

Defense Advanced Research Projects Agency

Bridging the Gap

Dr. Anthony J. Tether DARPA Director

DARPA Organization

DARPA Role in Science and Technology

DARPA Accomplishments

FY 2004 – 2007 Budget

President's Budget

(Millions of Dollars)

<u>FY 2004</u>	<u>FY2005</u>	<u>FY 2006</u>	<u>FY 2007</u>
2,815.4	2,976.7	3,083.8	3,358.6

QDR Operational Goals for Transformation

- **Protecting critical bases of operations** (U.S. homeland, forces abroad, allies, and friends) and defeating chemical, biological, radiological, nuclear, and enhanced high explosive (CBRNE) weapons and their means of delivery
- **Denying enemies sanctuary** by providing persistent surveillance, tracking, and rapid engagement with high-volume precision strike, through a combination of complementary air and ground capabilities, against critical mobile and fixed targets at various ranges and in all weather and terrains
- **Projecting and sustaining U.S. forces** in distant anti-access or area-denial environments and defeating anti-access and area-denial threats
- Assuring information systems in the face of attack and conducting effective information operations
- Leveraging information technology and innovative concepts to develop an interoperable, joint C4ISR architecture and capability that includes a tailorable joint operational picture
- Enhance the capability and survivability of space systems and protect the infrastructure that supports critical space capabilities

Budget by QDR Transformation Goals

Core Technology - Electronics

FY 06

\$210.4M

Core Technology – Materials $\frac{FY 06}{$211.8M}$

Smart Materials

Morphing Aircraft

EXOSKELETON Soldier Support

Functional Materials

10x Reduction in UHF Antenna Size

Materials for Logistics

Water HarvestingNew Energy SourcesObtain Water from AirTo Replace Batteries

Structural Materials

Low Cost Titanium Less than \$2 lb!

Multi-functional Materials

Bio-Revolution

Maintaining Combat Performance

Bio-Inspired Robotics and Sensors

Bio-Magnetics

Bio-Fabrication

Revolutionizing Prosthetics

Biologically Integrated, Fully Functional Limb Replacements Controlled by the Brain

Computer Science

FY 06

\$584.0M

Self-regenerative software systems

Upcoming Key Events

DARPATech 2005 24th DARPA Systems & Technology Symposium August 9 – August 11, 2005 Anaheim, California

GRAND CHALLENGE

National Qualification Event

September 28 – October 5, 2005 Fontana Speedway

Grand Challenge Event

October 8, 2005 Southwestern United States

The DARPA Grand Challenge

Grand Challenge Applicants for 2005 Event

Palos Verdes HS Road Warriors

Rapid Reaction Support to Warfighters

Gun Truck

Marine Airborne Re-Transmission System

Rapid Tactical Language Training "DARWARS"

Speaker Speaker (NVTC) (CENTCOM) DARPA TIDES Iraq Reconstruction Report

Boomerang

Phraselator – Translator

MIOX Disinfection Pen

Command Post of the Future (CPOF)

What Happened to University Funding (Especially Computer Science)?

DARPA Funding, Selected Universities FY99 - FY04

FY02 to FY04	Average Funds to University Performers*	Average Overall DARPA Funds	University Percentage
6.1 Basic Res	\$90.1M	\$150.3M	60%
6.2 Applied Res	\$270.4M	\$1,128M	24%
6.3 Adv.Tech. Dev.	\$92.3M	\$1,076.3M	8.6%
Total	\$452.8M	\$2,354.3M	19.2%

Summary

- Where did the money go since overall University funding has not gone down?
 - Accomplished survey of University websites
 - Discovered that multi-disciplinary efforts are the wave of the future
- We agree with the Universities
- But we also believe that the individual Disciplines need to be funded
 - Healthy funding of individual disciplines required to assure that multi-disciplinary efforts can be done
 - Block grant funding is a vehicle
 - All disciplines, not just Computer Science
- DoD is doing its part
 - National Defense Graduate Fellowship
 - Building on SMART program Congress established in FY05 (DARPA has 2 Interns)
 - Multi-disciplinary University Research Initiative (MURI)
 - Focused Research centers (Microelectronics, Nanotechnology, Cognitive?)

Sponsors:

AMD Analog Devices Conexant Cypress IBM Intel

Air Products Applied Materials Cadence Novellus Teradyne

Prof. Kang Wang

Prof. Jan Rabaev

Department of Defense

Focus Center Research Program (2004)

GSRC – Gigascale System Research Center

implementation on emerging circuit fabrics.

IFC – Interconnect Focus Center

Prof. Rob Rutenbar diverse range of applications.

The University of California at Berkeley is the lead university for th

System Design and Test Focus Center (Gigascale System Research

Center--GSRC) and Prof. Jan Rabaev the center's director. The Design

and Test Center's research agenda addresses the design, verification,

and test of complex, heterogeneous (embedded) systems-on-a-chip/

package, covering the complete spectrum from system specification to

The Focus Center for Circuit and System and Software (C2S2) is led by the Carnegie Mellon University. Professor Rob Rutenbar is the center

director. The center's research focuses on inventing the circuit

techniques and system concepts needed for integrating heterogeneous

devices as well as converting end-of-roadmap devices and the

promising post-CMOS devices into robust performance across the most

C2S2 – Center for Circuits, Systems, and Solutions

UC-Berkeley

Caltech Stanford CMU UCLA Ga Tech UCSB Michigan UC SC MIT UCSD Penn State UIUC Princeton **U T Austin** Purdue

CMU

Columbia	UCI
Cornell	UCS
Ga Tech	U.F
MIT	UIU
Stanford	UW
UC-Berkelev	

_A SD lorida /ashington

Georgia Tech

CMU Cornell MIT NC State RPI Stanford

U at Albanv **UCBerkeley** UCSB U. Central Florida **UT** Austin

UC Berkeley

UCLA

UC SB

U Florida

U Maryland

UT Austin

U Virginia

ΜΙΤ

Caltech Cornell NC State Penn State Princeton Purdue Stanford U at Albany

UC-Los Angeles

rizona State	UC Riverside
Caltech	U at Stony Brook
ΛIT	UCSB
IC State U	U Minnesota
JC Berkeley	USC
JCLA	

The leadership for the Interconnect Focus Center (IFC) is based at the Georgia Institute of Technology. Professor James Meindl is the focus center director. The center's research teams examine high conductance nanoscale electrical interconnects, optical interconnects that will scale to meet the needs of future gigascale silicon electronic systems, novel thermal management solutions and interconnect driven circuit and Prof. James Mein system design.

MSD – Materials, Structures, and Devices

The Massachusetts Institute of Technology is the lead university for the Materials, Structures, and Devices (MSD) Center and Prof. Dimitri Antoniadis its director. This center will push CMOS scaling to its ultimate limit through advanced FETs incorporating novel materials and explore new frontier devices such as nanotube devices, molecular devices and spin based FETs, with due emphasis on coupling Prof. D. Antoniadis experiment with theoretical modeling and simulation .

FENA – Functional Engineered Nano Architectonics

The University of California at Los Angeles is the lead University for the Center for Functional Engineered Nano Architectonics (FENA) and Professor Kang Wang the center director. This center will research into critical nanomaterials and process challenges that address the core problems of nanoscale device technology. FENA will examine novel nanoscale materials and structures, with potential to be incorporated in devices and architectures of the future

Questions?