Writing a Kernel in C++

Writing a Kernel in C++

lofll

Writing a Kernel in C++

20of 11

Tools
Examples will show how to use :-

e DIGPP - a complete 32-bit C/C++ development system for Intel 80386(and higher) PCs
running DOS.
e NASM - The Netwide Assembler Project - Open sourced 80x86 assembler

Source code listed on this site has only been tested on djgpp version 2.03 and nasm version
0.98.08, running on the Window XP environment. Some of the techniques discussed here will not
work on other versions of gcc. I will try to give a warning for compiler specific implementations.

Assumptions

I assume that this is not your first attempt at writing a Kernel.

I assume you are already proficient in the programming language C++.

I assume you have already written a boot loader, or that you know how to use a standard one
like GRUB. If you do use grub, you will need to add the necessary code to the assembler code

below.

Part 1: Introduction, "Hello, world!" kernel - C++ with no Run-Time support

Introduction

The aim of these tutorials is to show you how to implement a simple kernel written in C++. We
will need a small amount of assembler (to initialise our kernel), and a smidgen of C code (to
provide some C++ runtime support). The end result, will be the typical "Hello, world!" example.

Part 1, will introduce the Video driver, with no Run-Time support.

Part 2, will help add some run-time support, enabling global / static objects.

Part 3, will demonstrate a very simple implementation of std::cout (Standard output stream in
the C++ Standard lib).

The end result will be this (taken from the first example in Accelerated C++, Andrew Koenig and
Barbara E. Moo) :-

#include <iostream>

int main()

{
std::cout << "Hello, world!" << std::endl ;
return 0 ;

}

Part 4, will set-up a global descriptor table, and an interrupt descriptor table. With some
encapsulation in C++.

Part 5, will introduce a simple interrupt driven Keyboard driver.

Part 6, will demonstrate a very simple implementation of std::string

Part 7, will demonstrate a very simple implementation of std::cin.

Writing a Kernel in C++

The end result will be this (taken from the second example in Accelerated C++, Andrew Koenig
and Barbara E. Moo) :-

#include <iostream>
#include <string>

int main()

{

std::cout << "Please enter your first name: " ;

std::string name ;
std::cin >> name;

std::cout << "Hello, " << name << "!" << std::endl;
return O ;

}

As you can see, there is more work involved to get the C++ kernel up and running, at least
compared to a C kernel, but hopefully the end result will be a solid base onto which to build a
more flexible object oriented kernel.

Knowing our limits

Quoting from the creator of C++, Bjarne Stroustrup's book "The C++ programming language
third edition (section 1.3.1)",

new, delete, typeid, dynamic_cast, throw
try-block,

The features which need Run-Time support full into 3 categories :-

e Built in functions (new, delete),
e Run Time Type Information (typeid, dynamic_cast),
e And Exception handling (throw, try-block).

However, Stroustrup was referring to C++ code on an operating system which has an
implementation of the C++ standard library. So this must also be implemented or ported for use
in the kernel.

The good news is we can disable these features with most compilers, and everything will be ok as

long as we don't use those off-limit expressions and statements. When the time comes when we
want to use them, we have to add our own support code and link it to our kernel.

3of11

Writing a Kernel in C++

example of how to disable these in gxx, the win32 g++
compiler.

gxx -c *.cpp -ffreestanding -nostdlib -fno-builtin -fno-rtti
-fno-exceptions

Options Controlling C++ Dialect

The bad news is there is no standard way that built in functions, RTTI, or EH have been
implemented into the compiler. Even different versions of the same compiler may do
things differently. In part 2, I'll explain in more detail how we can tackle this problem, but for
now we will just disable them all.

When we disable the run-time support in the compiler, the compiler will omit several important
functions. The compiler normally makes a call to a function before calling main(), and another
after main() returns. Typically these two functions will be called _main() and _atexit(). Amongst
other operations, they normally handle the calling of global / static objects constructors and
deconstructors. So global / static objects are also off-limits until we add the necessary support
code for this.

To summarise, a list of the off-limit C++ features (without adding your own support code) :-

Built in functions,

Run Time Type Information,

Exception handling,

The C++ standard library (including the C library of course),
And global / static objects.

The code

Lets start with the ASM code which will call our kernel's main function. Later this code will also
make calls to our run-time support, _main() and _atexit().

[BITS 32]

[global start]
[extern _main]

start:

call _main
cli

hit

Now in our C++ Kernel, we are going to create a class Video, which will act as a simple video
driver. This is the entire code for the kernel.

40f 11

http://gcc.gnu.org/onlinedocs/gcc/C---Dialect-Options.html#C++%20Dialect%20Options

Writing a Kernel in C++

#ifndef VIDEO_H
#define VIDEO_H

class Video

{

public:
Video() ;
~Video() ;

void clear() ;
void write(char *cp) ;
void put(char c) ;
private:
unsigned short *videomem ;
unsigned int off ;
unsigned int pos ;

¥

#endif

#include "Video.h"

Video::Video()
{
pos=0; off=0;
videomem = (unsigned short*) 0xb8000 ;

bs
Video::~Video() {3}

void Video::clear()

{ unsigned int i;
for(i=0; i<(80*25); i++)
{ videomem[i] = (unsigned char) ' ' | 0x0700 ;
gos=0 ; off=0 ;

>

"EOid Video::write(char *cp)

char *str = cp, *ch;
for (ch = str; *ch; ch++)

{
put(*ch) ;

50f11

Writing a Kernel in C++

}

void Video::put(char c)
{
if(pos>=80)
{
pos=0 ;
off +=80;
be

if(off>=(80*25))
{

clear() ;

}

videomem[off + pos] = (unsigned char) c | 0x0700 ;
pos++ ;

#include "Video.h"

int main(void)

{
Video vid ;

vid.write("Hello, world!") ;

Compiling

Video.cpp and Kernel.cpp need to be compiled with a C++ compiler, remembering to disable the
above mentioned C++ features. The output from your C++4+ compiler should be the object files
Video.o and Kernel.o. Loader.asm also needs to be assembled with an assembler. The output
from your assembler should be the object file Loader.o.

An example of how to compile using DJGPP gxx and NASM.

gxx -c Video.cpp -ffreestanding -nostdlib -fno-builtin -fno-rtti
-fno-exceptions

gxx -c Kernel.cpp -ffreestanding -nostdlib -fno-builtin -fno-rtti
-fno-exceptions

nasm -f aout Loader.asm -o Loader.o

Linking

6of11

Writing a Kernel in C++

Now we must link our object files into a flat binary which we shall call Kernel.bin.

I recommend using a linker script, we will be making use of the linker script in part 2. Here is an
example of a linker script for LD.

OUTPUT_FORMAT("binary")
ENTRY(start)
SECTIONS
{
.text 0x100000 :
{
code = .; _code =.; _ _code = ,;
*(.text)
. = ALIGN(4096);
b

.data :
{

data =.; _data=.; __data=;
*(.data)
. = ALIGN(4096);

}

.bss :

{
bss =.; _bss=.;_ __bss=.;
*(.bss)
. = ALIGN(4096);

by

end=._end=._ _end=.;

}

Now we can use the linker script with LD,

Id -T Link.ld -0 Kernel.bin Loader.o Kernel.o Video.o

Conclusion

Hopefully your C++ Kernel should have compiled and linked without any errors. Congratulations.

Part 2: Introduction, "Hello, world!" kernel - C++ with Global / Static Object
support

::Warning - Compiler Specific::

Solution 1 - .ctor and .dtor sections

7of 11

Writing a Kernel in C++

This method will only work for compilers which add two sections to the object files, the .ctor and
.dtor section. Here are 4 steps to find out if you can use this solution :-

Step 1 - Move the Video object from a local to global scope.

#include "Video.h"
Video vid ;

int main(void)

{
by

vid.write("Hello, world!") ;

Step 2 - Compile Kernel.cpp for a freestanding environment, without run-time support, or
standard library.

gxx -c Kernel.cpp -ffreestanding -nostdlib -fno-builtin -fno-rtti
-fno-exceptions

Step 3 - Use the object dump tool to display contents of the sections.

objdump -h Kernel.o > Kernel.dis

Step 4 - Open the Kernel.dis with a text editor (Notepad, WordPad, my preferred choice is

TextPad)
7 .ctors 00000004 000000f4 000000f4 00000294 2**2
CONTENTS, ALLOC, LOAD, RELOC, DATA
8 .dtors 00000004 000000f8 000000f8 00000298 2**2
CONTENTS, ALLOC, LOAD, RELOC, DATA.

The code

We are now going to implement _main() and _atexit(). In our linker script we are going to create
a list of pointers in the .ctor section, and a list of pointers in the .dtor section. Which are the
Constructor lists, and Deconstructor lists respectively.

8of 11

Writing a Kernel in C++

Note - The list is not sorted into order of precedence, in a complex hierarchy the constructors
could be called in an incorrect order!

void _main()

{

extern void (*_CTOR_LIST_)();

void (**constructor)() = & _CTOR_LIST__ ;

int total = *(int *)constructor ;

constructor++ ;

while(total)
{

(*constructor)() ;
total--;
constructor++ ;

b
}

void _atexit()

{

extern void (¥*_DTOR_LIST_)();

void (**deconstructor)() = & DTOR_LIST__ ;

int total = *(int *)deconstructor ;

deconstructor++ ;

while(total)
{
(*deconstructor)() ;
total--;
deconstructor++ ;
by
by

90of 11

Writing a Kernel in C++

10of 11

[BITS 32]

[global start]
[extern _main]
[extern ___main]
[extern __atexit]

start:

call __main
call _main
call _atexit
cli

hit

OUTPUT_FORMAT("binary")

ENTRY(start)
SECTIONS

{

.text 0x100000 :
{

}

code = .; _code =.; _ _code = ,;

*(.text)
. = ALIGN(4096);

.data :

{

4

.
b 4

}

__CTOR_LIST__ =.; LONG((__CTOR_END__ -
TOR_LIST__) / 4 - 2) *(.ctors) LONG(0) _ CTOR_END___

__DTOR_LIST__ = .; LONG((__DTOR_END__ -
__DTOR_LIST__) / 4 - 2) *(.dtors) LONG(0) _ DTOR_END__

data = .; _data=.; ___data=.;

*(.data)
. = ALIGN(4096);

.bss :

{

bss =.; _bss=.;__bss=.;

*(.bss)
. = ALIGN(4096);

Writing a Kernel in C++

}

end=.,_end=._ _end-=.

}

Conclusion

Compile and link as in Part 1. You will now be able to use Global / Static objects in your C++
Kernel. In Part 3 we will look at a simple implementation of Class OStream which resides in
namespace std. We will use a global instance of OStream, cout.

All trademarks and/or registered trademarks on this site are property of their respective owners. Use
this site and its contents at your own risk...

11 of 11

