High level Languages and Operating Systems in Computers Interfacing

1of6

High level Languages and 10 Access in Computer Interfacing
Administrivia: HOWTO pages on the web.

Introduction to HLL

Peripherals can be accessed from assembly language and can also be accessed from High Level Languages
(HLL) such as C. There are advantages to both approaches and, in fact, we generally use a mixture of C and
Assembler in operating system programming and peripheral interfacing.

Background: The C language

C was originally written to help develop operating systems. Dennis Ritchie designed it for UNIX. The UNIX
0OS, the C compiler itself and most UNIX application programs were (and still are) written in C or its direct
descendant C++. You can contemplate the self-referential aspects of an operating system, running an
application program which is a compiler which is being used to create the operating system.

C is "a general purpose programming language which features economy of expression, modern flow control
and data structures" (Kernighan & Ritchie, The C Programming Language, 1978, Preface. Commonly
known as "K&R". If you believe in reading the original source documents and so choose to read the original
K&R note that the Preface also states, "This book is not an introductory programming manual." This
statement is correct. The book's style is as terse and to the point as the C language itself. In other words, once
you understand C it is interesting and useful to read K&R to explore the fundamental definition of the
language.

The C/C++ language is still the dominant language in systems development today. Java is also a direct
descendant of C./C++ it uses a very similar syntax and programming style.

Accessing peripherals in various operating systems

Accessing /0 is, or should be, a function of the operating system. Experts have mixed feelings about I/O
access. Stallings (p471) says, "Perhaps the messiest parts of the design of an operating system deal with the
I/O facility and the file management system. ... The I/O facility is truly the performance battleground.",

while Tannenbaum (p205) says, "One of the main functions of an operating system is to control all the
computer's input/output devices." Many programmers would like to ignore hardware completely. Some CS
proponents go so far as to claim that hardware can be ignored in system design. This point of view is not
supportable in an IT context. Not only is the hardware a major determining factor in system performance, it is
also the bottleneck in communications and in Human Computer Interfacing and therefore is certainly an area
which requires attention.

It should be noted that there is a significant difference among peripheral 10 devices and systems. For example

the table in Chapter 11 of Stallings (fig 11.1) shows data rates that vary from 10 bps to 10° bps. These
differences in bandwidth (and related latency differences) lead to significant differences in the approaches we
use to accessing the relevant peripherals. However there are both high level and low-level common issues
with interfacing devices which can be identified and discussed. We will consider these issues for different
operating systems and several different types of device.

MS-DOS device interfacing

Interfacing hardware, OS and applications under DOS follows this simple model.



High level Languages and Operating Systems in Computers Interfacing

20f6

Hardware

(memory, <=====> DOS/BIOS <======> Applications
I/0 peripherals |
etc.) <—mmm— e +

bypasses the DOS/BIOS system

The OS is designed for applications to access the hardware through DOS/BIOS interrupts and calls. (INT
10/16/21 etc.) It is well-known that this can give poor (slow) performance and so traditionally many SW
houses wrote their own code to access the HW (as we have done) and that code by-passes the OS.

This can be taken to extremes. At a time when WordPerfect controlled more than 50% of the word processing
market they used to supply drivers for just about every printer and graphics card ever made. The printer and
graphics drivers occupied as many disks as the program itself and were constantly being updated. They had
complete teams of programmers writing new drivers for new printers and graphics cards as they were
manufactured. Thus WP had the best and fastest interface to your monitor and printer but at a very high cost.
The skilled programmers developing new driver code were not developing new WP code.

Bypassing the OS to reach the hardware can solve the performance problem but unfortunately it buys us a
much bigger problem, especially for multi-tasking systems; namely there can be multiple users contending for
the same resources. The OS should manage this process but cannot if it has been by-passed. If there are
multiple users contending for resources then deadlock is possible.

What is Deadlock?

Deadlock: When more than one task needs resources they can end up waiting indefinitely for them. For
example, if task A needs resources R1 and R2 and already has control of R1 and task B also needs resources
R1 & R2 and already has control of R2 they are locked in a "deadly embrace" or "deadlocked". This manifests
itself to the user as one of the ways your system can hang. See Stallings section 6.1, 6.2 and 6.3 for a
discussion of deadlock and how to avoid or prevent it. Also Liu (pages 280-295) below for a detailed
discussion of how to handle deadlock in real-time systems.

To return to the WP example. WP wrote their own "print spooler"” routines which would allow your printer to
run in the background while you continued to work. This was a neat piece of pseudo-multitasking code at a
time when multitasking was not readily available on the DOS-based PC. When Windows started to dominate
the scene Microsoft wisely unloaded the problem of creating drivers for the myriad peripherals onto the
peripheral manufactures and started to provide multitasking capabilities within Windows.

In later incarnations of DOS, such as WinXX, and also in other systems such as UNIX/Linux, protection of
the system was provided for by allowing programs only to run in a protected space. The OS cannot be
bypassed. If any program tries to access anything outside its dynamically allocated memory space an
exception (error) is generated. The program cannot access the hardware directly at all.

Insert diagram showing concentric circles. from outside to in Users / Applications / Utilities and services /
Kernel / hardware.

The problem with this diagram is it gives the impression that hardware is encapsulated and static (could turn
it inside out?). It also ignores the fact that Users interface with the system through hardware. As pervasive
computing develops users interface in increasingly different ways with the system - Voice, handwriting,
gestures, eye-tracking, etc. Twenty years ago we had keyboard screen. The mouse, trackball, glidepoint,
torsion-stick, joystick, touch-screen, lightpen, barcode, sketchpen-tablet interfaces were considered radical



High level Languages and Operating Systems in Computers Interfacing

30f6

and far fetched. they are now common.

Modern CPUs have architectures that support systems like this with functions like protected memory. In
Wintel architectures these are called "Rings". Ring 0 has the highest (Kernel) access, Ring 3 has the lowest
(user) access. Rings 1 and 2 are not commonly used. In the DEC Alpha CPU architecture there two modes
simply called "kernel" and "user"

When applications need to access a peripheral device they access a device driver under control of the OS. The
device driver can access the hardware. The OS and devices driver are written to prevent hardware conflicts.

Device drivers allow for separation of the operating system and the hardware. Thus you can have an operating
system which can run on many different types of hardware. Similarly the operating system (kernel) and the
device drivers together present a uniform interface to the applications. The applications do not have to adapt
for different hardware or devices, they merely send and receive data from the OS/device driver. Application
programmers design applications with little or no knowledge of hardware. On the other hand peripheral
designers don't have to design applications, they merely provide a standardized interface (device driver) for
the OS.

So writing code to access hardware is a process of writing device drivers that will be loaded and will run
under control of the OS.

In Linux for example we have

Applications <===> KERNEL <===> (Virtual <===> Drivers w.
in allocated File System) HW access
memory

Linux/UNIX sees all devices as (virtual) files.

How to design 1/0 access code

Three concepts of access:

1. Programmed: Issue a command and wait for a response.
2. Interrupt-driven: Issue a command and an interrupt from the I/O device will signal completion.
3. DMA: Send a request for data. The block is DMA transferred and then an interrupt occurs.

1. Programmed: In this approach every time something is needed from a peripheral the software sends a
command to the peripheral and waits for a response. Programming is explicit. Timing is controlled directly by
the code. Flags may be used to allow multitasking but interrupts are not used.

2. Interrupt driven: The peripheral is set up to generate interrupts when it needs attention. Thus the peripheral
rather than the main program code is in control of the I/O function. If data is being sent out then usually data
is put in a buffer and the peripheral is started., When the peripheral is ready for more data it interrupts the
main program. Software is more difficult to write and debug because the interrupts are asynchronous with
respect to the main program.

3. DMA is usually used for high speed data transfer. the transfer from peripheral to memory (ram) takes place
without the intervention of the CPU. Care needs to be taken to ensure that data is appropriately synchronized.
Since the CPU is not controlling when the data arrives in RAM some mechanism is required to guarantee the
validity of the data in the memory when the CPU needs to use it.



High level Languages and Operating Systems in Computers Interfacing

4 of 6

Appendices

- Re-entrant routines

- HLL in tiny systems

- Mixing C and ASM

- Borland C/C++ IDE notes
- Linux device drivers

- Windows Device drivers

Reentrant Routines: An additional consideration that becomes important, especially with multithreaded
systems is reentrancy. A reentrant routine is one which can be called by multiple processes at the same time
(before it has finished executing) without getting confused. The routine allocates a separate data area for each
user or process that calls it. It only changes data in that area and never changes data or flags within the
program which could confuse a subsequent call to the routine. Thus if the routine is interrupted and called by
a subsequent user before it is finished with one user it saves all the first user's data and creates a new data
space for the interrupting user. When permitted to do so (by the OS) it reenters the first user's data area and
continues executing its code.

DOS and BIOS interrupts are not reentrant. This is one reason why DOS cannot be used for multitasking.
UNIX/Linux and WinNT having been designed as multitasking systems support re-entrancy much better.

HLL in Tiny Systems

Most interface programming in current IT practice is done in C. Originally computers and memory were
expensive and programmers were cheap. The pendulum swung the other way, hardware became cheap and
large memories on small devices became more practical. HLL's became very cost effective. The situation is
now more complex. Either computers or programmers could be expensive in different situations. Discuss. C,
however, is a very efficient language, much more structured than ASM and suitable for all but the tiniest of
embedded systems.

Relationship between C and machine level access. Discuss.

How to access hardware in DOS using C and ASM: Summary of mixing machine level access with
High-level language (HLL)

e Write ASM modules, assemble to OBJ and link with HLL OBJ modules
e Write single ASM commands or complete ASM subroutines inside C using the asm{} keyword.
e Access machine level peripherals using special HLL keywords/functions such as inpw(), inport(),outp(
), outportb() for IN and OUT,
access memory bytes directly with peek() and poke()
int86(), intdosx(), intr() for interrupt calls and your own interrupts,
and so on. See the Borland C help files for further details.

See attached example of sending a tone via 8254 timer and timer-control PPI
Notes: Borland C/C++ compiler (DOS)
1. Pressing F1 while inside Borland C displays the Help menu.

2. Highlighting a function (or part of one) and pressing Ctrl-F1 takes you to the Help page for that
function. Many Help pages include working examples of code.



High level Languages and Operating Systems in Computers Interfacing

50f6

How to access hardware in Linux - Device Drivers: Different types of devices are defined. UNIX has
character and block devices. See /dev. Character is byte-by-byte sequential (think of a tape), block is random
access and in multiples of the block size (non-multiples are possible in UNIX). E.G. printer=char,
HDD=block.

See Stones and Matthew, "Beginning Linux programming" 2nd ed. chapter 21 for more detail.

Writing device drivers for Linux is similar in approach to writing device drivers for DOS but there are a
number of conventions and OS considerations to be taken into account. The Kernel does not directly access
memory or I/O by address and so the device drivers (DDs) have to translate actual addresses to
OS-compatible virtual addresses. The DDs also need to do kernel based operations such as checking whether
a particular device is already in use before taking it and then registering the fact that they have it. When the
DD is finished it must release the device so other DDs can seize it.

Linux typically recognizes character and block devices. Character devices are typically things like serial and
parallel ports, keyboards etc. Block devices are read in blocks and are typically things like disk drives

Accessing I/0O in Linux using existing device drivers

e [t is usually necessary to change the permissions on the device (ttyS0) to allow user-written programs
to have access to it.

e joctl() allows access to devices. Use info ioctl in Linux for more information.

e outp() and related functions exist but requires kernel level access (root privileges). This cannot be used
for writing general purpose programs.

Example: See Serial programming Guide. in chapter 1, "Accessing the Serial Port." Also see chapter 2 for
examples of using bit-identifier to set and clear option bits and chapter 4 for examples or ioctl(), general
purpose IO control.

Interrupt handlers also negotiate with the kernel. The interrupt handler registers the IRQ it is using, disable
interrupts while accessing critical sections and appropriately signal the kernel when it is used.

Windows Device Drivers: In Windows NT systems there are three types of device drivers. They are: Virtual
Device drivers, GDI drivers and kernel mode drivers. Virtual device drivers allow 16 bit apps to think they
are accessing hardware but all they are doing is passing the hardware request to a special kernel-mode driver.
GDI drivers are graphics card specific. Kernel mode drivers are similar in concept to the Linux drivers
described above. See the WinNT FAQ in the references below for details. The presentation by Chuck Berg
(see below) contains good general advice for driver development.

Summary: In summary, interrupt handlers and device drivers for DOS , UNIX, WinXX and other OS's have
many similarities. They all access the hardware and thus require knowledge of the system hardware
configuration to write. They are all hardware and OS specific. Thus moving a program from one OS or
hardware base to another always requires a new device driver. Run-time spent inside drivers or interrupt
handlers is precious as you typically have the undivided attention of the CPU while you are busy. Spend as
little time as possible there and off-load processing tasks to application level programs. Device drivers for
multithreading/multitasking systems are more complex than those for single tasking systems and must
negotiate with their respective OS's to protect against resource contention. C is the commonest language used
for writing interrupt handlers and device drivers with assembly code or constructs mixed in.

Problems

1. What is "device independence."



High level Languages and Operating Systems in Computers Interfacing

6 of 6

2. What is the relationship between hardware development time and device driver development time? (See
Chuck berg presentation)

3. The outp() function, used with root level access privileges, allows you to access the hardware very
directly.. Describe two problems with using outp() for writing device drivers in multitasking systems.

References:

Kernel Mode systems:: NT Driver Resources:: FAQ for writing WinNT drivers. May 1999.
http://www.cmkrnl.com/faq01.html

Chuck Berg, PCI System Design Series Workshop (PCI Hardware/software (driver) design considerations),
Powerpoint presentation 99/08/04. http://www.cmkrnl.com/files/SwForPciHwDes/index.htm

Liu, Jane W. S. Real Time Systems Prentice Hall, 2000.

Michael K. Johnson. Writing Linux Device Drivers1995 http://people.redhat.com/johnsonm/devices.html

Stallings, William. Operating Principles, Internals and Design Principles.4th Ed. Prentice Hall, 2001.
Stones, Richard and Matthew, Neil. Beginning Linux Programming 2nd Ed. Wrox Press, July 2000.

Tannenbaum, Andrew S. Modern operating Systems Prentice Hall, 1992



