
Xosdev Chapter 1 [The Bootloader]
by mr. xsism

When coding an Operating systtem or even a simple kernel you usually
start with a bootloader. But what is a bootloader? A bootloader is basically
bootable code that is loaded by the system at startup. Usually the bootloader
is used as a base for doing other operations in the PC. How is the bootloader
loaded? By way of the very first sector (512bytes) of a bootable device. For
example, sector 0 of the floppy disk drive would be where you would put the
bootloader's code. This "bootsector" is taken by the system and loaded into
memory at 0x0:0x7C0 after the POST. This address resolves to 0x7C00 linear.

After the bootsector has been loaded into the system memory it is
started. One of the first things done is the actual loading of the kernel
data. Then there are things that are often needed to run the kernel data like:
*enabling the A20 line (this allows access to 'full' memory space)
*entering Protected mode (this allows 32bit addressing for x86 compatible systems)
*setting up basic memory protection (called GDT)
*setting up a extremely simple interrupt table (IDT for kernel-based interrupts)
*initialising a 32bit stack (Pmode requires a 32bit addressable stack)
*jumping to the address that contains the loaded data (this runs the data)

Now that we know the basics of what the bootloader does, let's setup
a simple list of goals. First thing we do after the bootloader is loaded is
setup the A20 gate. The A20 gate is the next bit in the keyboard controller
n the sequence of A0-A19. This allows you to address up to 1MB of memory.
But with the A20 gate enabled you are able to address over 1MB. Now that
we can address up to and over the 1MB limit of memory, we need to load the
kerenl binary data. After this is setup, we do what is needed to enter
protected mode. Then we need to setup our GDT, IDT, and Pmode stack(32bit
stack). Make a note that we may also need to move certain data to a different
memory area other than it's current position (ie-the GDT).

Goals:
1-enable A20
2-load kernel
3-enter Pmode
4-setup temp GDT
5-setup temp IDT(optional)
6-setup 32bit stack
7-refresh registers
8-jump to kernel

Planning/Setting goals

Optional:
-move GDT & IDT to specified memory area

There are two things required to get a basic bootsector running: keep the bootsector at
exactly 512bytes in size and the last two bytes of the code must be 0x55AA.

In Asm:
TIMES 510-($-$$) DB 0
SIGNATURE DW 0xAA55

This will make sure that everything below 510 bytes that isn't filled with code is padded
with 0 and that the last two bytes are 0x55AA. That little piece of code should be the last in
your bootloader. What you do between the beginning of the bootloader and the end of it is totally
up to you. You could use BIOS to display a message that says, 'Loaded' for example, just to make
sure it works.

This is often a big step to understand and code, unless you steal someone else's code.
The A20 gate is a bit in the keyboard's controller that enables or disables a mode called
"wrap-around". The A20 gate simply allows the cpu to manage memory through a 20-bit bus
instead thus attaining access to over the 1MB mark. If the A20 gate isn't enabled, it would
wrap back around to the beginning of memory.

To change the A20 gate, you access hardware port 0x64 and 0x60(kbd). Here is a quick
list of the kbd ports.

[ADD KBD BIT INFO TABLE HERE]

Steps to take:
1-disable interrupts
2-wait for the kbd controller to clear (if bit 1[00000001] is set that means input port isn't open)

First goal: Running the Bootsector

A20 enabler

8042 kbd controller ports
PORT ACTION PURPOSE
0x60 READ Output register for getting data from the keyboard
0x60 WRITE Data register for sending kbd controller commands
0x64 READ Status register that can be read at anytime for kbd status

0x64 WRITE Commmand register used to set kbd controller options(like the A20
gate)

3-write to kbd controller to set A20 gate
4-tell kbd conroller you want to write to output port
5-wait agin for kbd to clear
6-get status value and OR it by 2(bit 2[00000010] is A20 gate bit)
7-write new data to data port
8-write 'nop' to kbd
9-wait for kbd to clear
10-enable interrupts

There ya go, 10 easy steps :) If you need any help on this, just check out the provided
example code. Moving on.

This step is by far the easiest of them all. All you do is set the proper values
and call int 0x13. All assignment values are shown here. Here is a quick set of
instructions to follow for you to make your own loader code. Just set following
registers to appropriate values:

after all of the register are set, you can call interrupt 13h.

When you read in the kernel, you have to read at least the whole file size of the kernel.bin.
Example, my kernel is, oh say, 1KB. That means I have to read in 2 sectors because 1 sector is 512
btyes and 2 * 512 bytes = 1024 bytes or 1KB.

Remember that different storage devices have different dimensions, so be careful to pay close
attention to what you use to load the kernel. A weird thing that happens sometimes when you read in
more than 18 sectors at a time and read again is that BIOS trashes some registers. So don't forget
to reset ALL registers for each read.

Two things that are a must to jump in to your 32-bit kernel are a piece O' pie to setup.
For the stack, all you do is setup its memory position, like so:

Loading the kernel

ah BIOS function(2)
al number of sectors to read into memory
es:bx segment:offset of memory location
ch track number
cl starting sector
dh head number
dl drive number
ah (on error)sectors that were read in

Setup basic Stack/temp GDT

In Asm:
mov ax,0x100
mov ss,ax
mov sp,0x200

You may need to know that the stack counts down, toward 0, so sp = 0x200 means that the stack
is 512 bytes long. SS = memory segment of stack and SP = pointer/offset/size of stack.

Next we have the GDT(Note:you may have heard of some people loading the IDT in the bootsector.
We will not do this because there is no visible advantage to doing it now). The GDT(Global Descriptor
Table) is a table with structures for memory setup. Each GDT entry contains the following:

Limit: This is the limit address of the Pmode Segment (ie-0xFFFFF)
Base: This is the base address of the Pmode Segment (ie-0x0)
Type: This conatins the type of Segment it is (ie-code/data/writable/readable/stack/ring3..0)
Flags: Another set of options like 32bit or 16bit

Present: Tells whther Segment is present or not
DPL: Descriptor Privilege Levevl (ring3..0)
Segment Type: Tells what kind of segment it is (ie-System=1)
C/D: Tells whether segment is code or data segment
Expand-Down: Tells whether segment expands up or down in memory
Write: Is the segment writable or read-only?
Accessed: Every time the segment is accessed this bit is set

Once you have at least a code and data segment, alls you need to do is load the data with
a pointer. The GDTR(GDT register) holds this data. You can load the data to it with a special
command, but first, let me show you exactly what the data looks like.

In Asm:
GDTR:
GDTsize DW 0x10 ; limit

SS SP Linear Address
0x0100:0x0200 = 0x1200

GDT Entry Table
Lowest Byte Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Highest Byte
Limit Limit Base Base Base Type Flags & Limit Base
[0-7] [8-15] [0-7] [8-15] [16-23] [24-31]

Type Byte Table
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
P DPL S C/D E W A
 2 bits The Type Nibble

GDTbase DD 0x50 ; base address

This means that our GDT will begin at 0x500 and span 0x10 bytes. After that, you load it
with this command:

In Asm:
lgdt[GDTR]

Then you're all ready to enter Pmode and jump into your kernel code. Remember that this is
only the temperary GDT. One thing, the GDT is special in that it requires a null entry before
all others. This 'null' entry is simple to create:

In Asm:
NULL_SEL
DD 0
DD 0

Ok, one MORE thing, another name for a GDT entry is a selector. This is because it selects
memory, in plainest terms :)

Another very easy, short, and simple step in the bootloader. All you need to do is change
a bit in cr3(control register 3). Take a look at the steps.

Enabling Pmode:
1-get cr0's current value
2-OR it by 1(bit 1[00000001] is the Pmode bit)
3-save new data to cr3

Hey, hey! "It's Easy as A B C,1 2 3". This will allow protection levels for your OS. Ring 0
is the highest level and ring 3 is the lowest. Think of it this way, the lower the ring, the less
bull-crap the cpu gives you about hardware access. The most significant effect of Pmode is that
it allows you to access up to a whopping 4GB of memory. That's a whole 4,294,967,296 bytes!!! I
know I won't have that much RAM till one of two things ocurr:

For me to have >=4GB RAM:
1-1GB chips are up for wholesale
2-Bill Gates adopts me

Ahh, the most exciting moment in OSdev, seeing your hard work workin' for you. In this section

Entering Protected Mode

Next Goal:Kernel entry

I will only briefly discuss how to jump into the kernel. It is up to you to study the provided code
and to understand it(it is well commented, I coded it myself).

After enabling pmode and loading the GDTR, jump into the kernel at the address where you loaded
it at. For example, if I loaded it to 0x5000 linear I would use my Code Selector from the GDT to jump
to it.

In Asm:
jmp CODESEL:0x5000

In Asm(usually CODESEL=0x08):
jmp 0x08:0x5000

That doesn't mean segment 0x08, because in Pmode it means the offset to the selector in the GDT.
This will not be enough to load a kernel. Read on to the next chapter where it is explained more.There
is still a linker script that has to be used to load all code correctly. Then we need code that calls
the kernel function:

In Asm:
[bits 32] ; 32bit code here
[global start] ; start is a global function
[extern _k_main] ; this is the kernel function
start:
call _k_main ; jump to k_main() in kernel.c
hlt ; halt the cpu

It is probably a better idea to read the next chapter and see how it is done there. Comment out the
asm jmp command for now. That way it only loads "nothing" and doesn't try to run it.

And there ya go. If all goes as planned you will have a very simple 32bit Pmode kernel loaded up(well,
at least a simple 32bit bootloader). :)

What fun would it be to have a bootloader with just code? Let's run this bad boy and see how 'bad' you
did :) First things first: get the bootloader assembly file and save it as, oh say, boot.asm. Now run this
command in windows.

In Win:
nasm -f bin boot.asm

There really is no difference between linux and windows, just get nasm for linux (or whatever other
supported platform) and compile boot.asm with the same parameters. This command will output a
binary file
call 'boot' usually without a 'bin' extension. If you want a 'bin' extension just do this:

In Win:
nasm -f bin boot.asm -o boot.bin

Compiling the Bootloader

By the way, '-f' = format and '-o' = output. Ok, now take that file and use something like rawrite or
similar and write it to sector 1 of the floppy. Stick that bad boy into a real PC and hope it boots right :)
It would be a good idea to have some kind of output to make sure it works like the source example has.

If you want to use bochs to run the binary file, then look at the example source code. It is easier to
explain by example than for me to try to explain it to you. Also, read the bochs' readme file. That
always
helps :)

