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Introduction

You might have already read my “Memory Management 1” tutorial; if not, then you should go and read it
now, because this tutorial relies on it. Here I’ll be describing the next level of memory management: turning
the memory manager I wrote about in the first tutorial into something useful and general-purpose.

Remember that the low-level memory manager deals with the computer’s physical memory: that is, the raw
address space of your PC before things like paging come into effect. The low-level manager has three main
components: an allocator (for allocating one physical page at a time), a deallocator (for deallocating those
pages) and a memory mapper (for modifying mappings between the virtual address space and physical
memory). Now it’s time to make something useful out of these.

There are a few problems with the physical memory functions which make them unsuitable for everyday
memory allocation like, say, malloc():

They only allocate whole pages at a time. This is fine if you only ever want to allocate memory in
multiples of 4KB (on the x86), but not much use if you’re using things like linked lists (which you will
be).
They deal with physical addresses, not virtual. This means that they don’t naturally take advantage of a
paged architecture, which would allow your kernel to arrange applications’ address spaces
independently of the layout of the computers RAM chips.
They don’t do much with the memory they allocate: they don't allow things like sharing, swapping to 
disk, memory-mapped files, integration with the disk cache, etc.

What we need to do is write a layer of functions on top of the physical memory manager which deal with
these problems. Note that this memory manager, like most of the kernel, can be made portable: the things it
deals with are generally the same across different architectures (that is, until you start dealing with things like
the Z80 and the 80286).

Specifications

What we’re going to do is, effectively, write two memory managers: one which can manage the virtual
address space for user applications, and one which implements malloc() and free() (or the equivalents in
your language of choice) for your kernel. A virtual memory manager is useful for providing a large-block
memory interface to your user applications: sure, it would be OK to expose the physical memory manager
directly to user mode, but that would mean that user apps needed to know about the physical architecture of
the target machine, and surely we’re writing a kernel to avoid that kind of thing?

It’s good to write versions of malloc() and free() for the kernel because it makes writing kernel (and
driver) code easier and more enjoyable. I’m a great believer in providing a good run-time library interface in
kernel mode, even if it means that the kernel grows in size. Different kernels provide these RTL facilities to 
different extents; the Linux kernel provides a small subset of the C RTL, and Windows NT provides its own
set of functions which mirror those provided by the C standard. Linux calls its malloc() kmalloc(); 
Windows NT has ExAllocatePool() and friends; I’ll be sticking with the familiar malloc().
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malloc() and free()

I’ll start with these two because they are probably the simplest to implement. The goal of any malloc() is to
take a large slab of memory and divide it up into pieces as requested, and that is what we’ll be doing in the
kernel. Here, we need to set aside a portion of the kernel’s address space (remember, the kernel’s address
space ought to be separate from the user address space, in the interests of memory protection) from where
malloc()’s memory will come.

I like to split my kernel’s address space into several regions. The Möbius kernel, for example, starts at
address 0xC0000000; that is, it occupies the top gigabyte. Kernel memory is split up into 256MB-regions as
follows:

0xC0000000 Kernel code, data, bss, etc.
Probably too much but, hey, we might see a 256MB kernel one day.

0xD0000000 Kernel heap
0xE0000000 Space reserved for device drivers
0xF0000000 Some physical memory (useful for video memory access)

Page directory and page tables of the current process

Note that 256MB of address space, from 0xD0000000 to 0xE0000000 is devoted to the kernel’s heap. This
doesn’t mean that 256MB of physical memory will be given over to the kernel heap at all times; it just means
that there is a 256MB window through which heap memory is accessed.

I’m not going to go into telling you how to write the malloc() and free() functions themselves; other 
people can do that better than me. There is a sample implementation in the book The C Programming
Language by Kernighan and Ritchie, and there are several slot-in implementations on the Internet. However,
one thing all malloc() implementations should have in common is a hook into the OS kernel to request more
memory. In the more conventional user-mode environment, this function (often called morecore() or 
sbrk()) will ask the kernel for a large block of memory in order to enlarge the process’s address space. Here,
we are the kernel, so we need to write our own morecore().

Incidentally, there is a slight difference between morecore() (as featured in K&R) and sbrk() (as used by 
most Unix implementations):

void *morecore(size_t n)

Requests a block of size n bytes (K&R uses multiples of the allocation header size)
which might come from anywhere in the application’s address space

char *sbrk(size_t d)

Adjusts the size of the application’s address space by d bytes and returns a pointer
to the start of the new region. Returns char* because the earliest versions of C
compilers had no void* type.

The difference is subtle but it makes sense to be clear about these definitions. I’ll be using the morecore()
interface here, but it should be trivial to adapt it for sbrk(); in fact, there’s no reason why morecore() can’t
work the same way as sbrk() internally.

Remember: malloc() calls morecore() when it runs out of memory. If it succeeds, the new block is added to
the free block list (if it fails, malloc() returns NULL). In the kernel we need to increase the amount of space
set aside for the kernel’s heap by n bytes and return a pointer to the start of the block. But morecore() wants
to return an address inside the virtual address space, and so far we only know how to allocate physical pages.
Well, the obvious thing to do would be to:
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Allocate a page using the physical memory allocator1.
Map it at the end of the kernel’s heap using the physical memory mapper2.
Adjust the kernel’s end-of-heap pointer3.
Repeat from (1) until enough memory has been allocated to satisfy the request4.

Note that there is no provision made to free the physical memory associated with the heap. I don’t know of
any malloc() implementation which will ask the OS to free the memory is has been given (the RTL usually
assumes that the program’s memory will be freed when it exits) but it should be possible to walk the free
block heap periodically and release any memory used. As is is, this algorithm will only allocate memory as it
is used: if a lot of memory is suddenly allocated and then freed, it will remain allocated (as far as the kernel is
concerned) but it will be re-used next time malloc() is called.

That’s all there is to the kernel side of malloc(). Remember that this malloc() is only for use by the kernel 
and by kernel-mode device drivers. User applications can have their own funky implementation of malloc(),
or new, or GetMem() as required. These user-mode allocators can call the kernel’s virtual memory manager,
which I’ll conveniently cover next.

The Virtual Memory Manager

The kernel’s malloc() is all well and good; we can go off and write strdup() and new and make linked list
functions now. But it’s not very sophisticated. We can make a much more powerful allocator which can do
more than allocate and free arbitrary small blocks of memory: it can do all the things I talked about in the
Introduction. This is where we write the virtual memory manager.

As with the physical memory manager from part 1, the virtual memory manager will be managing the address
space. However, this address space is the virtual one: it is a constant 4GB long (on a 32-bit machine) and it
needn’t correspond directly with the underlying memory installed the machine. Parts of it can be mapped to
the same physical memory (to share memory); parts of it can be mapped nowhere at all (to provide guard
pages, for example, at the end of stacks); parts of it can be unmapped but can emulate real memory (like in
Windows NT’s ntvdm.exe, which emulates the PC’s BIOS Data Area for real-mode apps).

The key to all of this is the page fault. If you’ve done much Windows programming you’ll probably be
familiar with the page fault (along with the access violation) as one of the symptoms of a spurious pointer;
Linux programmers (and users) will know it as a segmentation violation or bus fault. However, as
applications programmers, we only see the page fault when things go wrong. In reality, the page fault is the
processor’s way of telling the kernel that it doesn’t know how to handle an access to a particular region of
memory, and that some software handler needs to be invoked to sort it out. Under the correct circumstances,
the kernel will be able to do so and continue the execution of the application.

The most benign kind of page fault occurs when the processor tries to read from or write to a page which has
been marked as ‘not present’. Remember that each entry in the page directory and each entry in each page
table has a ‘Present’ bit. The processor checks this bit on every memory access (actually it will cache the
PDEs and PTEs to speed up memory access). If it is set then the access can continue; if not, it writes the
address in question to the register CR2 and invokes the page fault handler. This is installed the same way as a
normal interrupt handler; see the interrupts tutorial for more details(not yet availible). I’ll assume that you
have got your interrupt handler sufficiently advanced that control will be passed to a routine when an interrupt
occurs.

So the page fault handler is executed when a page is accessed which is, as far as the MMU is concerned, not
present. The page fault handler needs to:
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Check what should be located at the faulting address and,1.
Make sure the address is accessible if it should be, or,2.
Take the appropriate action if the address is incorrect3.

The “appropriate action” in this case will probably involve terminating the application in question. Different
operating systems take different approaches over this; Windows NT invokes the current set of Structured
Exception Handlers, the default action of which is to terminate the application; Linux invokes the appropriate
signal handler.

Allocator

In order to check what should be located at the faulting address we need to keep records of how the address
space is organized. To start with, we can write a simple virtual memory allocator. Forget about page faults for
a moment while I describe what our virtual memory allocator will do.

In short, we need to be able to make good use of the 4GB given to us by the hardware designers. This comes
down to writing a routine which can allocate an arbitrary amount of virtual memory. Note that the physical
memory behind it doesn’t need to be allocated all at once, and it doesn’t need to be contiguous. Of course the
physical memory does eventually need to be there – the processor needs something to send over the address
bus to the main memory – but it’s not essential to allocate it all at once. For now it’s enough to record all
allocations that take place in a list. Our malloc() can come in useful here because you can allocate one
record per allocation and store things like the virtual address of the allocation and how many pages were
allocated. In fact, we need to record at least the allocation base address and the size so that we can allocate
(“commit”) physical memory later. It’s usually more worthwhile dealing in pages here, rather than bytes,
because it makes the kernel’s accounting easier. Remember that the user-mode RTL can implement a
malloc()-style allocator itself which can divide large blocks of memory into smaller ones. As a reasonable
minimum you ought to record for each allocation:

Virtual base address (i.e. the start of the block in the current application’s address space)
Size
Protection (e.g. read/write, user vs. kernel)

At this point we have a function which can ‘mentally’ allocate blocks of memory and record them somewhere
in a list. If you’re implementing process-based protection in your kernel you ought to keep one list per
process, to avoid confusion.

Once some application has a block allocated it can try to access it. However, there’s no physical memory
associated with the block yet – the page table entries (and, in fact, the page directory entry) for that region are
marked as ‘not present’. So the processor invokes a page fault, and calls our page fault handler.

The first thing the handler needs to do is check the allocation list to find the faulting address. The x86
processor records the actual address accessed, not the address of the start of the page, but this shouldn’t make
any difference here. We need to walk the list to find a block which spans the faulting address.

Once the block is found, we need to commit it. This will involve allocating the relevant physical pages and
mapping them into the address space, using the physical memory allocator from part 1. It’s up to you whether
you commit an entire block at once or commit it page-by-page. Imagine an allocation of 4MB: that’s 1,024
pages. On the one hand, the application might write one byte at the start and then forget about it. If we
committed the whole block on the first access, we’d waste 3.99MB (that is, until the application freed the
block). Alternatively we could commit one page at once, and invoke the page fault handler when each page
was accessed. If the application allocated the 4MB block and wrote to every byte we’d end up faulting 1,024
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times: each fault has its overhead which would be unnecessary if the whole block was committed on the first
fault. As with so many design decisions, it’s up to you.

I mentioned the processor’s page table cache before. This is called the Translation Lookaside Buffer and it is
an internal copy of the PDEs and PTEs as they were when the cache was last invalidated. The cache is
invalidated when CR3 is written to and when the INVLPG instruction is executed (on the 486 and above).
Invalidating the whole TLB takes a while so it should only be done when necessary (e.g. when switching
between two  processes). The INVLPG instruction is useful because it instructs the processor to invalidate only
the region of the TLB associated with one page. The TLB must be updated when any changes are made to the
page directory or page tables (the processor doesn’t do it automatically) so it is necessary after allocating and
mapping the physical memory here.

Assuming that the faulting address was correctly identified as part of an allocated block, and the relevant
physical memory was allocated and mapped successfully, the kernel is free to return from the page fault
handler and continue execution of the current application. The processor will retry the faulting instruction
and, if the kernel has done its job, all will be well.

Executables

If we load an executable program into memory, we’ll have a record of the makeup of that executable – that is,
what sections it contains, where they are located, and how big they are. They will be laid out in the
application’s address space in some order, and they needn’t all be loaded at startup. This is similar to the
virtual memory allocator I just described, except that we already have a record of the executable’s sections in
the header. Why not map the file into memory as it appears on disk, headers and all. Then it becomes
unnecessary to allocate the executable’s memory with the virtual allocator.

To do this we need to walk the list of executable image sections at the same time as we check the list of
allocated blocks. This is a matter of starting at the base address of the executable (that is, the address of the
start of the headers), parsing the headers and locating the section which spans the faulting address. It may be
more efficient to cache the sections’ details in some other format, but most executable formats (including
COFF, ELF and PE) keep it reasonable. Then we can write a “separate executable section committer” which
will load an executable section from disk, allocate physical storage and map it. We can make some more
optimizations here – for example, if code pages are read-only, it will be unnecessary to swap them to disk if
they are already present in the on-disk image. Read-only code pages can also be shared among multiple
instances, and data pages can be shared until they are written to; once they are written to, a copy is made. The
principle of copying pages only when they are written to (“dirtied”) is known as Copy-On-Write, and is
commonly used.

The principle behind COW is that the originals of such pages are made read-only. The processor will fault
when the application attempts to write to it – because they are data pages there’s no reason why the
application should avoid writing to them – and the error code on the stack will reflect this. The page fault
handler detects that the faulting address is contained within a COW page, so it can make a copy of the
underlying physical memory, re-map it in the address space, and allow the application to continue. Because
the mapping has changed, the application will continue with the copy, which the page fault handler has now
made read-write.

Copy-on-write is also used in the common Unix fork() paradigm. The fork() system call, which has no
parallel in standard Win32, creates a copy of the current process which is identical – it uses the same code
pages, data pages and stack pages are shared, and execution continues at the same location. To save memory,
as many pages are shared as possible. However, the new process and the old one are completely separate, so
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each is free to write to its shared copy of the data. Here COW is used to spawn new copies of the shared data
when either process (parent or child) modifies them.

Swapping

Now that we’re able to allocate memory on demand, we can do some more advanced things with our virtual
memory manager. Granted, we can only implement the more advanced features when we’ve got things like a
disk driver and a process manager going, but the theory’s here. One useful feature is the ability of the virtual
memory manager to swap pages to and from disk. This is present in most modern operating systems and it is
responsible for the thrashing noise when the hard disk is accessed in a low-memory situation. The theory is
simple: sooner or later, a block will need to be committed, and the physical memory allocator will run out of
pages. We need to clear out some space for the new block: after all, the new block is being accessed right 
now, and there’s probably blocks in the system which haven’t been accessed for a while.

The swapper function needs to:

Find a block suitable for swapping out to disk. This will usually be the least recently used one, although
Win9x will swap arbitrary blocks out randomly.

1.

Make room for it in the swap file: talk to the file system and disk drivers for this. A fixed contiguous
swap file is simplest (à la Windows 3.1): at startup, record the disk sector numbers associated with the
swap file and talk directly to the disk driver when necessary. Alternatively you could access the swap
file as a normal file, via the file system driver.

2.

Write the old block to disk, and record that is has been swapped out3.
Repeat from (1) until the physical allocation request succeeds4.

Note that if any of this goes wrong, the commit will fail. Remember that if a page fault occurs in a block
which has been swapped out, it must be swapped back in again.

Overview

A typical sequence of events after an illegal address is accessed might go as follows:

1. Processor triggers page fault.
2. Control is passed to the kernel, which calls the page fault handler.
3. The page fault handler looks through the list of allocated blocks for the current process.

3.1. A block has been found which spans the faulting address; the “commit” function is called.
3.2. The commit function allocates a physical page for each page in the block’s range.
3.3. If the block was in the swap file, each page of the block is read in from the swap file.
3.4. The relevant mappings are made in the current process’s address space, according to the

protection flags given when the block was first allocated.
3.5. Control is passed back to the application.

4. The page fault handler looks through the list of executable modules for the current process.
4.1. An module has been found which spans the faulting address; the “dynamic load” function is

called.
4.2. The dynamic load function looks for a section in the module which spans the faulting address.
4.2. It looks for a copy of that section already loaded into another process’s address space.

4.2a.1. Another copy of the section has been found. Its reference count is incremented.
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4.2a.2. The physical memory for that section is mapped into the current address space read-only. A
later write to the section will incur another page fault; then, the physical memory for the section
is copied and unshared.

4.2b.1. The section has not been loaded anywhere else.
4.2b.2. Physical memory for the section is allocated and mapped into the current address space.
4.2b.3. The section is loaded from disk into memory.

4.3. Control is passed back to the application.
5. No valid block has been found; the current process is either terminated or control is passed to its

exception/signal handlers.

I’ve gone through the major functionality of a reasonably-sophisticated virtual memory manager. The VMM
is able to split up applications’ address spaces into reasonable chunks, and the kernel malloc() makes writing
the rest of the kernel a lot easier. But so far all we’ve got is still a bloated “Hello, world” program, albeit one
which uses protected mode and which can allocate a full 4GB of address space. No operating systems ever
sold themselves on the ability to switch from one archaic processor mode to another which became public in
1986, so it’s time to give the kernel some work to do and start scheduling some code(not yet avalible).
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