Close Encounters With a Fish Screen Tails From the Fish Treadmill

Christina Swanson, Paciencia S. Young, Stephanie Chun, Trilia Chen, Teresa MacColl, Leslie Kanemoto, and Joseph J. Cech, Jr.

Department of Wildlife, Fish, and Conservation Biology University of California, Davis Water diversions in the Sacramento-San Joaquin Delta

Fish Treadmill UC Davis Hydraulics Laboratory

 Observe and measure fish performance and behavior in two-vector flows near a fish screen

 Identify which factors influence successful fish protection and passage

• Provide information needed to design and operate effective fish screens

Approach and Sweeping velocities are independently controlled in the Fish Treadmill

Approach Sweeping cm/s (fps)			
0	(control)	0	
6 (0 10 (0 15 (0	.2)).33)).5)	0 0 0	
6 10 15		31 (1.0 31 31)
6 10 15		62 (2.0 62 62	

Measurements

Fish – Fish screen interactions

screen contact rate (total and body contact rates) impingement rate

Injuries and Survival

injury index (injury rate and severity) 48-h post-exposure survival

Behavior

swimming velocity distance from screen screen passage velocity

RESEARCH and APPLICATIONS

FIELD VALIDATION

Delta smelt

RESEARCH Effects of Flow on Screen Contact Rates

RESEARCH Effects of Screen Contact on Injuries

RESEARCH Effects of Injury on Mortality

Effects of Flow on Screen Impact Velocity

APPLICATIONS

Effects of Flow on Survival

APPLICATIONS

Effects of Flow on Survival

APPLICATIONS

Predicting Screen Length

Target exposure duration:

1.0 contact/fish

FIELD VALIDATION Linking Laboratory and Field Studies on Juvenile Chinook Salmon

Christina Swanson, Paciencia S. Young, and Joseph J. Cech, Jr. Department of Wildlife, Fish, and Conservation Biology University of California, Davis

> Richard Wantuck and Dan B. Odenweller NOAA Fisheries

Screen contact rates decrease with water velocity

Swimming velocity increases with water velocity

Positive rheotaxis increases with water velocity

Movement past the screen is lowest at intermediate water velocities

RESEARCH FINDINGS

Interpretations and Potential Applications for Fish Screen Flow and Operational Criteria from the Fish Treadmill Project

Anadromous Fish Screen Program, Cooperative Agreement No. 114201J075

Prepared by

Christina Swanson, Paciencia S. Young, and Joseph J. Cech, Jr. Department of Wildlife, Fish, and Conservation Biology University of California, Davis, CA 95616

Species: Chinook salmon, Oncorhynchus tshawytscha

Size (Age):4-6 cm standard length (SL), "parr" 6-8 cm SL, "smolt"

Environmental Conditions: 12°C, winter and spring Day (light conditions) and Night (dark conditions)

Submitted to

The Anadromous Fish Screen Program U. S. Fish and Wildlife Service Sacramento, CA FIELD VALIDATION

How does performance and behavior observed in the Fish **Treadmill compare** with that of fish in the field near an operational water diversion?

VALIDATION TOOLS: Videotape and research results Tailbeat frequency increases linearly with swimming velocity

Parrott - Phelan Fish Screen Butte Creek, CA

FIELD RESULTS

Water velocity 30-38 cm/s

Swimming velocity 32.7+4.7 (SD) cm/s (range: 25-39 cm/s)

Rheotaxis generally positive

Passage no net downstream movement in 2 h

FIELD RESULTS

Water velocity 67-78 cm/s

Swimming velocity 38.3+4.4 (SD) cm/s (range: 32-47 cm/s)

> Rheotaxis positive

Passage net downstream movement Some fish diverted into bypass

GCID Fish Screen Sacramento River, CA

Conclusions

Behavior of juvenile chinook salmon in the Fish Treadmill is similar to that of fish observed near two screened water diversions in the field

This supports the applicability of Fish Treadmill results for refining and developing fish screen flow and exposure duration criteria

Future Applied Research

Alternative fish passage strategies

Effects of debris and "hot spots"

Fish screen detection, visual vs mechanoreception

Alternative screen types

Multiple screen exposures

ACKNOWLEDGEMENTS Many people contribute to the Fish Treadmill Project

We thank M. L. Kavvas, Z.Q. Chen, W. Summer, E. Velagic, H. Bandeh, A. Karakas, E. Dogrul, S. Sharma, N. Ohara, Y. Tekeli of the University of California, Davis, Hydraulics Laboratory who operate and maintain the Fish Treadmill.

We also thank R. Brown, D. Hayes, J. Andrew, T. Frink, S. Mayr, M. Kirkland, T. MacColl, Z. Matica, R. Kurth (DWR), D. Odenweller, K. Urquhart, R. Fujimura, G. Edwards, G. Aasen, D. Shigematsu, R. Watanabe, D. Killam, J. Long, G. Brazil,, S. San Julian, C. Dorrough, P. Macias, R. Soto, (DFG); W. O'Leary and C. Liston (USBR), R. Wantuck (U.S. National Fisheries Service); T. Chen, M. Kondratieff, and B. Nathaniel (UCD).

This research is supported by California Departments of Water Resources (DWR) and Fish and Game (DFG), U.S. Bureau of Reclamation (USBR), and the CALFED Bay/Delta Ecosystem Restoration Program.