Haemophilus influenzae

From Wikipedia, the free encyclopedia

Jump to: navigation, search
Haemophilus influenzae
Classification and external resources
ICD-10 A49.2
ICD-9 041.5
DiseasesDB 5570
MedlinePlus 000612 (Meningitis)
eMedicine topic list
Haemophilus influenzae
H. influenzae on a blood agar plate.
H. influenzae on a blood agar plate.
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Gamma Proteobacteria
Order: Pasteurellales
Family: Pasteurellaceae
Genus: Haemophilus
Species: H. influenzae
Binomial name
Haemophilus influenzae
(Lehmann & Neumann 1896)
Winslow et al. 1917

Haemophilus influenzae, formerly called Pfeiffer's bacillus or Bacillus influenzae, is a non-motile Gram-negative coccobacillus first described in 1892 by Richard Pfeiffer during an influenza pandemic. A member of the Pasteurellaceae family, it is generally aerobic, but can grow as a facultative anaerobe.[1] H. influenzae was mistakenly considered to be the cause of influenza until 1933, when the viral etiology of the flu became apparent. Still, H. influenzae is responsible for a wide range of clinical diseases.

H. influenzae was the first free-living organism to have its entire genome sequenced. Haemophilus was chosen because one of the project leaders, Nobel laureate Hamilton Smith, had been working on it for decades and was able to provide high-quality DNA libraries. The genome consists of 1,830,140 base pairs of DNA in a single circular chromosome that contains 1740 protein-coding genes, 58 transfer RNA genes tRNA, and 18 other RNA genes. The sequencing method used was Whole genome shotgun. The sequencing project, completed and published in Science in 1995, was conducted at The Institute for Genomic Research.[2]

Contents

[edit] Serotypes

In 1930, 2 major categories of H. influenzae were defined: the unencapsulated strains and the encapsulated strains. The pathogenesis of H. influenzae infections is not completely understood, although the presence of the encapsulated type B (Hib), as seen in conditions such as epiglottitis, is known to be the major factor in virulence. Their capsule allows them to resist phagocytosis and complement-mediated lysis in the non-immune host. Unencapsulated strains are less invasive, but they are able to induce an inflammatory response that causes disease. Vaccination with Hib conjugate vaccine is effective in preventing infection, and several vaccines are now available for routine use.

[edit] Diseases

Most strains of H. influenzae are opportunistic pathogens - that is, they usually live in their host without causing disease, but cause problems only when other factors (such as a viral infection or reduced immune function) create an opportunity. There are six generally recognized types of H. influenzae: a, b, c, d, e, and f.[3]

Naturally-acquired disease caused by H. influenzae seems to occur in humans only. In infants and young children, H. influenzae type b (Hib) causes bacteremia, pneumonia, and acute bacterial meningitis. Occasionally, it causes cellulitis, osteomyelitis, epiglottitis, and joint infections. Due to routine use of the Hib conjugate vaccine in the U.S. since 1990, the incidence of invasive Hib disease has decreased to 1.3/100,000 in children. However, Hib remains a major cause of lower respiratory tract infections in infants and children in developing countries where vaccine is not widely used. Unencapsulated H. influenzae (non-B type) causes ear (otitis media) and eye (conjunctivitis) infections and sinusitis in children, and is associated with pneumonia.

[edit] Diagnosis

Clinical diagnosis of H. influenzae is typically performed by bacterial culture or latex particle agglutination. Diagnosis is considered confirmed when the organism is isolated from a sterile body site. In this respect, H. influenzae cultured from the nasopharyngeal cavity or sputum would not indicate H. influenzae disease because these sites are colonized in disease free individuals.[4] However H. influenzae isolated from cerebrospinal fluid or blood would indicate a H. influenzae infection.

[edit] Culture

Bacterial culture of H. influenzae is performed on nutrient agar, preferably Chocolate agar, plate with added X & V factors at 37̊C in an enriched CO2 incubator.[5] Blood agar growth is only achieved as a satellite phenomenon around other bacteria. Colonies of H. influenzae appear as convex, smooth, pale, grey or transparent colonies. Gram-stained and microscopic observation of a specimen of H. influenzae will show Gram-negative, coccobacilli, with no specific arrangement. The cultured organism can be further characterized using catalase and oxidase tests, both of which should be positive. Further serological is necessary to distinguish the capsular polysaccharide and differentiate between H. influenzae b and non-encapsulated species.

Although highly specific, bacterial culture of H. influenzae lacks in sensitivity. Use of antibiotics prior to sample collection greatly reduces the isolation rate by killing the bacteria before identification is possible.[6] Beyond this, H. influenzae is a finicky bacterium to culture, and any modification of culture procedures can greatly reduce isolation rates. Poor quality of laboratories in developing countries has resulted in poor isolation rates of H. influenzae.

[edit] Latex particle agglutination

Latex particle agglutination test (LAT) is a more sensitive method to detect H. influenzae than culture.[7] Because the method relies on antigen rather than viable bacteria, the results are not disrupted by prior antibiotic use. It also has the added benefit of being much quicker than culture methods. However, antibiotic sensitivity is not possible with LAT, so a parallel culture is necessary.

[edit] Molecular Methods

Polymerase chain reaction (PCR) assays have been proven to be more sensitive than either LAT or culture tests and highly specific.[7]However, PCR assays have not yet become routine in clinical settings. Counter-current immunoelectrophoresis has been shown to be an effect research diagnostic method, but has been largely supplanted by PCR.

[edit] Interaction with Streptococcus pneumoniae

Both H. influenzae and S. pneumoniae can be found in the upper respiratory system of humans. A study of competition in a laboratory revealed that, in a petri dish, S. pneumoniae always overpowered H. influenzae by attacking it with hydrogen peroxide and stripping off the surface molecules that H. influenzae needs for survival.

When both bacteria are placed together into a nasal cavity, within 2 weeks, only H. influenzae survives. When either is placed separately into a nasal cavity, each one survives. Upon examining the upper respiratory tissue from mice exposed to both bacteria species, an extraordinarily large number of neutrophils (immune cells) was found. In mice exposed to only one bacteria, the cells were not present.

Lab tests showed that neutrophils exposed to dead H. influenzae were more aggressive in attacking S. pneumoniae than unexposed neutrophils. Exposure to dead H. influenzae had no effect on live H. influenzae.

Two scenarios may be responsible for this response:

  1. When H. influenzae is attacked by S. pneumoniae, it signals the immune system to attack the S. pneumoniae
  2. The combination of the two species together triggers an immune system response that is not set off by either species individually.

It is unclear why H. influenzae is not affected by the immune response.[8]

[edit] See also

[edit] References

  1. ^ Kuhnert P; Christensen H (editors). (2008). Pasteurellaceae: Biology, Genomics and Molecular Aspects. Caister Academic Press. ISBN 978-1-904455-34-9. 
  2. ^ Fleischmann R, Adams M, White O, Clayton R, Kirkness E, Kerlavage A, Bult C, Tomb J, Dougherty B, Merrick J (1995). "Whole-genome random sequencing and assembly of Haemophilus influenzae Rd". Science 269 (5223): 496–512. doi:10.1126/science.7542800. PMID 7542800. http://www.sciencemag.org/cgi/content/abstract/269/5223/496. 
  3. ^ Ryan KJ; Ray CG (editors) (2004). Sherris Medical Microbiology (4th ed. ed.). McGraw Hill. pp. 396–401. ISBN 0838585299. 
  4. ^ Puri J, Talwar V, Juneja M, Agarwal KN, Gupta HC (1999). "Prevalence of anti-microbial resistance among respiratory isolates of Haemophilus influenzae". Indian Pediatr 36: 1029–32. PMID 10745313. 
  5. ^ Generic protocol for population-based surveillance of Haemophilus influenzae type B, World Health Organization, 1997, WHO/VRD/GEN/95.05 
  6. ^ John TJ, Cherian T, Steinhoff MC, Simoes EA, John M (1991). "Etiology of acute respiratory infections in children in tropical southern India". Rev Infect Dis 13: Suppl 6:S463–9. PMID 1862277. 
  7. ^ a b Kennedy WA, Chang SJ, Purdy K, LE T, Kilgore PE, Kim JS et al (2007). "Incidence of bacterial meningitis in Asia using enhanced CSF testing: polymerase chain reaction, latex agglutination and culture". Epidemiol Infect 135: 1217–26. doi:10.1017/S0950268806007734. PMID 17274856. 
  8. ^ Lysenko E, Ratner A, Nelson A, Weiser J (2005). "The role of innate immune responses in the outcome of interspecies competition for colonization of mucosal surfaces". PLoS Pathog 1 (1): e1. doi:10.1371/journal.ppat.0010001. PMID 16201010. 

[edit] External links

Personal tools