Wout Mertens' Guide To Keyboard Programming v1.1 Complete

Wout Mertens' Guide To Keyboard Programming
vl.1 Complete

Download a ZIP of this document and it's accompanying source code.

Table of Contents
AAAAAAAAAAAAAAAAA

0 Legal Info
0.1 Preface

1 Overall Information
Extended ASCII
1.2 Special Functions

=
=

2 DOS Interfacing
Functions

[\
i

BIOS Interfacing
Functions
Keyboard Flags
Keyboard Buffer

=

w www
[\

w

Low-Level Interfacing
Interfacing And Configuring
Lay-Out

Scancodes

Int 9

B DD
B w N -

al

Tech Stuff

Acknowledgments

How To Contact Me

The Answer To Life, The Universe And All The Rest
History

O QW

0. Legal Info
AAAARAAAAARAAR

This "Keyboard Guide" is (C) Copyright 1994 Wout Mertens.
All rights reserved.

THIS DOCUMENT AND THE ACCOMPANYING SOURCE CODE FILES ARE PROVIDED "AS
IS" WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. WOUT
MERTENS WILL NOT BE HELD LIABLE FOR ANY DAMAGES OR LOSSES OF ANY KIND
THAT RESULT FROM THE USE OR THE INABILITY TO USE THE INFORMATION
PROVIDED IN THIS DOCUMENT OR THIS SOURCE CODE FILE, INCLUDING, BUT NOT
LIMITED TO, LOSS OF PROPERTY OR INCOME.

This document and its accompanying source code files are freeware, not
public domain. They may be distributed freely provided that neither
file is modified, and that they are distributed together along with
FILE_ID.DIZ in their entirety, including the 1legal notice, and that:
If they are distributed by a third party vendor, no more than $5 U.S. is
charged for the disk on which the archive, containing this document and
the accompanying source code files, 1is stored, except when distributed
on CD—-ROM.

This legal information supersedes all previous notices.

0.1. Preface
AAAAAAAAAAAA

10of 19

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

2 of 19

I wrote this document because I needed info, and thought I could get it
this way. Boy was I wrong! I ended up finding it all by myself. Anyway,
I hope you can use it. It is meant for people who know what interrupts
are and that 0ah equals 10. Enjoy.

Oh, almost forgot. I didn't give this text any page formatting (aside
from spaces before and room after for ease of reading) because:

- I read ALL my documents on-line
— People have differing page sizes and then it would look like
shit for some people and too short for others.

If you want to print this, well, go ahead and format it, BUT DON'T EVEN
THINK OF SPREADING IT !!! (Except when you ask my permission)

Everytime you see something 1like d9h or 65h, it is a hexadecimal
number. No trailing 0 was added for ease of typing.

1. Overall Information
AAAAAAAAAAAAAAAAAAAAAA

On the IBM, there are three ways, all alike, to access the keyboard.
Via the operating system, via BIOS or via low-level access. Which way
you use depends very much on the application you are writing. Games do
not use DOS functions, for example. And a file-compressor is really not
interested wether vyou are actually pressing 'Y' or not. Or how long.

This is the way it works:

Hardware AAAAAAARAAAAAAAA BIOS AAAAAAAAAAAAAAAA- AAAAA DOS AAA-
URARARARARARAA ;
U ‘Keyboard DataAAAAAA;
SARAAAAAAARAAAOU 3
UAARAR; UARARAR;3 UARARARARA; °© UARAARAARAARAAAAA; UAAAAAAAAAAAA;
3key- AAOA int 9AAAA "keyboardAAAA ‘BIOS keyboardAAAA ‘DOS keyboard:?

3poard3 © AAAAAAU spuffer 3 © 3functions 3 3functions 3
AAAAAAU ° AAAAOAAAAU ©° AAAAAAAOAAAAAAU AAAAAAAOAAAAAU
o o o o o

EITIITIIIIIIIIIIIEITIIIIIEEITIITITIIIEITIIIIIIIIIIIIIIII

o

Possible tap points

The keyboard triggers 1IRQ 1 (Interrupt Request), also known as int 9.
Int 9 then translates the keyboard codes into ASCII, or when necessary,
extended ASCII, and places it into the keyboard buffer. Also, the shift
and lock states are saved in the BIOS Data Area (seg 40h). The keyboard
buffer is then wused by the BIOS functions to interface with programs.
The DOS functions use the BIOS keyboard functions to interface with

programs as well, but on a higher and more protected (Ctrl-Brk etc)
level.

1.1. Extended ASCII
AAAAAAAAAAAAAAAAAAA

Extended ASCII is IBM's way of letting non-ASCII keys be recognized by
programs. The BIOS will first send 0 and then the extended ASCII code.

Here is the table:

OAARAAAAAAAAOAAAAAAAAAAAAAAAAAOAAAAAAAAAAAAAARAAROARARAAARARARARAR -
°Key Hex Dec°Key Hex Dec°Key Hex Dec°Key Hex Dec®
CARAAAAARAAAXAAARAAAAAAARAAAAAAXARAAAAAAARAAAAAAAXAAAAAAARAAAAAARAR]
°F1 3B 59°Shift-F1 54 84°Ctrl-F1 S5E 94°A1t-F1 68 104-¢°
°F2 3C 60°Shift-F2 55 85°Ctrl-F2 S5F 95°A1t-F2 69 105°
°F3 3D 61°Shift-F3 56 86°Ctrl-F3 60 96°A1t-F3 6A 106°
°F4 3E 62°Shift-F4 57 87°Ctrl-F4 61 97°Alt-F4 6B 107°

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

30f 19

°F5 3F 63°Shift-F5 58 88°Ctrl-F5 62 98°Alt-F5 6C 108°
°F6 40 64°Shift-F6 59 89°Ctrl-F6 63 99°Alt-F6 6D 109°
°F7 41 65°Shift-F7 5A 90°Ctrl-F7 64 100°Alt-F7 6E 110°
°F8 42 66°Shift-F8 5B 91°Ctrl-F8 65 101°Alt-F8 6F 111°
°F9 43 67°Shift-F9 5C 92°Ctrl-F9 66 102°Alt-F9 70 112°
°F10 44 68°Shift-F10 5D 93°Ctrl-F10 67 103°Alt-F10 71 113°
OAAARAAAAAAADAAAAAAAAAAAARAAAADAARAAAAAAAAARAAAAAADAAAAAAAAAARAAAARY
OAARAAAARAAARAOAAAAARAAAAARAAAOAAAAAAAAAAAAAAAAROAARAAAAAAAAAAAARA -

°Key Hex Dec°Key Hex Dec®Key Hex Dec°®Key Hex Dec®
CAAAAAAAAAAAAAXAAAAAAAAARAAAAARAAAAAAAAAAAAAAAAXAAAAAARARAAAAAARAR]
°Alt-A 1E 30°Alt-P 19 25°A1t-3 7A 122°down 50 80°
°Alt-B 30 48°Alt-Q 10 16°A1t-4 7B 123°left 4B 75°
°Alt-C 2E 46°Alt-R 13 19°A1t-5 7C 124°right 4D 77°
°Alt-D 20 32°Alt-S 1F 31°Alt-6 7D 125°up 48 72°
°Alt-E 12 18°Alt-T 14 20°A1t-7 7E 126°End 4F 79°
°Alt-F 21 33°Alt-U 16 22°A1t-8 7F 127°Home 47 71°
°Alt-G 22 34°Alt-V 2F 47°A1t-9 80 128°PgDn 51 8le°
°Alt-H 23 35°Alt-w 11 17°Alt—- 82 130°PgUp 49 73°
°Alt-I 17 23°Alt-X 2D 45°Alt-= 83 131° °
°Alt-J 24 36°Alt-Y 15 21° °rleft 73 115°
°Alt-K 25 37°Alt-7Z 2C 44°NUL 03 3°*right 74 116°
°Alt-L 26 38° °shift-Tab OF 15°"End 75 117°
°Alt-M 32 50°Alt-0 81 129°Ins 52 82°"Home 77 119¢°
°Alt-N 31 49°Alt-1 78 120°Del 53 83°"PgDn 76 118°
°Alt-0 18 24°Alt-2 79 121°”PrtsSc 72 114°"PgUp 84 132°

ORARARAAAAAAAAPAAAAAAAAAAAAAADAAAAAAAAAAAAAAAAADAAAAAAAAAAAAAAAARY
piffffffffffffftffffftffftifffftffffffffifiiiiiii»
° 101-key Keyboard Extensions Supported by BIOS °

OAARAAADAAAARAAARAAOAAAAAAAAAARAARAAAAAAAOARAAARARAAAAAADAAARAAL -

°Key Hex Dec°Key Hex Dec°Key Hex Dec®
CAAAAAAAAAAAAAAAAAXAAAAAAAAAAAAAAAAAAAAAXAAAAAAAARAAAAAAAAAAAAAA]
°F11 85 133°Alt-Bksp 0E 14°Alt - K / A4 164c°
°F12 86 134°Alt-Enter 1C 28°Alt - K * 37 55¢°
°Shft-F11 87 135°Alt-Esc 01 1°Alt - K - 47 740
°Shft-F12 88 136°Alt-Tab A5 165°Alt - K + 4E 78°
°Ctrl-F11 89 137°Ctrl-Tab 94 148°Alt - K Enter A6 166°
°Ctrl-F12 8A 138° ° °
°Alt-F11 8B 139°Alt-up 98 152°Ctrl- K / 95 149°
°Alt-F12 8C 140°Alt-down A0 1l60°Ctrl- K * 96 150°
°Alt-|[1A 26°Alt-left 9B 155°Ctrl- K - 8E 142°
°Alt-] 1B 27°Alt-right 9D 157°Ctrl- K + 90 144-°
°Alt—; 27 39° ° °
°Alt-" 28 40°Alt-Delete A3 163°Ctrl- K Up [8] 8D 141°¢°
°Alt—" 29 41°Alt-End 9F 159°Ctrl- K Cn [5] 8F 143°
°Alt-\ 2B 43°Alt-Home 97 151°Ctrl- K Dw [2] 91 145°
°Alt-—, 33 51°Alt-Insert A2 162°Ctrl- K Ins[0] 92 146°
°Alt-. 34 52°Alt-PageUp 99 153°Ctrl- K Del[.] 93 147°
°Alt-/ 35 53°Alt-PageDown Al 161° °

ORAAAAAAAAAAAAAAAADAAAAAAAAAAAAAAAAAAAAADAAAAAAAAAAARAAAAAAAAARY
K indicates a key on the numeric keypad (when not in NumLock mode)
1.2. Special Functions

AAAAAAAAAAAAAAAAAAAAAA

There are a few functions and interrupts invoked by int 9:

int 5 — Print Screen Handler

int 15h

fns 4fh - Check Scancode

(See int 9)

85h - System Request
Normally IRET

int 23h - Ctrl-Break handler

Feel free to revector any of them.

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

4 of 19

2. DOS Interfacing
AAAAAAAAAAAAAAAAAA

One of the ways to use the keyboard is to let DOS handle it.

Pro:

— The keyboard lay-out is unimportant

- You can even do strings

— The user doesn't actually have to type
Contra:

- You don't know if you are actually accessing the keyboard (like
in "Really format drive C: 2 Y/N" :-)
— The functions are quite slow

2.1. Functions
AAAAAAAAAAAAAA

DOS provides a set of 7 functions to handle the keyboard:

0lh Keyboard Input

06h Console I/0

07h No Echo Unfiltered Input

08h No Echo Filtered Input

0Ah Buffered Input

OBh Input Status

OCh Clear Keyboard Buffer & Input

They all expect the keyboard to be file handle 0. If you want to let a
program think vyou are typing something, vyou can replace this handle
with a file containing the keystrokes it must read. This is what
happens when you 'pipe' something in DOS. (Don't forget to change the
handle back to the old one!)

This also means you can use:

3Fh Read bytes from handle

Fn 0lh: Keyboard Input

Expects: AH 0lh

Returns: AL Character fetched from the Standard Input

Description: Reads (waits for) a character from the Standard Input

Device. Echoes that character to the Standard Output
Device. If Ctrl-Break is detected, INT 23h is executed.

Notes: Extended ASCII keystrokes (ie, F1-F12, PgUp, cursor, etc)
will require two calls to this function. The first call
will return AL=0. The second will return AL with the

extended ASCII code.

Fn 06h: Console I/0
Expects: AH 06h
DL 0 to OFEh Character to send to the Standard Output
OFFh Request for input from the Standard Input

Returns: ZF Clear (NZ) if character is ready \ on input requests
AL Character read, if ZF is clear / (when DL=0FFh)

Description: If DL is OFFh, this performs a "no wait" console input,
returning the Zero Flag (ZF) set (ZR) if there is no
character ready. If a character 1is ready, returns ZF
cleared (NZ) with the character that was read in AL.

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

50f 19

Notes:

If DL is anything but 0FFh, DL is sent to the Standard
Output.

Does not check for Ctrl-Break. Call twice for Extended
ASCIT.

Fn 07h: No Echo Unfiltered Console Input

Expects: AH
Returns: AL

Description:

Notes:

Character fetched from the Standard Input

Reads (waits for) a character from the Standard Input
Device, returning that character in AL.

Unfiltered: Does not detect Ctrl-Break, backspace, etc.
Call twice for Extended ASCII character input.

Use Fn 0Bh to check status (if you don't want to wait for
a key).

Fn 08h: No Echo Console Input

Expects: AH
Returns: AL

Description:

Notes:

Character fetched from the Standard Input

Reads (waits for) a character from the Standard Input
Device, returning that character in AL.

If Ctrl-Break is detected, INT 23h is executed.

Call twice for Extended ASCII character input.

Fn OAh: Buffered String Input

Expects: AH

0Ah

DS:DX Address of an input buffer (see below)

Returns:

Description:

Buffer contains input terminated with CR (ASCII 13h)

On entry, the buffer at DS:DX must be set up as:
UAARARARARARAAAAAAAAAAAAAA A A

*max3 ? 3 ? ? ? ? ? max is maximum acceptable
AAAAAAAAAAAAAAAAAAAAAAAAA A A input (range: 1 to 254)
On exit, the buffer is filled:

UAAAAAAAAAAAAAAAAAAAAAAAAA A A len is actual length of
Smax3len3 T E X T 0Dh input, less the termina-
ARARARARARARARARAAAAAAAAA A A ting CR (eg, 4).

Characters are read from the Standard Input up to a CR
(ASCIT 13) or wup to the wvalue of max-1. If max-1 is
reached, the console bell rings (beeps) for each character
until Enter (CR) is read.

The second byte of the buffer 1is filled with the actual
length of the input, less the terminating CR. The final
character in the buffer is always CR (which is not counted
in the length byte).

The characters 1in the Dbuffer (including the len) Dbefore
the call are used as a "template" and the DOS editing keys

are in effect: [Esc] displays "\" and restarts the edit,
[F3] displays to the end of the template, [F5] displays
"@" and stores the <current line as the template, etc.

Most Extended ASCII keystrokes are ignored.

If Ctrl-Break 1is detected, INT 23h is executed and the

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

6 of 19

buffer is left unchanged.
Fn OBh: Check Input Status

Expects: AH O0Bh

Returns: AL OFFh if a character is available from the Standard Input
0 if no character is available

Description: Checks the status of the Standard Input.

If Ctrl-Break is detected, INT 23h is executed.

Notes: Use before Fns 0l1h, 07h and 08h to avoid having DOS wait
for a key.
This 1is a simple, non-destructive way to check for

Ctrl-Break during 1long calculations or other processing
that does not normally look for input. It lets the user
abort from such a sequence.

Fn OCh: Clear & Input
Expects: AH O0Ch
AL DOS input function number (0l1h, 06h, 07h, 08h, or OAh)

Returns: none

Description: Clears the Standard Input type-ahead buffer then invokes
the DOS input function specified by AL. This forces the
system to wait for a character to be typed.

These values are allowed for AL:
0lh Keyboard Input
06h Console I/0
07h No Echo Unfiltered Input
08h No Echo Filtered Input
OAh Buffered Input

In addition to these functions, it is also possible to read a selected
amount of characters from the keyboard, wusing DOS's File Handle
functions, as the Keyboard, aka Standard Input, has a pre-set handle of
0000h:

Fn 3Fh: Read from keyboard via Handle

Expects: AH 3Fh
BX 0000h - Handle for Standard Input (Keyboard)
DS:DX Address of buffer to receive data
CX Number of bytes to read

Returns: AX Error code if CF is set to CY
AX Number of bytes actually read

Description: CX bytes of data are read from the keyboard. The data 1is
placed into the caller's buffer pointed to by DS:DX.

Notes: It 1is handy to wuse this function for reading default
handles such as the Standard I/0 handles, instead of the
buffered input or character-by-character input functions.

When you read from a device, AX returns the length of the

line up to and including the termination CR (ASCII 13h).

3. BIOS Interfacing
AAAARAAAAAAARAAAAAA

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

Pro:
- You get to know all the statusses and such
- It's a tad bit faster than DOS
— You can only read the keyboard
- It's easier than the really hardcore low level, and the keys
are translated
Contra:

- It is still to slow for games or demos
— You don't have bulk access, like strings

The BIOS has 3 different ways of reading (parts of) the keyboard:
- functions
- keyboard flags
- keyboard buffer

This part describes all of them.

3.1. Functions
AAAAAAAAAAAAAA

These functions can be accessed through int 16h.

Fn 00h: Read (wait for) next keystroke

Returns: AL ASCII character (if AL=0, AH 1is an Extended ASCII key-
stroke)
AH Scan Code or Extended ASCII keystroke

Fn 0lh: Check if a keystroke is ready (and preview it if so)

Returns: ZF ZR or 1 if no key is ready
ZF NZ or 0 if a key is ready.
AX is set as for Fn O00h (but the keystroke has not been
removed from the queue).

Fn 02h: Read the shift-key status

Returns: AL shift key and 'lock' status as in 83-keyboard flags

Description: Determine which shift keys are currently being pressed and
whether the keyboard is in NumLock state, etc.

Fn 03h Set keyboard typeamatic rate and delay. (11/15/85 BIOS)

AL 05h (eg, AX = 0305h)
BL Typeamatic Rate

0: 30 keys/sec 10: 10
1: 26.7 13: 9
2: 24 16: 7.5
4: 20 20: 5
8: 15 31: 2
BH Delay: 0=250ms 1=500ms 2=750ms 3=1 second)

Returns: none

Description: when a key is pressed, the keyboard will wait during Delay
before it starts repeating at Typematic Rate.

Fn 05h Place a keystroke into the keyboard buffer. (11/15/85 BIOS)

7 of 19

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

8 of 19

Expects: AH 5
CL ASCII character.
CH Scan Code byte (or 0 if you don't care)

Returns: AL Status: O=success; l=buffer full

Fn 10h Read (wait for) a keystroke; 10l-keyboard only (11/15/85 BIOS)

Expects: AH 10h

Returns: AL ASCII character (if AL=0, AH is an Extended ASCII key-
stroke)
AH Scan Code or Extended ASCII keystroke

Fn 11lh Preview keystroke; same as 01; 10l-keyboard only (11/15/85 BIOS)

Returns: ZF ZR or 1 if no key is ready
ZF NZ or 0 if a key is ready.
AX set as for Fn 10 but keystroke is still in the buffer.

12h Read shift-key status; same as 02; 10l-keyboard only (11/15/85 BIOS)
Expects: AH 12H
Returns: AL shift key and 'lock' status as in 10l-keyboard flags

3.2. Keyboard Flags
AAAAAAAAAAAAAAAAAAA

The keyboard flags are found in the BIOS Data Area: segment 40h.

17h: 83-keyboard flags 0=0ff, 1=0On
0: Right shift

1: Left shift

2: Ctrl, either side

3: Alt, either side

4: Scroll Lock

5: Num Lock

6: Caps Lock

7: Insert state

Do NOT just change one of these and then hope the keyboard follows. The
LEDs will definitely get out of sync.

18h: 10l-keyboard flags 0=0ff, 1=0n
bit 0¢ : Left ctrl
1AAAt keyb. only : Left Alt
20 : Sys Req
3: Pause state
4: Scroll Lock :
5: Num Lock AABeing pressed
6: Caps Lock 3
7: Insert U

Do NOT just change one of these and then hope the keyboard follows. The
LEDs will definitely get out of sync.

19h: Pseudokey value

This is the accumulating value of the key being made with Alt+numeric
keypad. ©Normally O

71lh: Ctrl-break flag 0=0ff, 1=0On

bit 7: Ctrl-Break was pressed. Never gets reset, unless you do.

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

9 0of 19

bit 0: ScrolllLock ¢
1: NumLock AA keyboard LED is turned on
2: CapsLock U

Do NOT just change one of these and then hope the keyboard follows.
The LEDs will definitely get out of sync.

3.3. Keyboard Buffer
AAAAAAAAAAAAAAAAAAAA

The keyboard buffer is a circular data area. This means that when a
pointer in the buffer gets one larger than the Dbuffer, it is wrapped
around to the beginning.

The keyboard buffer is fed Dby int 9 and function 5 of int 16h. It is
found at the BIOS data segment, 40h. It is pointed to by 4 variables in
the BDA: The head (lah), the tail (1ch), the Beginning (80h) and the
End (82h). They are all words, pointing at locations in the BDA.

The latter two are only available on ATs and PSs. They are wused to
enlarge the keyboard buffer by mapping it to another spot in the BIOS
data area. Normally, that spot is 32 bytes long starting from leh.

The head is the pointer to the next word. The tail is the pointer to
the next available word. Each code is two bytes, the scan code and the
ASCITI value.

The buffer is empty if the Head = the Tail and it is full if the Tail
is two smaller than the Head, both counted circularly. This means that
the storage space equals (length buffer/2)-1.

4. Low-Level Interfacing
AAAARAAAAAAARAAAAAAAAAAR

Pro:
- Fast
— Complete control

Contra:
- Hard to code
— Totally NO functions at all. It's Handyman work here...

The interfacing is split in two items:
- Just changing something, such as the LED's
- Reading out codes: int 9

4.1. Interfacing And Configuring
AAAARAAAAAAARAAAAAAAAAAAAAAARAAR

The computer and the AT or MF II interface through I/0 ports 60h and
64h, controlled by a programmable Intel 8042 (old ATs), 8741 or 8742
(newer, allow two input devices (like the PS/2 mouse)) microprocessor
or compatible, which allows typematic rate programming, LEDs lighting
and some other stuff. It also has a +-20 byte output buffer for smooth
operation and long scancodes.

The old XT keyboard has a 8048, which 1is in essence just a very
primitive one-way serial interface, so all used is port 61h, to disable
and reenable the keyboard on every scancode.

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

10 of 19

Port 60h: Input & output

Read: Scancodes and keyboarddata

This port gives the following output codes:

00h: Keyboard error, too many keys are being pressed at once

aah: Basic Assurance Test (BAT) end

abh 41h: The result of requesting keyboard ID on a MF II keyboard
eeh: The result of the echo command

fah: ACK(noledge). Sent by every command, except eeh and feh

fch: BAT failed

feh: Resend your data please

ffh: Keyboard error

All the rest are make (press) and break (release) codes of the keys.

Write: Command data

This is the ©place where command data has to Dbe sent. If the command
consists of two bytes, you must wait until the outputbuffer is sent to
the keyboard. Check on it wvia bit 1 of port 64h. When vyou send a

command, the outputbuffer is cleared, so pending results may not come.
During transmission of a two-byte command, the keyboard stops scanning.
When you send something out of range or so, the keyboard will react
with feh (resend) . All commands, except echo (eeh) and resend (feh)
result in ACK (fah) to be sent.

Commands :

edh: Set keyboard LEDs
Send a second byte with:

bit 0 = Scroll Lock 0=0ff 1=0On
1 = Num Lock
2 = Caps Lock
rest = 0

Do make an effort to keep the BIOS keyboard flags in sync.

eeh: Great fun. Send it, and get Oeeh right back! :-]
(Diagnostics)

fOh: Select scancode set.

0: return current set number: 1:'C', 2:'A', 3:'?'
1: set scancode set no 1
2: set scancode set no 2 —-> standard
3: set scancode set no 3
f2h: Identify keyboard
XT: nothing (that is, time-out error :-) (see port 64h)
AT: ACK

MF II: ACK abh 41h

f3h: Typematic rate programming
Send a second byte with:

bit 0 -> 4: rate. Timings:

0: 30 keys/sec 10: 10
1: 26.7 13: 9
2: 24 16: 7.5
4: 20 20: 5
8: 15 31: 2

bit 5 & 6: pause before repeat:

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

250 ms
500
750
1000

SN PO

bit 7: Always O

The next three are doubtfull, since one of my sources say they don't
exist and another says they do. I leave it up to you :)

f4h: Enable keyboard. It clears its buffer and starts scanning.
f5h: Reset keyboard, disable scanning
féh: Reset keyboard, enable scanning

feh: Resend last transmission. I really don't know what it does, since
it sends something incomprehesible.

ffh: Internal diagnostics: Sends aah if successfull. Warning! The
keyboard reacts with ACK and then you have to set the data and
clock pins high, DURING AT LEAST 500 SECONDS!. Do this wvia the
outputport (see 64h). After that, the BAT (Basic Assurance Test)
starts. This sends aah on success and fch on failure.

Example: Set the keyboard LEDs

start:
in al, 64h \It would be good
and al, 02h ;Test if command buffer is empty |to put this in a
jnz start /macro. ..

mov al, edh
out 60h, al ;Write outputport

wait:
in al, 64h
and al, 02h ;Test if command came through
Jnz wait

mov al, 011l1lb
out 60h, al ;Set all LED's to ON.

This port 1is wused to acknoledge the receival of a scancode, by
disabling the keyboard and immediately reenabling it. This also means
that you can read a scancode as many times as you like, until you
acknoledge the receival.

bit 0 -> 5: Nothing to do with keyboard, but with the Programmable
Peripheral Interface (PPI) —-> save them!

bit 6: Hold keyboard clock low -> Keyboard can't send any data.

bit 7: 0O=Enable keyboard; 1l=Disable keyboard

Example:

in al, 61h

mov ah, al ; Save keyboard status

or al, 80h ;Disable

out 61h, al

mov al, ah ;Enable (If it was disabled at first, you wouldn't
out 61h, al ; be doing this anyway :-)

Port 64h: Interface: data and control

Read: Statusport

11 of 19

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

0: Output buffer empty -> use it to check for results
1: 1: User data is in buffer

0: Command buffer is empty —-> time to send a command
2: 1: Selftest successful

0: Reset (?)
3: 1: 64h was last accessed port

0: 60h was last accessed port
4: 1: Keyboard enabled

0: Keyboard locked
5: PS/2: Mouse interface
6: 1: Time-out error occurred: Keyboard or PS/2 mouse didn't

react. Use the Resend command to retry fetching the data
byte. This could happen when trying to get a XT keyboard
to do something :).

7: 1: Last transmission had a parity error

Write: Control register

This is the control room of the keyboard interface. If additional data
is required, send it to port 60h after writing the command to 64h.
Also, check 61h bit 2 before sending anything.

Commands:
aah: Keyboard self test. Sends 55h if successfull.
abh: Test interface. Sends:

00h: No error
0lh: Clock low
02h: Clock high
03h: Data low
04h: Data high
ffh: Total Error

adh: Deactivate keyboard
aeh: Activate keyboard

cOh: Read inputport. This is some highly specialized stuff and I wonder
why I am typing this. Ok. The inputport is that what the keyboard
is sending and some more. Layout:

bit 0: Keyboard data in pin
1: PS/2 mouse in pin
2->5: reserved
6: Wether you have a color or mono screen
7: 1: Keyboard not locked
0: Keyboard locked

When you issue this command, the inputport is put on the
outputbuffer, so you have the great priviledge of reading it at
port 60h.

clh: Puts the low nibble of the input port over bits 4-7 of the
statusport, so you can read them out continuously. This lasts
until bit 2 of the statusport gets set, meaning you are sending
data to the keyboard.

c2h: Ditto, but it puts the high nibble over bits 0-3 of the
statusport. Lifespan is the same.

dOh: Puts the outputport on the buffer. Layout:

bit 0: 1: Reset processor
1: 1: A20 gate enable
2: PS/2 mouse data out
3
4

PS/2 mouse clock signal
1: Output buffer full

12 of 19

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

13 of 19

5: 1: Output buffer PS/2 mouse full
6: Keyboard clock signal
7: Keyboard data out

Bit 0 and 1 are quite important for high memory and
286—-extended-memory access.

dlh: Write the following data byte to the outputport

d2h: Write the following data byte to the keyboardbuffer. This is VERY
handy for TSRs that need to read codes that start with eOh. This
way, they don't have to pass through the e0Oh, unless they know for
sure it isn't their code, which results in correct functioning
shift keys etc. At least, if it does what I think it
does... [UNTESTED]

d3h: Ditto, for PS/2 mouse.
d4dh: Write byte to PS/2 mouse.

eOh: Reads the keyboards testinputs, TO and Tl. TO goes to bit 0 and T1
to bit 1 of the byte that is put on the outputbuffer.

fxh: I think it sends x to the low nibble of the output port. It does
reset my computer when I send feh, but that doesn't mean anything
:—). The official explanation says that it keeps the corresponding
bits in the output port low for éms...

Example: Send something to the outputport

start:
in al, 64h \It would be good
and al, 02h ;Test if command buffer is emptyl|to put this in a
Jjnz start /macro. ..

mov al, dlh
out 64h, al ;Write outputport

wait:
in al, 64h
and al, 02h ;Test if command came through
jnz wait

mov al, Ol1lh
out 60h, al

4.2. Lay-Out
AAAAAAAARAAR

The keyboard first consisted of 83 keys, which is now known as the XT
keyboard. Then came along the AT-keyboard, which has 84 keys, a
slightly different layout and an extra SysReq key. The next keyboard is
the MF II keyboard. This one has 101 or 102 keys, and this is the one
this section will be babbling about.

The keycaps change, but the most popular settings are QWERTY and
AZERTY. Also popular is the Dvorak lay-out, made by what's-his—-name
Dvorak, who made the lay-out so that both hands did not have to move
that much, resulting in fast (up to double) typing speed. This 1is it,
should vyou be interested (slight modifications by me, because it
actually requires a 12x4 keyboard):

101 - key 102 - key
~ bR #F S Ne () [+ a!'@# s % ~&* () [+
12345678901 = v12345678907]-=
", .PYFGCRL?{| ", .PYFGCRL?{

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

14 of 19

', pyfgcrl/ }\ 'y py fgcrl/}
A OEUIDHTNS_ < A OEUIDHTNS _ ~
aoeuilidhtns-> a oeu dhtns -

Q KXBMWV > Q KXBMWYV Z
; 9 J kxbmwv z <; gjkxbmwvz

The key lay-out is as follows: (The numbers are internal to the
keyboard)

US-English Keyboard: 101 keys
UAA; UAAAAAAAAAAA; UAAAAAAAAAAA; UAAAAAAAAAAA; UAAAARAAA
31033123133143153316317318319332032132232333243253263 <AA Add 100 to the
AAAUAAAAAAAAAAAAUAAAAAAAAAAAAUAAAAAAAAAAAAUAAAAAAAAAU keycodes on
this line
UAARAAAAARAAAAARAAAAAAAAAAARAAAAAAAARARARAR; UAAARAAAA; UAAARAAARAARAA
313 23 33 43 53 63 73 83 93103113123133% 1533753803853390395310031053
ARAARAAAAAAAAAAAAAAAAAAAAARAARAAAAAAAARAAAA “AARAAAAAA "ARAAAAAAARAAAA -
3163173183193203213223233243253263273283293376381386339139631013 3
AAAAAAAAAAARAAAAAAAARAAAAAAAAAAAAAAAAAAAAA "ARAAAAAAAUAAAAAAARAA 3
330 3313323333343353363373383393403413 43 3 392397310231063
AAAR - UAA ARRARAAARAARAA
3 44 3463473483493503513523533543553 57 3 3833 39339831033 3
ARARAAAAAAARARAAARAARRAAAAAAARAAAAARAARAAAA "UARAAAAAR ; ARAAAAAARR - 3
358 3 360 3 61 3623 3 64337938438933 99 310431083
AARAAU AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU AAAAUAAAAAAAAAUAAAAAAAAAAAAAAU

|
This has the extra 29 key, or \

Other Countries: 102 keys
UAA; URAAARAARAAAA; UAAAAAAAAAAA ; UAAAAAAAAAAA ; UAAARAARA
31033123133143153316317318319332032132232333243253263 <AA Add 100 to the
AAAUAAAAAAAAAAAAUAAAAAAAAAAAAUAAAAAAAAAAAAUAAAAAAAAAU keycodes on
this line
UAARAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARARAR ; UAAAAAAAA; UAAARAAARAAARA
313 23 33 43 53 63 73 83 93103113123133% 15337538038523390395310031053
ARAAARAAAAAAAAAAAAAAAAAAAARAARAAAAAAAARAAAA “AARAAAAAA "ARAAAAAAARAAAA -
3163173183193203213223233243253263273283433376381386339139631013 3
ARAAARAAAAARAAAAARAAARAAAAAAAARAAAAARAARA; sAARAAAAAAUARAAAAAARR - 3
330 3313323333343353363373383393403413423 3 392397310231063
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAARAAR - UAA ARRARAAARAARAA
3443453463473483493503513523533543553 57 3 3833 39339831033 3
AAAAAARAARAARAAAAAAAAAAAAAAAAARAAAAAAAARAAAA “UAAAAAAAR ; AAAARAARAA - 3
358 3 360 3 61 3623 3 64337938438933 99 310431083
ARAAU AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAU AAAAUAAAAAAAAAUAAAAAAAAAAAAAAU

This has the extra 42 and 45 keys. Their characters change from
country to country.

4.3. Scancodes
AAAAAAAAAAAAAA

The AT-keyboard has 3 separate scancode settings: One as we know 1it,
(83 key-mapping, and added codes have an extra eOh added), one (almost)
sequential and one with ONE byte codes! Problem with the latter is that
only for 1shift, caps, lctrl and 1lalt breakcodes are sent :—(. The
keyboard starts up in set 2, the set can be changed via port 64h (see
above) .

In set 1 and 2, there are special codes, namely eOh and elh. They are
used for keys that have the same function. An example: 1dh for the
left control key and eOh 1dh for the right one. This is done for
lowlevel compatibility with XT programs. Notice that the only time elh

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

15 0f 19

is used, is when it represents a temporary control key, which also has
a eOh version.

e0h 2ah is a temporary shift function, used by for example PrtScr,
which is in reality shift-numkeypad-*, like on the XT keyboard. See
below for further information.

The code will be sent as shown further. The codes listed are the make
codes. They are sent when a key is pressed. Upon release, the keyboard
sends a break code. It is the make code, but ORed with 80h. The only
exception to this are the codes eOh and elh, which remain the same. So
for example pressing and releasing the right ctrl key would give e0Oh
1dh and eOh 9dh. I only give the codes for set 2 because the rest would
be too much work and stupid. If you want them, look them up yourself.
Modify any of the accompanying source codes or so...

@ Only on US-English keyboards
@@ Only on other country versions

Scancodes are in hex.

Key Scan Key Scan Key Scan Key Scan Key Scan Key Scan
no. code no. <code no. code no. code no. code no. code
AAARAAAAAAOAAAAAAAAAAOAAAAAAAAAAOAAAAAAAAAAOAAAAAAARAAOAAARARAAAR
329 °19 312 °36 323 °53 333 °86 3e0 51°106 34e
302 °20 313 °37 324 °54 334 °89 3e0 4d°108 3e0 1c
303 °21 314 °38 325 °55 335 °90 345 °110 301
304 °22 315 °39 326 °57 336 °91 347 °112 33b
305 °23 316 °40 327 °58 31d °92 34b °113 33c
306 °24 317 °41 328 °60 338 °93 34f °114 33d
307 °25 318 °42a332b °61 339 °95 3e0 35°115 33e
308 °26 319 °43 31lc °62 3e0 38°96 348 °116 33f
309 °27 3la °44 32a °64 3e0 1d°97 34c °117 340
10 30a °28 31b °45@@356 °75 3e0 52°98 350 ©118 341
11 30b °29@ 32Db °46 32c °76 3e0 53°99 352 ©119 342
12 30c °30 33a °47 32d °79 3e0 4b°100 337 ©120 343
13 30d °31 3le °48 32e °80 3e0 47°101 349 °121 344
15 30e °32 31f °49 32f °81 3e0 4f°102 34d °122 357
16 30f °33 320 °50 330 °83 3e0 48°103 351 ©123 358
17 310 °34 321 °51 331 °84 3e0 50°104 353 °124 3(*)
18 311 °35 322 °52 332 °85 3e0 49°105 34a °125 346
°126 3 (*)

W oW Jo Ul W

(*)

Key 124, AKA PrtScr/SysRg, is both. When pressed normally, it will send
(hex) e0 2a e0 37. This is in fact a special shift-*, or the original
place of that code on the XT keyboard.

Used in conjuction with:

Normal: e0 2a e0 37
Shift : e0 37
Ctrl : e0 37
Alt : e0 54

Key 126: Pause/Break. On the XT keyboard, this used to Dbe ctrl-NumLock
and ctrl-ScrolllLock. Now guess the codes... Very special 1is that the
break codes are sent immediately after the make codes. I think that is
because the codes have odd length.

Normal: el 1d 45 (e0 1d is already used by rightctrl)
Ctrl : e0 46 (46 is the code for ScrollLock...)
4.4, Int 9

AAAARAAAAA

When a key is pressed or released, or when the 8042 sends an ACK or NAK
the keyboard triggers IRQ1, or int 9. This can be masked Dby setting

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

bit 1 on port 21h, the

interrupt controller.

Int 9 gets the scancode,

translates it and puts it in the keyboard buffer.

BEWARE: When a scancode consists of more than 1 byte,
(Took me quite long to find out...)

one byte per call.

Translating:

Int 9 will first call int
al. If the scancode 1is
contains the scancode. If not,
stops. (The carries are
supports the call and it doesn't,
scancode can always be used).
by taking over the function

15h,

If you want to take over int 9,
controller know when you are

since this is a
reenable the keyboard

code.

The key will be translated by int 9,

O0Oh:

User is pressing too many keys at once:

aah, bah 41h, feh:

Ignore it.

eeh, fah,

fch, ffh:

Ditto,

eO0h 2ah:
Well.
(nothing to do with the LED),
translated

Ctrl-NumLock or Pause:

Place system in a tight wait loop until next key pressed.
be friendly to allow hardware IRQ's...

Ctrl-Break:
Clear keyboard buffer
buffer, invoke int 23h,

Shift-PrtScr:
Invoke int 5

Ctrl-PrtScr:
redirect CON to PRN.
Never used it,
driver... (DOS)
Ctrl-PrtScr...

SysRqg:

Invoke int 15 subfunction 85h.

Ctrl-Alt-Del:
Reboot.

ah, ODh

21h

ax, 40h

ds, ax

byte ptr ds:
ax,4F53h
15h

word ptr ds:

mov
int
mov
mov
or

mov
int
mov

[17h],0Ch

[72h],1234h

16 of 19

subfunction 4fh,
legitimate,

picked
the carry is set by the
This allows the keyboard to
and

you must remember to let
finished, by
hardware interrupt.
(see port 61h),
The codes come in one byte per IRQ,

but now you know the keyboard

If you let the keyboard decide
use it
(e0h 2ah: NumLock is on).

(=Equal Head and Tail),
and set flag at 0040h:0071h

Here's a sample of how

’

it should be read

with the scancode in
carry flag is set, and al
flag is reset, and int 9
if int 9 thinks the BIOS
BIOS, and the
be redefined,

the
the carry
so that

replacing scancodes.

the interrupt
writing 20h to port 20h,
You should also disable and then
so the keyboard knows you got the

so save e(Ohs.

with the following special cases:

beep or something

Someone is playing with port 60h

is screwed up :)

what the NumLock state is
to see how the code must be
Else, ignore. (Most Smart)

It would

(clock, comms etc) (I think)

place word 0000h in
(bit 7=1).

(Teletype mode)
perhaps never will.

Don't know how to stop it.
This is from hearsay.

Doesn't work on my keyboard
Perhaps rehitting

al->0 when pressed, 1 when released.

to reboot:

Disk Reset
causes SmartDrv 4.x to write cache
set up segment addressing

equivalent of pressing CTRL+ALT
Issue a "DEL" (53h = DEL scan code)
EMM386 sees this & shuts down

Set REBOOT flag to Warm-Boot (0=cold)

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

17 of 19

db OEAh,Oh,Oh, OFFh, OFFh ; JMP FFFF:0000

Of course, the int 15h call should already have been done by the
handler. It is also used by other caches to flush.

Shift-numkeypad:
Temporarily reverse the NumLock state, e.g. 8 becomes arrow up and
vice versa.

Alt+numkeypad:
Make the pseudokey in BDA byte 19h until the alt is released, then
put it in the keyboard buffer. How? Well, everytime an extra number
comes in, multiply BDA:19h with 10 and add the new number.

Alt release:
See above. Just making sure it is implemented ;-)

Ctrl+a->z:
Send bytes 1 through 27

Foreign keyboards:
Some keys are accents, to be placed on the next key.

Right alt:
Some keys have three keys on it. To access them, the right alt is
pressed. So remember to send the right ASCII code...

NumLock:
Switch numkeypad on/off and light/switch off LED

CapsLock:
Translate normal letters to caps or vice versa and light/switch off
LED. A nice touch would be to have a distinction between CapsLock
and Ctrl-CapsLock. The former would shift alfabetic
keys only and the latter all keys...

ScrollLock:
Light/sw. off LED

Int 9 also has to adjust the BDA flags and keyboard buffer. In
addition, the driver should warn when the keyboard buffer is full.

5. Tech Stuff
AAAAAAAAAAAAA

Interface:
Bidirectional, serial synchronous. The keyboard communicates via
clock and data line with the system. The data comes in 11 bit
packets, namely start-data-parity-stop. Parity is uneven.
=1 8bit 1bit =0
Also, see further.

Data Format:
Data transfer to and from the keyboard in IBM-compatible format:
AT-, PS/2-mode: Idle state — "Data & Clock" high.
PC mode: Idle state - "Data" low, "Clock" high.

Data Output:
Open drain.

Keyboard Sequence:
Alpha-N-key-rollover.

Automatic repeat function:

All keys have auto repeat. Delay and repeat sequence can be
modified through the system, but is fixed for PC-mode. (10Hz after
500ms)

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

18 of 19

Keyboard Self-diagnostic test:
After "Power-On" or wupon request, the keyboard carries out a
self-diagnostic test. After positive test, the keyboard sends AAh.
Any other is a failure.

Pin assignment:

- 1 Clock
/524\ 2 Data
|3 11A¢ 3 Not used
i/ 3chassis gnd 4 Gnd
- 5 +5V (This is the place to tap from :-)
PS/2 adaptor: 1 Data
_ 2 Not used
/5U6\ 3 Gnd
|3 4R 4 +5V
\1_2/ 3chassis gnd 5 Clock
- 6 Not used

The PC-XT keyboard communication protocol

Below is a drawing of the timing of the data, send to the PC. The upper
line shows the clock 1line, the lower the data line. The text above
indicates the position of the start, data and stop bits (clocked on the
negative edge of the clock line).

Start 1 2 3 4 5 6 7 8 Stop
3 3 3 3 3 3 3 3 3 3

AAA; UAA; UAA; UAA; UAA; UAA; UAA; UAA; UAA; UAA; UAAA

clkAAAU AAAU AAAU AAAU AAAU AAAU AAAU AAAU AAAU AAAU

AAA ; UA

dta AAU

The communication abides to the following rules:

- On power up or reset, the PC pulls the clock line (normally high)
low for at least 20 ms. When it is released (goes high again),
the keyboard should send the code O0AAh to the PC to indicate its
existance.

— The data is clocked in on the negative edge of the clock signal.
The «clock 1line must normally be high, the data line can be
anything between transmissions. The clock line is delayed two PC
clock cycles 1in the PC, so data changes and the negative clock
edge may take place at the same time. It 1is safer, however, to
build in a bigger delay.

— A transmission starts with a start bit (high). Then follow eight
data bits, of witch bit 7 (MSB) indicates the release of the key.
After that normally follows a stop bit (low), but that may be
left out. In fact, due to the shift register hardware inside the
PC, any number of stop bits could be send, as long as they are
low. Not 100% hardware compatibles, however, may get confused
then.

- After a transmission, the PC pulls the data line low until it is
ready processing the data. The keyboard should wait with sending
any more data until the PC releases the data line again.

A. Acknowledgments
AAAARAAAAAAARAAAAA

This text was made Dby Wout Mertens, with the help of Tech Help of
Flambeaux software, the tech spex of Cherry and some texts I found.

Information on the PC-XT keyboard communication protocol and the
kbfunc.c file by Gertjan Klein (Floating somewhere in cyberspace).

Wout Mertens' Guide To Keyboard Programming v1.1 Complete

19 of 19

Cherry is the registered trademark of Cherry Microschalter Gmbh etc.
IBM is the registered trademark of the IBM corporation
Mertens is the registered trademark of the Mertens Family ;-)

Improved copyright notice, thanks & greetings to:
Emil Gilliam (Floating in cyberspace as well)
Kip Cooley at the Diamond Bar BBS (909) 923-1031 (1:218/101).
Ian Remmler at the DownTown BBS (210) 625-4479 (1:387/1001).

B. How To Contact Me
AAAAAAAAAAAAAAAAAAAA

Please let me know 1f something is inaccurate or missing etc. Also, I
would like some feedback on the quality and usability of this text.
(Keeps me writing...) If you think this text is very usefull, you can
always send me a nice postcard from where you live to thank me... I will

then try to notify you when a new version arrives.

I am usually reachable through the Fido 80XXX echo, Dbut you can also
reach me at the following addresses:

Fido 2:292/805.1

SBC 14:1900/457
DGI 68:320/1.3
CDN 94:810/1104
CIN 112:913/101.4

SnailMail: Wout Mertens

Jozef de Bomstr 62
2018 Antwerp
Belgium - Europe

C. The Answer To Life, The Universe And All The Rest
AA

42.

PS: Could anyone tell me the Question?

(With thanks to Douglas Adams :-)

D. History

AAAARAAAAA

20 feb 94: release of v1.0

5 apr 94: changed info on rebooting in int 9
added info about XT protocol, by Gertjan Klein
added C program to interface with keyboard, by Gertjan Klein
removed a bug in the copyright: Emil Gilliam was not to be
held liable :—):—-):-)
removed some general typing errors

9 apr 94: removed bug in keyboard buffer info: Head and Tail do not
point to a location relative to Beginning, but instead
directly to the keyboardbuffer

23 may 94: vl1.1

