Technology

From Wikipedia, the free encyclopedia

Jump to: navigation, search
By the mid 20th century humans had achieved a mastery of technology sufficient to leave the surface of the Earth for the first time and explore space.
By the mid 20th century humans had achieved a mastery of technology sufficient to leave the surface of the Earth for the first time and explore space.

Technology is a broad concept that deals with a species' usage and knowledge of tools and crafts, and how it affects a species' ability to control and adapt to its environment. In human society, it is a consequence of science and engineering, although several technological advances predate the two concepts. Technology is a term with origins in the Greek "technologia", "τεχνολογία" — "techne", "τέχνη" ("craft") and "logia", "λογία" ("saying").[1] However, a strict definition is elusive; "technology" can refer to material objects of use to humanity, such as machines, hardware or utensils, but can also encompass broader themes, including systems, methods of organization, and techniques. The term can either be applied generally or to specific areas: examples include "construction technology", "medical technology", or "state-of-the-art technology".

The human race's use of technology began with the conversion of natural resources into simple tools. The prehistorical discovery of the ability to control fire increased the available sources of food and the invention of the wheel helped humans in travelling in and controlling their environment. Recent technological developments, including the printing press, the telephone, and the Internet, have lessened physical barriers to communication and allowed humans to interact on a global scale. However, not all technology has been used for peaceful purposes; the development of weapons of ever-increasing destructive power has progressed throughout history, from clubs to nuclear weapons.

Technology has affected society and its surroundings in a number of ways. In many societies, technology has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products, known as pollution, and deplete natural resources, to the detriment of the Earth and its environment. Various implementations of technology influence the values of a society and new technology often raises new ethical questions. Examples include the rise of the notion of efficiency in terms of human productivity, a term originally applied only to machines, and the challenge of traditional norms.

Philosophical debates have arisen over the present and future use of technology in society, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and other similar movements criticise the pervasiveness of technology in the modern world, claiming that it alienates people and destroys culture; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition. Indeed, until recently, it was believed that the development of technology was restricted only to human beings, but recent scientific studies indicate that other primates and certain dolphin communities have developed simple tools and learned to pass their knowledge to other generations.

Contents

Definition and usage

The invention of the printing press made it possible for scientists and politicians to communicate their ideas with ease, leading to the Age of Enlightenment; an example of technology as a cultural force.
The invention of the printing press made it possible for scientists and politicians to communicate their ideas with ease, leading to the Age of Enlightenment; an example of technology as a cultural force.

In general, "technology" is the relationship that society has with its tools and crafts, and to what extent society can control its environment. The Merriam-Webster dictionary offers a definition of the term: "the practical application of knowledge especially in a particular area" and "a capability given by the practical application of knowledge".[1] Ursula Franklin, in her 1989 "Real World of Technology" lecture, gave another definition of the concept; it is "practice, the way we do things around here".[2] The term is often used to imply a specific field of technology, or to refer to high technology, rather than technology as a whole.[3] However, the term is mostly used in three different contexts: when referring to a tool (or machine); a technique; the cultural force; or a combination of the three.

Technology can be most broadly defined as the entities, both material and immaterial, created by the application of mental and physical effort in order to achieve some value. In this usage, technology refers to tools and machines that may be used to solve real-world problems. It is a far-reaching term that may include simple tools, such as a crowbar or wooden spoon, or more complex machines, such as a space station or particle accelerator. Tools and machines need not be material; virtual technology, such as computer software and business methods, fall under this definition of technology.[4]

The word "technology" can also be used to refer to a collection of techniques. In this context, it is the current state of humanity's knowledge of how to combine resources to produce desired products, to solve problems, fulfill needs, or satisfy wants; it includes technical methods, skills, processes, techniques, tools and raw materials. When combined with another term, such as "medical technology" or "space technology", it refers to the state of the respective field's knowledge and tools. "State-of-the-art technology" refers to the high technology available to humanity in any field.

Technology can be viewed as an activity that forms or changes culture.[5] A modern example is the rise of communication technology, which has lessened barriers to human interaction and, as a result, has helped spawn new subcultures; the rise of cyberculture has, at its basis, the development of the Internet and the computer.[6] Not all technology enhances culture in a creative way; technology can also help facilitate political oppression and war via tools such as guns. As a cultural activity, technology predates both science and engineering, each of which formalize some aspects of technological endeavor.

Science, engineering and technology

The distinction between science, engineering and technology is not always clear. Science is the reasoned investigation or study of phenomena, aimed at discovering enduring principles among elements of the phenomenal world by employing formal techniques such as the scientific method.[7] Technologies are not usually exclusively products of science, because they have to satisfy requirements such as utility, usability and safety.

Engineering is the goal-oriented process of designing and building tools and systems to exploit natural phenomena for practical human means, using results and techniques from science. The development of technology may draw upon many fields of knowledge, including scientific, engineering, mathematical, linguistic, and historical knowledge, to achieve some practical result.

Technology is often a consequence of science and engineering — although technology as a human activity preceeds the two fields. For example, science might study the flow of electrons in electrical conductors, by using already-existing tools and knowledge. This new-found knowledge may then be used by engineers to create new tools and machines, such as semiconductors, computers, and other forms of advanced technology. In this sense, scientists and engineers may both be considered technologists; the three fields are often considered as one for the purposes of research and reference.[8]

History

Prehistory (— 5000BCE)

A Paleolithic flint spear and sword, used by early humans for hunting and fighting.
A Paleolithic flint spear and sword, used by early humans for hunting and fighting.

The history of technology is at least as old as humankind, if not older. Primitive tools have been discovered with almost every find of ancient human remains.[9] Archaeologists have uncovered tools made by humanity's ancestors more than two million years ago,[10] and the earliest direct evidence of tool usage, found in the Great Rift Valley, dates back to 2.5 million years ago.[11] The hunter-gatherer lifestyle, characteristic of the Lower Paleolithic era, involved a limited use of technology, and the earliest tools, such as the handaxe and scraper, were developed to aid early humans in that role.[12][13]

The discovery and utilization of fire, a simple energy source with many profound uses, was a turning point in the technological evolution of humankind.[14] The exact date of its discovery is not known; evidence of burnt animal bones at the Cradle of Humankind suggests that the domestication of fire occurred before 1,000,000 BCE;[15] scholarly consensus indicates that Homo erectus had controlled fire by between 500,000 BCE and 400,000 BCE.[16][17] Fire, fueled with wood and charcoal, allowed early humans to cook their food to increase its digestibility, improving its nutrient value and broadening the number of foods that could be eaten.[18]

Other technological advances made during the Paleolithic era were clothing and shelter; the adoption of both technologies cannot be dated exactly, but they were key to humanity's progress. As the Paleolithic era progressed, dwellings became more sophisticated and more elaborate; as early as 380,000 BCE, humans were constructing temporary wood huts.[19][20] Clothing, adapted from the fur and hides of hunted animals, helped humanity expand into colder regions; humans began to migrate out of Africa by 200,000 BCE and into other continents, such as Eurasia.[21]

A more sophisticated toolmaking technique was developed at around the same time. Known as the prepared-core technique, it enabled the creation of more controlled and consistent flakes, which could be hafted onto wooden shafts as arrows.[citation needed] This new technique helped to form more efficient composite tools and weapons, and combined with fire, this new technique enabled humans to hunt more effectively; wooden spears with fire-hardened points have been found as early as 250,000 BCE.[citation needed]

Technological developments in the Upper Paleolithic era, helped by the development of language, included advances in flint tool manufacturing, with industries based on fine blades rather than simple flakes.[citation needed] Humans began to work bones, antler, and hides, as evidenced by burins and racloirs produced during this period.[citation needed]

Ancient history (5000BCE — 0CE)

Continuing improvements led to the furnace and bellows and provided the ability to smelt and forge native metals (naturally occurring in relatively pure form).[22] Gold, copper, silver, and lead, were such early metals. The advantages of copper tools over stone, bone, and wooden tools were quickly apparent to early humans, and native copper was probably used from near the beginning of Neolithic times (about 8000 BCE). Native copper does not naturally occur in large amounts, but copper ores are quite common and some of them produce metal easily when burned in wood or charcoal fires. Eventually, the working of metals led to the discovery of alloys such as bronze and brass (about 4000 BCE). The first uses of iron alloys such as steel dates to around 1400 BCE.

Meanwhile, humans were learning to harness other forms of energy. The earliest known use of wind power is the sailboat. The earliest record of a ship under sail is shown on an Egyptian pot dating back to 3200 BCE. From prehistoric times, Egyptians probably used "the power of the Nile" annual floods to irrigate their lands, gradually learning to regulate much of it through purposely-built irrigation channels and 'catch' basins. Similarly, the early peoples of Mesopotamia, the Sumerians, learned to use the Tigris and Euphrates rivers for much the same purposes. But more extensive use of wind and water (and even human) power required another invention.

The wheel was invented in circa 4000 BCE.
The wheel was invented in circa 4000 BCE.

According to archaeologists, the wheel was invented around 4000 B.C. The wheel was likely independently invented in Mesopotamia (in present-day Iraq) as well. Estimates on when this may have occurred range from 5500 to 3000 B.C., with most experts putting it closer to 4000 B.C. The oldest artifacts with drawings that depict wheeled carts date from about 3000 B.C.; however, the wheel may have been in use for millenia before these drawings were made. There is also evidence from the same period of time that wheels were used for the production of pottery. (Note that the original potter's wheel was probably not a wheel, but rather an irregularly shaped slab of flat wood with a small hollowed or pierced area near the center and mounted on a peg driven into the earth. It would have been rotated by repeated tugs by the potter or his assistant.) More recently, the oldest-known wooden wheel in the world was found in the Ljubljana marshes of Slovenia.[23]

The invention of the wheel revolutionized activities as disparate as transportation, war, and the production of pottery (for which it may have been first used). It didn't take long to discover that wheeled wagons could be used to carry heavy loads and fast (rotary) potters' wheels enabled early mass production of pottery. But it was the use of the wheel as a transformer of energy (through water wheels, windmills, and even treadmills) that revolutionized the application of nonhuman power sources.

Modern history (0CE —)

Tools include both simple machines (such as the lever, the screw, and the pulley), and more complex machines (such as the clock, the engine, the electric generator and the electric motor, the computer, radio, and the Space Station, among many others).

An integrated circuit — a key foundation for modern computers.
An integrated circuit — a key foundation for modern computers.

As tools increase in complexity, so does the type of knowledge needed to support them. Complex modern machines require libraries of written technical manuals of collected information that has continually increased and improved — their designers, builders, maintainers, and users often require the mastery of decades of sophisticated general and specific training. Moreover, these tools have become so complex that a comprehensive infrastructure of technical knowledge-based lesser tools, processes and practices (complex tools in themselves) exist to support them, including engineering, medicine, and computer science. Complex manufacturing and construction techniques and organizations are needed to construct and maintain them. Entire industries have arisen to support and develop succeeding generations of increasingly more complex tools.

Technology and society

Technology and philosophy

Technicism

Generally, technicism is an over reliance or overconfidence in technology as a benefactor of society.

Taken to extreme, some argue that technicism is the belief that humanity will ultimately be able to control the entirety of existence using technology. In other words, human beings will eventually be able to master all problems, supply all wants and needs, possibly even control the future. Some, such as Monsma, connect these ideas to the abdication of religion as a higher moral authority.

More commonly, technicism is a criticism of the commonly held belief that newer, more recently-developed technology is "better." For example, more recently-developed computers are faster than older computers, and more recently-developed cars have greater gas efficiency and more features than older cars. Because current technologies are generally accepted as good, future technological developments are not considered circumspectly, resulting in what seems to be a blind acceptance of technological developments.

Optimism

See also: Extropianism

Optimistic assumptions are made by proponents of ideologies such as transhumanism and singularitarianism, which view technological development as generally having beneficial effects for the society and the human condition. In these ideologies, technological development is morally good. Some critics see these ideologies as examples of scientism and techno-utopianism and fear the notion of human enhancement and technological singularity which they support. Some have described Karl Marx as a techno-optimist.[24]

Pessimism

See also: Neo-luddism, Anarcho-Primitivism, and Bioconservatism

On the somewhat pessimistic side are certain philosophers like Herbert Marcuse and John Zerzan, who believe that technological societies are inherently flawed a priori. They suggest that the result of such a society is to become evermore technological at the cost of freedom and psychological health (and probably physical health in general, as pollution from technological products is dispersed).

Even philosophers as prominent as Martin Heidegger had serious reservations about technology. Wrote Heidegger in The Question Concerning Technology[1]: "Thus we shall never experience our relationship to the essence of technology so long as we merely conceive and push forward the technological, put up with it, or evade it. Everywhere we remain unfree and chained to technology, whether we passionately affirm or deny it."

In fictional literature such as Faust by Goethe, Faust's selling his soul to the devil in return for power over the physical world, is also often interpreted as a metaphor for the adoption of industrial technology. Some of the most poignant criticisms of technology are found in what are now considered to be dystopian literary classics, for example Aldous Huxley's Brave New World and other writings, Anthony Burgess's A Clockwork Orange, and George Orwell's Nineteen Eighty-Four.

Perhaps the most widely read overtly anti-technological treatise is Industrial Society and Its Future which was written by Theodore Kaczynski (aka The Unabomber) and was printed in several major newspapers (and later books) as part of an effort to end his bombing campaign of the techno-industrial infrastructure.

Appropriate technology

See also: Technocriticism and Technorealism

The notion of appropriate technology, however, was developed in the 20th century (e.g., see the work of Jacques Ellul) to describe situations where it was not desirable to use very new technologies or those that required access to some centralized infrastructure or parts or skills imported from elsewhere. The eco-village movement emerged in part due to this concern.

Other species

Credit: Public Library of ScienceThis adult gorilla uses a branch as a walking stick to gauge the water's depth; an example of technology usage by primates.
Credit: Public Library of Science
This adult gorilla uses a branch as a walking stick to gauge the water's depth; an example of technology usage by primates.

The use of basic technology is also a feature of other species apart from humans. These include primates such as chimpanzees and/or some dolphin communities.[25][26]

The ability to make and use tools was once considered a defining characteristic of the genus Homo.[27] However, the discovery of tool construction among chimpanzees and related primates has discarded the notion of the use of technology as unique to humans. For example, researchers have observed wild chimpanzees utilising tools for foraging: some of the tools used include leaf sponges, termite fishing probes, pestles and levers.[28] West African chimpanzees also use stone hammers and anvils for cracking nuts.[29]

See also

Find more information on Technology by searching Wikipedia's sister projects
Dictionary definitions from Wiktionary
Textbooks from Wikibooks
Quotations from Wikiquote
Source texts from Wikisource
Images and media from Commons
News stories from Wikinews
Learning resources from Wikiversity
Main list: List of basic technology topics.

Theories and concepts in technology

Main list: Theories of technology

Economics of technology

Notes

  1. ^ a b Definition of technology. Merriam-Webster. Retrieved on 2007-02-16.
  2. ^ Franklin, Ursula. Real World of Technology. Anansi Press. Retrieved on 2007-02-13.
  3. ^ Technology news. BBC News. Retrieved on 2006-02-17.
  4. ^ Industry, Technology and the Global Marketplace: International Patenting Trends in Two New Technology Areas. Science and Engineering Indicators 2002. National Science Foundation. Retrieved on 2007-05-07.
  5. ^ Borgmann, Albert (2006). "Technology as a Cultural Force: For Alena and Griffin" (fee required). The Canadian Journal of Sociology 31 (3): 351-360. Retrieved on 2007-02-16. 
  6. ^ Macek, Jakub. Defining Cyberculture. Retrieved on 2007-05-25.
  7. ^ Science. Dictionary.com. Retrieved on 2007-02-17.
  8. ^ Intute: Science, Engineering and Technology. Intute. Retrieved on 2007-02-17.
  9. ^ Bower, Bruce. Ancient Asian Tools Crossed the Line. Science News Online. Retrieved on 2007-02-17.
  10. ^ Ancient 'tool factory' uncovered. BBC News (1999-05-06). Retrieved on 2007-02-18.
  11. ^ Heinzelin, Jean de; et al (April 1989). "Environment and Behavior of 2.5-Million-Year-Old Bouri Hominids" (fee required). Science 284 (5414): pp. 625-629. 
  12. ^ Schick, Kathy D.; Toth, Nicholas (1994). Making Silent Stones Speak : Human Evolution and the Dawn of Technology. Simon & Schuster. ISBN 978-0671875381. 
  13. ^ Stanford, C.B (1996). "The hunting ecology of wild chimpanzees; implications for the behavioral ecology of Pliocene hominids". American Anthropologist 98 (1): pp. 96-113. 
  14. ^ Crump, Thomas (2001). A Brief History of Science. Constable, p. 9. ISBN 1-84119-235-X. “As Charles Darwin noted, 'the discovery of fire, possibly the greatest ever made by man, excepting language, dates from before the dawn of history'.” 
  15. ^ Fossil Hominid Sites of Sterkfontein, Swartkrans, Kromdraai, and Environs. UNESCO. Retrieved on 2007-03-10.
  16. ^ History of Stone Age Man. History World. Retrieved on 2007-02-13.
  17. ^ James, Steven R. (February 1989). "Hominid Use of Fire in the Lower and Middle Pleistocene" (fee required). Current Anthropology 30 (1): pp. 1-26.  "Most archaeologists accept the idea [...] that Homo erectus was using fire in the Middle Pleistocene about 0.5 million years ago".
  18. ^ Stahl, Ann B. (1984). "Hominid dietary selection before fire" (fee required). Current Anthropology 25: pp. 151—168. 
  19. ^ O'Neil, Dennis. Evolution of Modern Humans: Archaic Homo sapiens Culture. Palomar College. Retrieved on 2007-03-31.
  20. ^ Villa, Paola (1983). Terra Amata and the Middle Pleistocene archaeological record of southern France. Berkeley: University of California Press, 303 pages. ISBN 0-520-09662-2. 
  21. ^ Cordaux, Richard; Stoneking, Mark (2003). "South Asia, the Andamanese and the genetic evidence for an "early" human dispersal out of Africa". American Journal of Human genetics 72: p. 1586. 
  22. ^ Cramb, Alan W. A Short History of Metals. Carnegie Mellon University. Retrieved on 2007-01-08.
  23. ^ Slovenian Marsh Yields World's Oldest Wheel. Ameriška Domovina (2003-03-27). Retrieved on 2007-02-13.
  24. ^ Hughes, James (2002). "Democratic Transhumanism 2.0". Retrieved on 2007-01-26.
  25. ^ Sagan, Carl; Druyan, Ann; Leakey, Richard. Chimpanzee Tool Use. Retrieved on 2007-02-13.
  26. ^ Rincon, Paul (2005-06-07). Sponging dolphins learn from mum.. BBC News. Retrieved on 2007-02-13.
  27. ^ Oakley, K. P. (1976). Man the Tool-Maker. University of Chicago Press. ISBN 978-0226612706. 
  28. ^ McGrew, W. C (1992). Chimpanzee Material Culture. ISBN 978-0521423717. 
  29. ^ Boesch, Christophe; Boesch, Hedwige (1984). "Mental map in wild chimpanzees: An analysis of hammer transports for nut cracking" (fee required). Primates (25): 160-170. 

References

Printed sources

Online sources

Further reading

Personal tools