Reinforced concrete

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Reinforced concrete at Sainte Jeanne d'Arc Church (Nice, France): architect Jacques Dror, 1926–1933

Reinforced concrete is concrete in which steel reinforcement bars ("rebars") or fibers have been incorporated to strengthen a material that would otherwise be brittle. In industrialised countries, nearly all concrete used in construction is reinforced concrete.

Contents

[edit] History

The first example of reinforced concrete as a material for the construction of buildings took place in 1864 when William Boutland Wilkinson built a house in Newcastle-Upon-Tyne, UK. The German company Wayss & Freitag was formed in 1875, with A.G. Wayss publishing a book on reinforced concrete in 1887. Their major competitor in Europe was the firm of Francois Hennebique, set up in 1892.

A reinforced concrete system was patented in the United States by Thaddeus Hyatt in 1878. The first reinforced concrete building constructed in the United States was the Pacific Coast Borax Company's refinery in Alameda, California, built in 1893.

[edit] Use in construction

Concrete is reinforced to give it extra tensile strength; without reinforcement, many concrete buildings would not have been possible.

Reinforced concrete can encompass many types of structures and components, including slabs, walls, beams, columns, foundations, frames and more.

Reinforced concrete can be classified as precast concrete and cast in-situ concrete.

Much of the focus on reinforcing concrete is placed on floor systems. Designing and implementing the most efficient floor system is key to creating optimal building structures. Small changes in the design of a floor system can have significant impact on material costs, construction schedule, ultimate strength, operating costs, occupancy levels and end use of a building.

[edit] Behavior of reinforced concrete

[edit] Materials

Concrete is a mixture of cement (usually Portland cement) and stone aggregate. When mixed with a small amount of water, the cement hydrates form microscopic opaque crystal lattices encapsulating and locking the aggregate into a rigid structure. Typical concrete mixes have high resistance to compressive stresses (about 4,000 psi (27.5 MPa)); however, any appreciable tension (e.g. due to bending) will break the microscopic rigid lattice resulting in cracking and separation of the concrete. For this reason, typical non-reinforced concrete must be well supported to prevent the development of tension.

If a material with high strength in tension, such as steel, is placed in concrete, then the composite material, reinforced concrete, resists compression but also bending, and other direct tensile actions. A reinforced concrete section where the concrete resists the compression and steel resists the tension can be made into almost any shape and size for the construction industry.

[edit] Key characteristics

Three physical characteristics give reinforced concrete its special properties. First, the coefficient of thermal expansion of concrete is similar to that of steel, eliminating internal stresses due to differences in thermal expansion or contraction. Second, when the cement paste within the concrete hardens this conforms to the surface details of the steel, permitting any stress to be transmitted efficiently between the different materials. Usually steel bars are roughened or corrugated to further improve the bond or cohesion between the concrete and steel. Third, the alkaline chemical environment provided by calcium carbonate (lime) causes a passivating film to form on the surface of the steel, making it much more resistant to corrosion than it would be in neutral or acidic conditions.

The relative cross-sectional area of steel required for typical reinforced concrete is usually quite small and varies from 1% for most beams and slabs to 6% for some columns. Reinforcing bars are normally round in cross-section and vary in diameter. Reinforced concrete structures sometimes have provisions such as ventilated hollow cores to control their moisture & humidity.

[edit] Anti-corrosion measures

In wet and cold climates, reinforced concrete for roads, bridges, parking structures and other structures that may be exposed to deicing salt may benefit from use of epoxy-coated, hot dip galvanised or stainless steel rebar, although good design and a well-chosen cement mix may provide sufficient protection for many applications. Epoxy coated rebar can easily be identified by the light green colour of its epoxy coating. Hot dip galvanized rebar may be bright or dull grey depending on length of exposure, and stainless rebar exhibits a typical white metallic sheen that is readily distinguishable from carbon steel reinforcing bar. Reference ASTM standard specifications A767 Standard Specification for Hot Dip Galvanised Reinforcing Bars, A775 Standard Specification for Epoxy Coated Steel Reinforcing Bars and A955 Standard Specification for Deformed and Plain Stainless Bars for Concrete Reinforcment

Another, cheaper way or protecting rebars is coating them with zinc phosphate.[1] Zinc phosphate slowly reacts with the corroding agent (e.g., alkali) forming a stable hydroxyapatite layer.

Penetrating sealants typically must be applied some time after curing. Sealants include paint, plastic foams, films and aluminum foil, felts or fabric mats sealed with tar, and layers of bentonite clay, sometimes used to seal roadbeds.

[edit] Common failure modes of steel reinforced concrete

Reinforced concrete can fail due to inadequate strength, leading to mechanical failure, or due to a reduction in its durability. Corrosion and freeze/thaw cycles may damage poorly designed or constructed reinforced concrete. When rebar corrodes, the oxidation products (rust) expand and tends to flake, cracking the concrete and unbonding the rebar from the concrete. Typical mechanisms leading to durability problems are discussed below.

[edit] Mechanical failure

Reinforced concrete can be considered to fail when significant cracks occur. Cracking of the concrete section can not be prevented however the size of the cracks can be limited and controlled by reinforcement. Cracking defects can allow moisture to penetrate and corrode the reinforcement. This is a serviceability failure in limit state design. Cracking is normally the result of an inadequate quantity of rebar, or rebar spaced at too great a distance. The concrete then cracks either under excess loading, or due to internal effects such as early thermal shrinkage when it cures.

Ultimate failure leading to collapse can be caused by crushing of the concrete matrix, when stresses exceed its strength; by yielding of the rebar; or by bond failure between the concrete and the rebar.

[edit] Carbonation / Carbonation

Rebar for foundations and walls of sewage pump station.

The water in the pores of portland cement concrete is normally alkaline with a pH in the range of 12.5 to 13.5. This highly alkaline environment is one in which the embedded steel is passivated and is protected from corrosion. According to the Pourbaix diagram for iron, the metal is passive when the pH is above 9.5.[2] The carbon dioxide in the air reacts with the alkali in the cement and makes the pore water more acidic, thus lowering the pH. Carbon dioxide will start to carbonate the cement in the concrete from the moment the object is made. This carbonation process (in Britain, called carbonation) will start at the surface, then slowly move deeper and deeper into the concrete. If the object is cracked, the carbon dioxide in the air will be better able to penetrate into the concrete. When designing a concrete structure, it is normal to state the concrete cover for the rebar (the depth within the object that the rebar will be). The minimum concrete cover is normally regulated by design or building codes. If the reinforcement is too close to the surface, early failure due to corrosion may occur.

One method of testing a structure for carbonation is to drill a fresh hole in the surface and then treat the cut surface with phenolphthalein indicator solution. This solution will turn [pink] when in contact with alkaline concrete, making it possible to see the depth of carbonation. An existing hole is no good because the exposed surface will already be carbonated.

[edit] Chlorides

The Paulins Kill Viaduct, Hainesburg, New Jersey, is 115 feet (35 m) tall and 1,100 feet (335 m) long, and was heralded as the largest reinforced concrete structure in the world when it was completed in 1910 as part of the Lackawanna Cut-Off rail line project. The Lackawanna Railroad was a pioneer in the use of reinforced concrete

Chlorides, including sodium chloride, can promote the corrosion of embedded steel rebar if present in sufficient concentration. For this reason, only use fresh raw water or potable water for mixing concrete. Insure that the coarse and fine aggregates do not contain chlorides. Do not use admixtures that contain chlorides.

It was common for calcium chloride to be used as an admixture to promote rapid set-up of the concrete. However, this practice has fallen into disfavor once the deleterious effects of chlorides became known. It should be avoided when ever possible.

The use of de-icing salts on roadways is probably one of the primary causes of premature failure of reinforced or prestressed concrete bridge decks, roadways, and parking garages. The use of epoxy-coated reinforcing bars and the application of cathodic protecton has mitigated this problem to some extent.

[edit] Alkali silica reaction

This is found when the cement is too alkaline, due to a reaction of the silica in the aggregates with the alkali. The silica (SiO2) reacts with the alkali to form a silicate in the Alkali silica reaction (ASR), this causes localised swelling which causes cracking. The conditions for alkali silica reaction are: (1) aggregate containing an alkali reactive constituent, (2) sufficiently high alkalinity, and (3) sufficient moisture, above 75%RH within the concrete. [3][4] This phenomenon has been popularly referred to as "concrete cancer".

[edit] Conversion of high alumina cement

Resistant to weak acids and especially sulfates, this cement cures quickly and reaches very high durability and strength. It was greatly used after World War II for making precast concrete objects. However, it can lose strength with heat or time (conversion), especially when not properly cured. With the collapse of three roofs made of prestressed concrete beams using high alumina cement, this cement was banned in the UK in 1976. Subsequent inquiries into the matter showed that the beams were improperly manufactured, but the ban remained.[5]

[edit] Sulfates

Sulfates (SO4)in the soil or in groundwater, in sufficient concentration, can react with the portland cement in concrete causing the formation of expansive products, e.g. ettringite or thaumasite, which can lead to early failure of the structure. The most typical attack of this type is on concrete slabs and foundation walls at grade where the sulfate ion, via alternate wetting and drying, can increase in concentration. As the concentration increases, the attack on the portland cement can begin. For buried structures such as pipe, this type of attack is much rarer especially in the Eastern half of the United States. The sulfate ion concentration increases much slower in the soil mass and is especially dependent upon the initial amount of sulfates in the native soil. The chemical analysis of soil borings should be done during the design phase of any project involving concrete in contact with the native soil to check for the presence of sulfates. If the concentrations are found to be aggressive, various protective coatings can be used. Also, ASTM C150 Type 5 portland cement can be used in the mix. This type of cement is designed to be particularly resistant to a sulfate attack.

[edit] Fiber-reinforced concrete

Fiber-reinforcement is mainly used in shotcrete, but can also be used in normal concrete. Fiber-reinforced normal concrete are mostly used for on-ground floors and pavements, but can be considered for a wide range of construction parts (beams, pilars, foundations etc) either alone or with hand-tied rebars.

Concrete reinforced with fibers (which are usually steel, glass or "plastic" fibers) is less expensive than hand-tied rebar, while still increasing the tensile strength many times. Shape, dimension and length of fiber is important. A thin and short fiber, for example short hair-shaped glass fiber, will only be effective the first hours after pouring the concrete (reduces cracking while the concrete is stiffening) but will not increase the concrete tensile strength. A normal size fibre for European shotcrete (1 mm diameter, 45 mm length—steel or "plastic") will increase the concrete tensile strength.

Steel is the strongest commonly-available fiber, and come in different lengths (30 to 80 mm in Europe) and shapes (end-hooks). Steel fibres can only be used on surfaces that can tolerate or avoid corrosion and rust stains. In some cases, a steel-fiber surface is faced with other materials.

Glass fiber is inexpensive and corrosion-proof, but not as ductile as steel. Recently, spun basalt fiber, long available in Eastern Europe, has become available in the U.S. and Western Europe. Basalt fibre is stronger and less expensive than glass, but historically, has not resisted the alkaline environment of portland cement well enough to be used as direct reinforcement. New materials use plastic binders to isolate the basalt fiber from the cement.

The premium fibers are graphite reinforced plastic fibers, which are nearly as strong as steel, lighter-weight and corrosion-proof. Some experimeters have had promising early results with carbon nanotubes, but the material is still far too expensive for any building.

For statistical calculations there is a new modelling in the book: B.Wietek, Stahlfaserbeton, edited by Vieweg + Teubner, 2008, ISBN 978-3-8348-0592-8. Here is the possibility to calculate also colums, platforms, beams and also shear situations which show a better behaviour than concrete alone. We hope that a translation of this book is available soon, that we can reconstruct all the theory which is given.


[edit] Non-steel reinforcement

Some construction cannot tolerate the use of steel. For example, MRI machines have huge magnets, and require nonmagnetic buildings. Another example are toll-booths that read radio tags, and need reinforced concrete that is transparent to radio.

In some instances, the lifetime of the concrete structure is more important than its strength. Since corrosion is the main cause of failure of reinforced concrete, a corrosion-proof reinforcement can extend a structure's life substantially.

For these purposes some structures have been constructed using fiber-reinforced plastic rebar, grids or fibers. The "plastic" reinforcement can be as strong as steel. Because it resists corrosion, it does not need a protective concrete cover of 30 to 50 mm or more as steel reinforcement does. This means that FRP-reinforced structures can be lighter, have longer lifetime and for some applications be price-competitive to steel-reinforced concrete.

The main barrier to use of FRP reinforcement is the fact that it is neither ductile nor fire resistant. Structures employing FRP rebars may therefore exhibit a less ductile structural response, and decreased fire resistance.

However, the addition of short monofilament polypropylene fibers to the concrete during mixing may have the beneficial effect of reducing spalling during a fire. In a severe fire, such as the Channel Tunnel fire of 1996, conventionally reinforced concrete can suffer severe spalling leading to failure. This is in part due to the pore water remaining within the concrete boiling explosively; the steam pressure then causes the spalling. The action of fibers within the concrete is due to their ability to melt, forming pathways out through the concrete, allowing the steam pressure to dissipate.

[edit] References

  1. ^ "Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: protection of rebars in reinforced concrete" Sci. Technol. Adv. Mater. 9 (2008) 045009 (free download)
  2. ^ Pourbaix diagram of iron
  3. ^ BBC - h2g2 - Concrete Cancer
  4. ^ http://www.cementindustry.co.uk/main.asp?page=272
  5. ^ http://www.quest-tech.co.uk/hac.htm

Personal tools