Estimating population level effects in Delta

Delta smelt, salmon, X2 species
Direct and indirect mortality

Conclusions

- Population level effects of exports can be estimated for delta smelt, salmon, and X2 species
- Estimates of such effects for delta smelt would require additional modeling, costing in the range of $\$ 350-400 \mathrm{~K} / \mathrm{yr}$.
- For salmon, estimates of indirect mortality population effects have considerable uncertainty.
- Population effect estimates could have considerable effect on SDFF decisions.

Population level effects delta smelt, direct mortality

Current method: Problems

- Sampling for delta smelt not efficient for all life stages entrained
- No sampling for larvae
- 20 mm sampling, smaller life stages not caught
- Stations not located to best determine smelt density in exported water
- Salvage efficiency differs from sampling efficiency--not comparable

Kimmerer method

- For each smelt survey, estimate fractional entrainment mortality (FEM)
= smelt entrained per smelt in Bay-Delta
- Graph FEM for each survey
- Interpolate between surveys for daily estimates of FEM
- Sum daily FEMs for total over period of interest (including entire year)

Kimmerer method

estimating fractional entrainment mortality

- From stations near pumps, total smelt caught / water passing through nets
$=$ smelt density in exported water
- Density (smelt/AF) x Export rate (AF/day
= smelt entrained/day
- From all stations, estimate total smelt in system (various methods)
- For each survey, divide smelt entrained/day by total smelt = FEM

fractional entrainment mortality

Advantages of Kimmerer Method

- Avoids efficiency differences, salvage vs. surveys
- Gear inefficiencies tend to cancel out (in numerator and denominator of FEM)
- Improved surveys better estimates $\$ 350-400 \mathrm{~K}$)
- More stations near pumps
- More surveys
- Survey gear tailored to life stage
- Larval sampling
- Produces estimate of population level effect of entrainment, esp. using Bennett proposal

Using Kimmerer method to manage export curtailments

- Track cumulative FEM
- Use Particle Tracking Model and Herbold methods to predict and avoid high FEM events
- Manage exports to stay below a desired FEM
- Use cumulative FEM to adjust VAMP export rate

Disadvantages of Kimmerer Method

- Estimates of total smelt per survey difficult to achieve accurately (where in water column do they reside?)
- Expense of more sampling and more efficient gear (exporter funding?)
- Need period of transition to test against current system
- Gaming would be desirable

Population level effects salmon, direct mortality

- Estimate direct losses starting with salvage
- Back-calculate fish approaching screens
- Number salvaged
- Species-size-approach velocity
- Screening efficiency
- Back-calculate fish approaching facilities
- Number approaching screens
- Pre-screen predation rate
- Estimate number returned to Delta
- Number salvaged
- Trucking \& handling loss rate
- Estimate loss =

Fish approaching screens - number returned to Delta

- Divide direct losses by number of smolts
- Entering Delta or
- Leaving Delta

Population level effects salmon, indirect mortality

- From CWT experiments Survival $=\mathrm{f}$ (export rate, XCG closure, etc.)
- N smolts enter Delta, $\mathrm{S} * \mathrm{~N}$ survive to Chipps
- Popn effect of export curtailment $=$

Change in survivors/original survivors $=$ $\left(\mathrm{S}_{2} * \mathrm{~N}-\mathrm{S}_{1} * \mathrm{~N}\right) / \mathrm{S}_{1} * \mathrm{~N}=\left(\mathrm{S}_{2}-\mathrm{S}_{1}\right) / \mathrm{S}_{1}$

- Estimate $S_{2} \& S_{1}$ from correlation equations

Population level effects salmon, indirect mortality

- Estimates are "expected" values, based on past CWT experiments, not "real time" as with winter run direct mortality. Can estimate uncertainty.
- Must estimate fraction of outmigrants affected by action ??
- Three correlations

Sac. fall run: Newman-Rice and Newman using older CWT data
Sac. Late fall, winter, spring: Brandes using Dec-Jan data
SJR fall run: Brandes using VAMP and selected pre-VAMP data

- Correlations with export rate are questionable for now
- Indirect mortality estimates include direct mortality (indirect estimates must be > direct)

Population level effects X2 species

- Same principle as for salmon
- Correlations, abundance vs. X2 (or Delta outflow)

$$
\mathrm{A}=\mathrm{f}\left(\mathrm{Q}_{\text {out }}\right)
$$

- For any change in outflow, popn effect = $\left(\mathrm{A}_{2}-\mathrm{A}_{1}\right) / \mathrm{A}_{1}$, estimate A from correlations
- Outflow is averaged over months, requires outflow prediction for real time decisions
- Also "expected" rather than real time effect, and uncertainty can be estimated

Cautions

- All of these estimates are fractional population changes of affected life stage.
- Implicitly assume that all effects on later life stages are equal on \% basis; i.e., 20% more smolts $=20 \%$ more adults; therefore, conservative.
- Assume no density dependence (e.g., 20\% more smolts $=2 \%$ more adults), although this could be accounted for.
- If above implicit assumption is true, life stage population effects are essentially fractional adult equivalent effects.

On the other hand

- Fractional life stage population effects can be useful for comparisons, (e.g., export curtailments vs. harvest regs) especially if differences between actions are large (x10 or x100).
- "All other things being equal" is implicit in how data on early life stage effects are now used.

