
Xosdev Chapter 2 [Basic Kernel] - by mr. xsism

- - - - - - - - - - - -
[Planning/Setting goals]
- - - - - - - - - - - -
 Congrats, you have gotten farther than many people that have tried
 OSdev. So what now? Now you start to see the results of your hard work;
you load the kernel. "Wow," I hear you say, "that can't be too hard :)."
Well, it is and it isn't. If you keep it simple and use C it'll be a
piece of pie. If you use C++, it just might be hell. You have to load
class, new, and delete support to name a few, where as in C you don't
because everything can be made into asm without having to add support
for it. I know of a few people that use C++ and they like it. It is up
to you to research C++ kernel dev. From here it is all ahead full :)

 First we need some code that will be loaded by our bootloader.
Something like this:

In C:
void k_main()
{
 int num;
 char ch;
 char *str="Kernel Loaded";
 return;
}

 All that does is declare 3 variables and returns. That's just
fine and dandy. Here are some other things that we can do:

1-output "Hello, World"
2-clear the screen
3-output colored text to the screen

- - - - - - - - - - - - - - -
[First goal: Displaying text]
- - - - - - - - - - - - - - -
 No screen output, what's the fun in that?? Nothing >:/ What we
need is Screen I/O. It has to be the easiest thing to code in the
kernel. Just involves righting a simple ascii character to screen's
memory and the character's color.

 The way that you do this is simply by placing an ascii byte
for the character followed by its attribute at 0xB8000. You don't
always put it there, because each time you print one character you
should increment the text pointer by two(char byte + attrib byte).

In C:
void _k_main()
{
 int num;
 char ch;

 char *text_video = (char*)0xB8000;
 char attrib = 0x07;
 char *str="Kernel Loaded";

 while(*str!=0)
 {
 *text_video = *str;
 *text_video++;
 *text_video = attrib;
 *text_video++;
 *str++;
 }
 return;
}

- - - - - - - - -
[Clearing screen]
- - - - - - - - -

 Clearing the screen is another very easy task involving the
text pointer. For each ascii character in text video, just set it
to zero and the attribute byte to the current attribute.

In C:
void clear_screen(char clear_to, char attrib)
{
 char *text_video = (char*)0xB8000;
 int pos=0;

 while(pos<(80*25*2))
 {
 *text_video = clear_to;
 *text_video++;
 *text_video = attrib;
 *str++;
 pos++;
 }
}

 You could just set the char to null and the attribute to 0x07
(white on black), but I did the most complicated for you. Now, about
attributes. What are they!?

- - - - - - - - - - - - - -
[Text colors 'n' attributes]
- - - - - - - - - - - - - -
 Let's get started by giving all the supported text colors &
attributes:

-{TEXT COLORS}-
 FG AND BG
 0 = black
 1 = blue
 2 = green
 3 = cyan
 4 = red
 5 = magenta
 6 = brown
 7 = white (standard text color)
 FG ONLY
 8 = dark grey
 9 = bright blue

 10 = bright green
 11 = bright cyan
 12 = pink
 13 = bright magenta
 14 = yellow
 15 = bright white
 [IBBBFFFF] binary
 I = Intensity (blink)
 B = Background
 F = Foreground

 Ok, so that's really nice, a bunch of friggin' numbers! What
are we supposed to do with that!? Let's find out through example.
0x07 is White on Black. That means that the text is white and the
background color is black. Well how about that! Those numbers match
up with the right colors on our list. Okay, well, say we want red
text and white background. What would that number be in hex? Well,
red = 4 and white = 7. So then it would be 0x74.

 There are a couple strange things that you migth be wondering
about. For instance, why can colors 8-15 be only in the foreground?
Well, if you were to have read the whole list you would have seen
one very inportant point! Text can be blinking. How does it blink?
It all depends on whether one bit is set. That one bit happens to
be in the background WORD. See, look:

blink bg fg
 \ _/ _/_
 IBBBFFFF
 I = Intensity (blink)
 B = Background
 F = Foreground

 111 in bin is only 7. That means that to make room for the
blinker bit, you can only use the first 7 colors in our list. Is
that so hard to understand? I hope not. If it is, don't think about
it too long, you might hurt yourself.

- - - - - - - - - - - -
[Compiling the Kernel]
- - - - - - - - - - - -
 Ahhh, yes. Compiling the bootloader was easy, right? You did
read the first chapter, right!? Well, all that this involves is
compiling the C source code, linking it all together, and then
copying the bootloader to the very from of the kernel object.
This will give a kernel image that you can write too a bootable
device, like a floppy disk. Let me make this even easier for you:

-{Step by Step}-
1-compile all *.c files
>gcc *.c

2-compile all asm files into a format like aout (not bin, C doesn't
 output to bin by default)
>nasm *.asm -f aout

3-link all C files and asm files together into a file(ie:kernel.o)
>ld -T linkscript.ld -o kernel.o a.o b.o c.o

4-compile & copy the bootloader to the front of the kernel object
 file(ie:kernel.img)
>nasm boot.asm
>copy /b boot.bin+kernel.o kernel.img

5-write the image file to a bootable device(ie:floppy disk)
>floppyout kernel.img a: -sector 0 -head 0 -track 0

6-now take that bootable device and put it in a microwave oven for
 30 seconds, wait for it to melt, and enjoy!
+-------------------------+
		===========		[00:30]
				7 8 9
				4 5 6
				1 2 3
				X 0 X
		===========		(start)
+-------------------------+
 _/ _/

 Ok, are you awake? I hope you dismissed step 6(if not please
notify me so i can bash you over your head). I hope this was adequate
enough for you. If you need more help, look at the given example code
for this chapter.

