SOUTH DELTA FISH FACILITIES ISSUES

PREDATION IN CLIFTON COURT FOREBAY

J. W. Buell, Ph.D. Central Valley Fish Facilities Review Team

April 2003

SOUTH DELTA FISH FACILITIES Perspective - Issues

- Collect, Handle, Transport, Release (CHTR)
- Salvage
- Predation in Clifton Court Forebay
- South Delta Barriers
- Hydrodynamics
- Zone of Influence
- Population-Level Effects
- Other S.D. Matters (Tracy, Los Vaqueros, etc.)

There's a Problem . . .

- CCF <u>salmon</u> predation losses
 - Eight studies during 1976 -1993
 - Median > 85%
 - Range 63 to 99+%
- CCF <u>striped bass</u> predation losses
 - Two studies
 - Range 74 to 90%
- After CCFB, predation loss
 - 10 to 90% at Skinner

Presentation Coverage

- Description / Importance of losses
- Assumptions
- What we know / summaries of studies
- Potential study biases
- Additional complementary studies

Importance of Predation in CCFB

- "Take" starts at the Radial Gates
- Current assumptions drive:
 - "Take" calculations
 - Operations
- Overshadows "facilities" losses
- Solution essential to SD fish protection

Banks Pumps

Skinner Fish Facility

Tracy Pumps

Outlet Channel

Tracy Fish Facility

Radial Gates

Outlet Channel

Clifton Court Forebay

Trash Boom

Trash Rack

Louvers

Skinner Fish Salvage Facility (Holding Tanks Inside)

Secondary Screens/Louvers

Current Assumptions (From 4-Pumps Negotiations)

- **Predation = 75% of juvenile fish entering**
 - Based on juvenile salmon experiments
 - Mean of first three tests (with RG + TB releases)
 - *However*, mean of all tests > 85%
- No changes with temperature
 - *However*, temperature appears to be a factor
- No changes with pumping rate
 - *However*, losses vary inversely with pumping rate
- Predation is comparable for other species
 - *However*, data for striped bass and salmon <u>only</u>

SWP Losses - Chinook

App. A, CDFG Operating Agreement, CCF Salvage Ops.

- Expand 10-minute count (C_{EXP}) e.g. = 100
- Correct for louver efficiency (E_L)
 - E_L = 0.586 + 0.0579*Vel.
 - For Vel. = 3.0 fps, E_L = 0.742
 - Fish encountering screens: $C_{EXP} / E_L = 135$
- Correct for Pre-Screen Losses (CCFB predation)
 - Ent. = C_{EXP} / (1- 0.75) $E_L = 539$
- Correct for Handling, Trucking Loss (L_H; L_T)
 - Alive = $C_{EXP} (1 L_H) (1 L_T) = 96$
- System Loss (L_{SYS})
 - $L_{SYS} = Ent. Alive = 441; System Survival = 17.8\%$

CVP Losses - Chinook NMFS Biological Opinion (1993)

- Expand 10-minute count (C_{EXP}) e.g. = 100
- Correct for louver efficiency (E_L)
 - E_L = 0.586 + 0.0579*Vel.
 - For Vel. = 3.0 fps, E_L = 0.742
 - Fish encountering screens: $C_{EXP} / E_L = 135$
- Correct for <u>Assumed</u> Pre-Screen Losses

• Ent. = C_{EXP} / (1- 0.15) E_L = <u>142</u>

- Correct for Handling, Trucking Loss (L_H; L_T)
 - Alive = $C_{EXP} (1 L_H) (1 L_T) = 96$
- System Loss (L_{SYS})
 - $L_{SYS} = Ent. Alive = 43; System Survival = 67.6\%$

What We Know... Current Information Base

- Ten studies (1976 1993); <u>See Gingras 1997</u>
- Various conditions
 - Pumping rates
 - Seasons
 - Temperatures
 - Release points

Additional complimentary studies

- Predator population, census
- Predator ingress egress
- Predator tracking
- Creel census
- Predator removal efforts

What We Know (cont.)

• CCFB pre-Skinner <u>salmon</u> losses (8 studies)

- All but one used RG + TB releases, multiple releases / times
- Range = 63 99+%; average > 85%
- Proportional to residence time (fish and water)
- Generally, about 2 days to cross CCFB
- Smaller fish lost selectively over time
- Higher for day releases (RG and TB releases)
- Overall loss coefficient of variation, 8 studies = 15%

• CCFB pre-Skinner <u>striped bass</u> losses (2 studies)

- RG + TB releases, multiple releases / times
- Range = 70 94%
- Apparently related to residence time
- Much higher for day releases (controls)

Study, Analysis, Report Review by Fish Facilities Consulting Board Peripheral Canal Effort

- Dr. Loren Jensen (Johns Hopkins Univ.)
- Dr. James Harder (U.C. Berkeley)
- Dr. Ernie Salo (Univ. of Washington)
- Mr. Milo Bell (Univ. of Washington)
- Mr. Chuck Wagner (NMFS; Chief, Fish. Eng.)
- Mr. Don Kelly (CDFG, Ret.)

Study Results (chinook)...

- Mid-October 1976 (fall chinook)
 - Releases @ radial gates; <u>no</u> TB releases; off peak pumping
 - <u>97%</u> "unaccounted loss"
 - Selective loss of smaller fish
- Late October 1978 (late fall chinook)
 - Releases @ radial gates + outlet channel; trash boom
 - <u>86%</u> CCFB loss (to trash boom)
 - <u>49%</u> Outlet channel loss (to trash boom)
 - Selective loss of smaller fish over time (r²=0.86-0.93)
- Late April 1984 (fall chinook)
 - Releases @ radial gates; trash boom
 - <u>63%</u> CCFB loss (to trash boom)
 - <u>75%</u> Radial gate to salvage loss

RADIAL GATES	- Model for Fish Loss; Fall, 1978 Data					
100 FISH	OUTLET CHANNEL					
><>><>><>><>><>><>><>><>><>><>><>><>><>	33 FISH	<u>TRASH</u> <u>BOOM</u>	LOUVERS	HOLDING		
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	><>><>	14 FISH	12 FISH	TANKS 8 FISH		
><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>	><>			
$\frac{1}{2}$	><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>><>><>><>><>><>><>><>><>><>><>><>		
><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>	><>			

><>><>

><> ><> ><> ><> ><> ><> ><> ><> ><> ><> ><> ><> ><> ><> ><> ><> ><> ><>

><> ><> ><> ><> ><> ><> ><> ><> ><> ><> ><>

><> ><> ><> ><> ><> ><>

Late fall chinook 60 - 150 mm FL

RADIAL	Model for Fis	h Loss Snri	nσ 1984 Data
<u>GATES</u>	(Fall c		nook: 60 - 100 mm FL)
100 FISH	TRASH	(
><> ><> ><> ><> ><> ><>><>><>><>><>><>><	BOOM	<u>LOUVERS</u>	HOLDING TANKS
><>><>><>><>><>><>><>><>><>><>><>><>><>	37 FISH	33 FISH	24 FISH
><>><>><>><>><>><>><>><>><>><>><>><>><>	><> ><> ><> ><>	><> ><>	
><>><>><>><>><>><>><>><>><>><>><>><>><>	><> ><> ><> ><> ><> ><>><>><>><>><>><>><	><> ><> ><> ><> ><> ><> ><> ><> ><> ><>	><> ><> ><> ><> ><> ><> ><> ><>
><>><>><>><>><>><>><>><>><>><>><>><>><>	><> ><> ><> ><> ><> ><>><>><>><>><>><>><	><> ><> ><> ><> ><> ><> ><> ><> ><>><> ><>><>	><> ><> ><> ><> ><> ><> ><> ><> ><>><>><
><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>><>><>><>><>><>><>><>><>><>><>><>	><>><>><>><>><>><>><>><>><>><>><>><>><>
><>><>><>><>><>><>><>><>><>><>><>><>><>		><>	
><>><>><>><>><>><>><>><>><>><>><>><>><>	MIRROR	S PRESENT A	SSUMPTIONS
		NEAR-BESI	CASE

Study Results (chinook)...

- Early April 1985 (fall chinook)
 - Releases @ radial gates; day + night @ trash boom
 - <u>75%</u> CCFB losses (to trash boom)
 - <u>46 52%</u> Trash boom losses (to louvers)
 - Survival proportional to pumping rate
- Early May 1992 (fall chinook)
 - Releases @ radial gates; night @ trash boom
 - Pumping: <u>6400 ≤ 375 ≤ 0</u> cfs 13 hrs after release
 - <u>99%</u> CCFB loss (to trash boom); <u>71%</u> TB to louver loss
- Early April 1993 (fall chinook)
 - Releases @ radial gates; day + night @ trash boom
 - <u>95%</u> CCFB losses (to trash boom)
 - <u>75%</u> Trash boom to louver loss (higher night survival)

Study Results (chinook)

• Mid-December 1992 (late fall chinook)

- Releases @ radial gates; night @ trash boom
- <u>78%</u> CCFB losses (to trash boom)
- Selective loss of smaller fish

• Late November 1993 (late fall chinook)

- Releases @ radial gates: afternoon + acclimated + night
- Releases @ trash boom: morning + afternoon + night
- <u>99.8%</u> CCFB loss (to trash boom) for <u>day</u> release
- <u>98.6%</u> CCFB loss (to trash boom) for <u>night</u> release
- <u>68%</u> Trash boom to louver loss for <u>morning</u> release
- <u>69%</u> Trash boom to louver loss for <u>afternoon</u> release
- <u>53%</u> Trash boom to louver loss for <u>night</u> release

Study Results (striped bass)

• Mid-July 1984 (striped bass)

- Releases @ radial gates; day + night @ trash boom
- <u>94%</u> CCFB loss (to trash boom)
- <u>64%</u> Trash boom to louver loss

• Early August 1986 (striped bass)

- Releases @ radial gates; day + night @ trash boom
- <u>70%</u> CCFB losses (to trash boom)
- <u>60 90%</u> Trash boom to louver loss, night v. day

SUMMARY-- CCFB PREDATION LOSSES

Mo-Year	Fish	RG => TB
Oct-76	Fall ch.	<u>90%</u> ±
Oct-78 *	Late fall ch.	<u>86%</u>
Apr-84 *	Fall ch.	<u>63%</u>
Apr-85 *	Fall ch.	<u>75%</u>
May-92	Fall ch.	<u>99%</u>
Dec-92	Late fall ch.	<u>78%</u>
Apr-93	Fall ch.	<u>95%</u>
Nov-93 **	Late fall ch.	<u>99+%</u>
Jul-84	Striped bass	<u>94%</u>
Aug-86	Strriped bass	<u>70%</u>

SUMMARY-- SWP PREDATION LOSSES

<u>YEAR Fish RG => TB TB => Lv RG => Lv</u>

Oct-76	Fall ch.			<u>97%</u>
Oct-78	L. fall ch.	86%	15%	<u>88%</u>
Apr-84	Fall ch.	63%	9.8%	<u>76%</u>
Apr-85	Fall ch.	75%	48%	<u>87%</u>
May-92	Fall ch.	99%	71%	<u>99+%</u>
Dec-92	L. fall ch.	78%	25%	<u>84%</u>
Apr-93	Fall ch.	95%	75%	<u>99%</u>
Nov-93	L. fall ch.	99 +%	69%	<u>99+%</u>
Jul-84	Str. bass	94%	64%	<u>98%</u>
Aug-86	Str.bass	70%	60-90%	<u>78%</u>

CCFB Losses v. Export Rate

Gingras 1997:

- Multiple regression:
 - Temperature
 - Released fish size
 - Export rate
- NS; **P** = 0.491
- Omit winter 1993: P = 0.04; expl. 91% of s²
 - Different release methods
 - Several small release groups at Radial Gates
- Strongest variable = Export Rate
 - Multiple r² = 0.75... "Not surprising"
 - Related to prey residence time in CCFB (4 citations)

CCFB Pre-Screen Losses -- Salmon

Percent Loss v. Export Rate

CCFB Pre-Screen Losses -- Salmon Percent Loss v. Export Rate

POTENTIAL SIGNIFICANT BIASES

Tending to <u>under</u> estimate predation:

- Assumed louver efficiencies (low)
- Density-dependent predator avoidance

Tending to <u>over</u> estimate predation:

- Disorientation at release
- Density-dependent louver efficiency
- Poor swimming of test fish
- Poor test fish predator avoidance

Other

- Mark shedding (<5%)
- Emigration from CCFB (very unlikely)
- Residence in CCFB (data suggest otherwise)

ADDITIONAL COMPLEMENTARY STUDIES

- Fish surveys, population estimates
 Orsi 1967; Kano 1990; Morinaka c.1997
- Tagging, hydro-acoustic, tracking studies
 - Hall 1980; Reavis 1982; Bolster 1986; Collins *et al.* 1988; Gingras & McGee 1997
- CCFB Sport fishing study
 - Mecum 1980
- Predator removal efforts (at Skinner)
 - McEwan 1987a,b; 1988; Knoernschild 1991; Barrow 1991a-d; 1992
- Direct observations (in CDFG documents)
 - Raquel; McEwan; Collins; Odenweller

•Skinner photos

•Skinner diagram

•Individual study results

Diagram of the John E. Skinner Delta Fish Protective Facility.

171-1

Secondary Louvers Mid-Oct 1976 - Juvenile fall chinook (Schaffter 1978)

- Radial gate <u>night</u> release: <u>6,825</u> (70-160 mm FL)
- No trash boom releases
- Assumed 67% louver efficiency (Heubach et al. 1973)
- ONLY off-peak pumping (night)
- $\textcircled{}^{\circ}$ "Unaccounted" losses = <u>97%</u>
- **397% of all recoveries in first 36 hrs**
- **Water vel.** @ gates est. at 10 fps + turbulence
- Selective loss of smaller fish
- ③Gillnet/beach seine efforts (limited):
 ③Striped bass @ CCFB inlet and outlet

Late Oct. 1978 - Juvenile late fall chinook (Hall 1980)

- Radial gate <u>night</u> release: <u>6,825</u> (60 150 mm FL)
- Outlet channel <u>night</u> release: <u>5,252</u>
- Trash boom <u>night</u> release: <u>1,907</u>
- Assumed 81% louver efficiency (Heubach et al. 1973)
- Only off-peak pumping (night)
 Radial gate release to louver loss = <u>88%</u>
 Outlet channel release to louver loss = <u>64%</u>
- **Trash boom release to louver loss =** 15%
- **369% of all recoveries within 2 days**
- **Selective loss of smaller fish v. time (r²=0.86-0.93)**

Late April 1984 - Juvenile fall chinook (Kano 1985a)

- Rad. gate <u>eve.</u> (1830) release = <u>13,493</u> (FL \approx 75 mm)
- Trash boom <u>evening</u> (1930) release = <u>2,900</u>
- Trash boom <u>night</u> (2200) release = 2,953
- Assumed 74% louver efficiency (Heubach et al. 1973)
- \swarrow Trash boom release to louver losses = <u>9.8%</u>
- **∠** Radial gate release to louver losses = <u>66.2%</u>

- Difference attributed to spring v. fall
- Difference attributed to lower predator population

Mid-July 1984 - Juvenile striped bass (Kano 1985a)

- Rad. gate <u>day</u> (1020) release : <u>13,710</u> (FL ≈ 52 mm)
- Trash boom morning (1015) release: <u>4,126</u>
- Trash boom <u>night</u> (2130) release: <u>1,967</u>
- Assumed 76% louver efficiency (Heubach et al. 1973)
- Off-peak Q = 2x on-peak Q

**Radial gate release to trash boom loss = <u>94%</u>
Correcting for lower losses**

Trash boom to louver loss (combined) = <u>64%</u>
Correcting for louver losses

Early April 1985 - Juvenile fall chinook (Kano 1985b)

- Rad. gate eve. (1830) release: <u>11,606</u> (50-100 mm FL)
- Trash boom <u>night</u> (2345) release: <u>4,066</u>
- Trash boom <u>afternoon</u> (1700) release: <u>1849</u>
- Assumed 69% louver efficiency (Heubach et al. 1973)
- ONLY off-peak (night) pumping
- \swarrow Radial gate release to trash boom loss = <u>75%</u>
- \swarrow Trash boom release to louver losses = <u>46 52%</u>
- Striped bass CPUE 265% of previous year
- Survival proportional to export rate (weak)

Early August 1986 - Juvenile striped bass (Kano 1986)

- Rad. gate <u>day</u> (1040) release: <u>18,486</u> (40-70 mm FL)
- Trash boom <u>day</u> (1100) release: <u>3,369</u>
- Trash boom <u>night</u> (2145) release: <u>5,574</u>
- Assumed 76% louver efficiency (Heubach *et al.* 1973)
- \swarrow Radial gate release to trash boom loss = <u>70%</u>
- \swarrow Day trash boom to louver losses = <u>90%</u>
- ✓Most radial gate release recoveries within 24 hrs.

Early May 1992 - Juvenile fall chinook (Bull 1992)

- Rad. gate <u>night</u> (2030) release: <u>21,894</u> (30-50 mm FL)
- Trash boom <u>night</u> (2130) release: <u>3,199</u>
- Assumed 69% louver efficiency (Heubach et al. 1973)
- Pumping <u>6400 ≤ 375 ≤ 0</u> cfs 13 hrs after release
 Radial gate release to trash boom loss = <u>99%</u>
 Trash boom release to louver losses = <u>71%</u>
 Peak radial gate release recoveries @ 1 day
 High losses attributed to pumping curtailment

Mid-Dec. 1992 - Juv. late fall chinook (Tillman 1993a)

- Radial gate <u>night</u> release: <u>10,729</u>
- Trash boom <u>night</u> release: <u>1,782</u>
- Assumed louver efficiency = 75% (Heubach *et al.* 1973)
- Delayed mortalities assessed
- \swarrow Trash boom release to louver losses = 25%

Mean length of recoveries increased over time

- Attributed to selective predation on smaller fish
- Similar results noted in previous studies

Most radial gate release recoveries within 26 hrs.

Early Apr. 1993 - Juvenile fall chinook (Tillman 1993b)

- Radial gate <u>night</u> (2115) release: <u>10,332</u>
- Trash boom <u>day</u> (1045) release: <u>1,309</u>
- Trash boom <u>night</u> (2335) release: <u>1,209</u>
- Pumps @ 3,390 cfs

- Night trash boom survival 1.5 x day survival

Late Nov. 1993 - Juv. late fall chinook (Bull 1994)

- Radial gate <u>afternoon</u> (1515) release: <u>4,246</u>
- Radial gate acclimated (1530) release: 1,509
- Radial gate <u>night</u> (2350) release: <u>4,260</u>
- Trash boom morning (1000) release: <u>469</u>
- Trash boom <u>afternoon</u> (1434) release: <u>1849</u>
- Trash boom <u>night</u> (2045) release: <u>233</u>
 Radial gate <u>day</u> release to TB loss = <u>99.8%</u>
 Radial gate <u>night</u> release to TB loss = <u>98.6%</u>
 TB <u>morning</u> release to louver losses = <u>68%</u>
 TB <u>afternoon</u> release to louver losses = <u>69%</u>
 TB <u>night</u> release to louver losses = <u>53%</u>