left corner of the screen and is 400x600 pixels in size.
The win function may be modified to alter the geometry. The window system will
not be able to deliver notes in the new window since the pid of the created process
is not passed when the server is mounted to create a new window.

acid: win()

