Occultation

From Wikipedia, the free encyclopedia

Jump to: navigation, search
In twelver Shi'ism the occultation is the name given to the disappearance of the Twelfth Imam. See also occult (disambiguation).


In this July, 1997 still frame captured from video, the bright star Aldebaran has just reappeared on the dark limb of the waning crescent moon in this predawn occultation.
In this July, 1997 still frame captured from video, the bright star Aldebaran has just reappeared on the dark limb of the waning crescent moon in this predawn occultation.

An occultation is an event that occurs when one object is hidden by another object that passes between it and the observer. The word is used in astronomy (see below) and can also be used in a general (non-astronomical) sense to describe when an object in the foreground occults (covers up) objects in the background. In the general sense, occultation applies to the visual scene from low-flying aircraft and in Computer-Generated Imagery (CGI) technology, where foreground objects obscure distant ones in a dynamic way as the scene changes.

Astronomical events. These include transits and eclipses. The word transit refers to cases where the nearer object appears smaller in apparent size than the more distant object, such as transit of Mercury or Venus across the Sun's disk. The word eclipse generally refers to those instances in which one object moves into the shadow of another. Each of these three events is the visible effect of a syzygy.

Every time an occultation occurs, an eclipse also occurs. Consider a so-called "eclipse" of the Sun by the Moon, as seen from Earth. In this event, the Moon physically moves between Earth and the Sun, thus blocking out a portion or all of the bright disk of the Sun. Although this phenomenon is usually referred to as an "eclipse", this term is a misnomer, because the Moon is not eclipsing the Sun; instead the Moon is occulting the Sun. When the Moon occults the Sun, it casts a small shadow on the surface of the Earth, and therefore the Moon's shadow is partially eclipsing Earth. So a so-called "solar eclipse" actually consists of (i) an occultation of the Sun by the Moon, as seen from Earth, and (ii) a partial eclipse of Earth by the Moon's shadow.

By contrast, an "eclipse" of the Moon is in fact a true eclipse: the Moon moves into the shadow cast back into space by Earth, and is said to be eclipsed by Earth's shadow. As seen from the surface of the Moon, Earth passes directly between the Moon and the Sun, thus blocking or occulting the Sun as seen by a hypothetical lunar observer. Again, every eclipse also entails an occultation.

Contents

[edit] Occultations by the Moon

Occultation of a star by the Moon
Occultation of a star by the Moon

The term occultation is most frequently used to describe those relatively frequent occasions when the Moon passes in front of a star during the course of its orbital motion around the Earth. Since the Moon has no atmosphere and stars have no appreciable angular size, a star that is occulted by the moon will disappear or reappear very nearly instantaneously on the moon's edge, or limb. Events that take place on the Moon's dark limb are of particular interest to observers, because the lack of glare allows these occultations to more easily be observed and timed.

The Moon's orbit is inclined to the ecliptic (see orbit of the Moon), and any stars with an ecliptic latitude of less than about 6.5 degrees may be occulted by it. There are three first magnitude stars that are sufficiently close to the ecliptic that they may be occulted by the Moon and by planets -- Regulus, Spica and Antares. Occultations of Aldebaran are presently only possible by the Moon, because the planets pass Aldebaran to the north. Neither planetary nor lunar occultations of Pollux are currently possible. However, in the far future, occultations of Aldebaran and Pollux will be possible, as they were in the far past.

Jupiter (the bright object in the upper right) a few minutes before being occulted by the Moon on June 7, 2005
Jupiter (the bright object in the upper right) a few minutes before being occulted by the Moon on June 7, 2005

Within a few kilometres of the edge of an occultation's predicted path, referred to as its northern or southern limit, an observer may see the star intermittently disappearing and reappearing as the irregular limb of the Moon moves past the star, creating what is known as a Grazing lunar occultation. From an observational and scientific standpoint, these "grazes" are the most dynamic and interesting of lunar occultations.

The accurate timing of lunar occultations is performed regularly by (primarily amateur) astronomers. Lunar occultations timed to an accuracy of a few tenths of a second have various scientific uses, particularly in refining our knowledge of lunar topography. Photoelectric analysis of lunar occultations have also discovered some stars to be very close visual or spectroscopic binaries. Early radio astronomers found occultations of radio sources by the Moon valuable for determining their exact positions, because the long wavelength of radio waves limited the resolution available through direct observation.

Several times during the year, someone on Earth can usually observe the Moon occulting a planet. Since planets, unlike stars, have significant angular sizes, lunar occultations of planets will create a narrow zone on earth from which a partial occultation of the planet will occur. An observer located within that narrow zone could observe the planet's disk partly blocked by the slowly moving moon.

On the 20th of January 2007, an occultation of Venus by the Moon was seen on the southern tip of Africa.

On 3rd of February 2007, an occultation of Saturn by the Moon was seen.

[edit] Occultation by planets

Stars may also be occulted by planets. In 1959, Venus occulted Regulus. Uranus' rings were first discovered when that planet occulted a star in 1977. On the evening of July 2-July 3, 1989, Saturn passed in front of the 5th magnitude star 28 Sagittarii. Pluto, which was re-designated as a "dwarf planet" in 2006, occulted stars in 1988, 2002, and 2006, allowing its tenuous atmosphere to be studied.

It is also possible for one planet to occult another planet. However, these mutual occultations of planets are extremely rare. The last such event occurred on January 3, 1818 and will next occur on November 22, 2065, in both cases involving the same two planets -- Venus and Jupiter. Technically speaking, when the foreground planet is smaller in apparent size than the background planet, the event should be called a "mutual planetary transit." When the foreground planet is larger in apparent size than the background planet, the event should be called a "mutual planetary occultation." (See Transit for a list of past and future events).

A grazing occultation of Rhea, a moon of Saturn, by another moon, Dione
A grazing occultation of Rhea, a moon of Saturn, by another moon, Dione

Twice during the orbital cycles of Jupiter and Saturn, the equatorial (and satellite) planes of those planets are aligned with earth's orbital plane, resulting in a series of mutual occultations and eclipses between the moons of these giant planets. These orbital alignments have also occurred artificially when unmanned spacecraft have traversed these planetary systems, resulting in photographs such as the one shown here. The terms "eclipse," "occultation" and "transit" are also used to describe these events. A satellite of Jupiter (for example) may be eclipsed (i.e. made dimmer because it moves into Jupiter's shadow), occulted (i.e. hidden from view because Jupiter lies on our line of sight), or may transit (i.e. pass in front of) Jupiter's disk.

[edit] Double occultations

It is possible that the moon or another celestial body can occult multiple celestial bodies at the same time. Such events are extremely rare and can be seen only from a small part of the world. The last event of such type was on April 23rd, 1998 when the moon occulted Venus and Jupiter simultaneously for observers on Ascension Island.

[edit] Occulting satellites

The Big Occulting Steerable Satellite (BOSS) was a proposed satellite that would work in conjunction with a telescope to detect planets around distant stars. The satellite consists of a large, very lightweight sheet, and a set of maneuvering thrusters and navigation systems. It would maneuver to a position along the line of sight between the telescope and a nearby star. The satellite would thereby block the radiation from the star, permitting the orbiting planets to be observed.[1]

The proposed satellite would have a dimension of 70 m × 70 m, a mass of about 600 kg, and maneuver by means of an ion drive engine in combination with using the sheet as a light sail. Positioned at a distance of 100,000 km from the telescope, it would block more than 99.998% of the starlight.

There are two possible configurations of this satellite. The first would work with a space telescope, most likely positioned near the Earth's L2 Lagrangian point. The second would place the satellite in a highly elliptical orbit about the Earth, and work in conjunction with a ground telescope. At the apogee of the orbit, the satellite would remain relatively stationary with respect to the ground, allowing longer exposure times.

An updated version of this design is called the Starshade, which uses a sunflower-shaped coronagraph disc. A comparable proposal was also made for a satellite to occult bright X-ray sources, called an X-ray Occulting Steerable Satellite or XOSS.[2]

[edit] Occultations and transits between 1800 and 2100

This table lists occultations and transits of bright stars and planets by solar planets.

Day Time (UT) Foreground planet Background object Elongation
December 9, 1802 7:36 Mercury Acrab 16,2° West
December 9, 1808 20:34 Mercury Saturn 20,3° West
December 22, 1810 6:32 Venus Xi-2 Sagittarii 11,1° East
January 3, 1818 21:52 Venus Jupiter 16,5° West
July 11, 1825 9:10 Venus Delta-1 Tauri 44,4° West
July 11, 1837 12:50 Mercury Eta Geminorum 17,8° West
May 9, 1841 19:35 Venus 17 Tauri 9,2° East
September 27, 1843 18:00 Venus Eta Virginis 3,2° West
December 16, 1850 11:28 Mercury Lambda Sagittarii 10,2° East
May 22, 1855 5:04 Venus Epsilon Geminorum 37,4° East
June 30, 1857 0:25 Saturn Delta Geminorum 8,4° East
December 5th, 1865 14:20 Mercury Lambda Sagittarii 21,0° East
February 28, 1876 5:13 Jupiter Acrab 97,6° West
June 7, 1881 20:54 Mercury Epsilon Geminorum 21,2° East
December 9, 1906 17:40 Venus Acrab 14,9° West
July 27, 1910 2:53 Venus Eta Geminorum 31,0° West
December 16, 1937 18:38 Mercury Omicron Sagittarii 11,6° East
June 10, 1940 2:21 Mercury Epsilon Geminorum 20,1° East
October 25, 1947 1:45 Venus Zuben-el-genubi 13,5° East
July 7, 1959 14:30 Venus Regulus 44,5° East
September 27, 1965 15:30 Mercury Eta Virginis 2.6° West
May 13, 1971 20:00 Jupiter Beta Scorpii (both components) 169,5° West
April 8, 1976 1:00 Mars Epsilon Geminorum 81,3° East
November 17, 1981 14:27 Venus Nunki 47,0° East
November 19, 1984 1:32 Venus Lambda Sagittarii 39,2° East
December 4, 2015 16.14Uhr Mercury Theta Ophiuchi 9,6° East
February 17, 2035 15:19 Venus Pi Sagittarii 42,1° West
October 1, 2044 22:00 Venus Regulus 38,9° West
February 23, 2046 19:24 Venus Rho-1 Sagittarii 45,4° West
November 10, 2052 7:20 Mercury Zuben-el-genubi 2,8° West
November 22, 2065 12:45 Venus Jupiter 7,9° West
July 15, 2067 11:56 Mercury Neptune 18,4° West
August 10, 2069 20.25Uhr Venus Zavijava 38,4° East
October 3, 2078 22:00 Mars Theta Ophiuchi 71,4° East
August 11, 2079 1:30 Mercury Mars 11,3° West
October 27, 2088 13:43 Mercury Jupiter 4,7° West
April 7, 2094 10:48 Mercury Jupiter 1,8° West

These events are not visible everywhere the occulting body and the occulted body are above the skyline. Some events are barely visible, because they take place in close proximity to the Sun.

[edit] Mutual planetary transits and occultations

In rare cases, one planet can transit in front of another. The next time this will happen (as seen from Earth) will be on November 22, 2065 at about 12:43 UTC, when Venus near superior conjunction (with an angular diameter of 10.6") will transit in front of Jupiter (with an angular diameter of 30.9"); however, this will take place only 8° west of the Sun, and will therefore not be visible to the unaided/unprotected eye. When the nearer object has a larger angular diameter than the farther object, thus covering it completely, the event is not a transit but an occultation. Before transiting Jupiter, Venus will occult Jupiter's moon Ganymede at around 11:24 UTC as seen from some southernmost parts of Earth. Parallax will cause actual observed times to vary by a few minutes, depending on the precise location of the observer.

There are only 18 mutual planetary transits and occultations as seen from Earth between 1700 and 2200. Note the long break of events between 1818 and 2065.

  • 19 September 1702 - Jupiter occults Neptune
  • 20 July 1705 - Mercury transits Jupiter
  • 14 July 1708 - Mercury occults Uranus
A simulation of Venus transiting Jupiter, as it did on January 3, 1818.
A simulation of Venus transiting Jupiter, as it did on January 3, 1818.
  • 4 October 1708 - Mercury transits Jupiter
  • 28 May 1737 - Venus occults Mercury
  • 29 August 1771 - Venus transits Saturn
  • 21 July 1793 - Mercury occults Uranus
  • 9 December 1808 - Mercury transits Saturn
  • 3 January 1818 - Venus transits Jupiter
  • 22 November 2065 - Venus transits Jupiter
  • 15 July 2067 - Mercury occults Neptune
  • 11 August 2079 - Mercury occults Mars
  • 27 October 2088 - Mercury transits Jupiter
  • 7 April 2094 - Mercury transits Jupiter
  • 21 August 2104 - Venus occults Neptune
  • 14 September 2123 - Venus transits Jupiter
  • 29 July 2126 - Mercury occults Mars
  • 3 December 2133 - Venus occults Mercury

The 1737 event was observed by John Bevis at Greenwich Observatory - it is the only detailed account of a mutual planetary occultation. A transit of Mars across Jupiter on 12 Sep 1170 was observed by the monk Gervase at Canterbury, and by Chinese astronomers. In addition, an occultation of Mars by Venus was observed by M. Möstlin at Heidelberg on October 3, 1590.

[edit] See also

[edit] References

  1. ^ C. J. Copi, G. D. Starkman (2000). "The Big Occulting Steerable Satellite (BOSS)". The Astrophysical Journal 532: 581-592. doi:10.1086/308525. Retrieved on 2007-02-04. 
  2. ^ The X-ray Occulting Steerable Satellite (XOSS). CASE. Retrieved on 2007-02-09.

[edit] External links

[edit] External references

  • Meeus, Jean: Astronomical Tables of the Sun, Moon and Planets. Richmond, Virginia: Willmann-Bell, Inc., 1995, ISBN 0-943396-45-X.
  • Marco Peuschel [1], Astronomische Tabellen für den Mond von 2007 bis 2016,Mondphasen, Apsiden, Knotendurchgänge, Maximale und minimale Deklinationswerte und Sternbedeckungen sowie ausführliche Ephemeriden für jeden Tag des Jahres , inkl. Mondauf-und Untergänge und physische Daten.
Personal tools