California Regional Water Quality Control Board

Central Valley Region

Robert Schneider, Chair

Sacramento Main Office

11020 Sun Center Drive #200, Rancho Cordova, California 95670-6114 (916) 464-3291 • Fax (916) 464-4645 http://www.swrcb.ca.gov/rwqcb5

Governor

TO: Technical Staff

Terry Tamminen Secretary for

Environmental

Protection

& Other Interested Persons

FROM:

Jon B. Marshack, D.Env. Staff Environmental Scientist

Program Support Unit

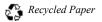
original signed by JBM

DATE: 1 April 2004

SIGNATURE:

SUBJECT: BENEFICIAL USE-PROTECTIVE WATER QUALITY LIMITS

FOR COMPONENTS OF PETROLEUM-BASED FUELS


This memorandum summarizes available water quality limits for petroleum fuel mixtures, constituents and additives. Some of the relevant limits have recently changed. The discussion below explains how numerical water quality limits may be used to translate applicable water quality objectives for groundwater. The attached table contains available limits recommended for each applicable objective.

Discussion:

A significant amount of our work involves the assessment and mitigation of petroleum-based fuel spills into soil and water. Various water quality limits have been cited by staff in determining whether beneficial uses have been impaired or threatened by such spills. In an effort to achieve uniformity in the use of numerical water quality limits for this purpose and to bring to your attention the wide range of available and relevant limits, I offer the list on the following pages. These limits are intended to be used to interpret applicable Basin Plan water quality objectives for the protection of existing or potential sources of drinking water. Sources of drinking water are surface and ground waters which have the beneficial use of municipal and domestic supply (MUN), as designated in the applicable *Water Quality Control Plan* (Basin Plan) or the State Water Board "Sources of Drinking Water" Policy, Resolution No. 88-63. Water quality objectives applicable to MUN waters include *Chemical Constituents* (which requires compliance with California drinking water MCLs and generally prohibits adverse effects on beneficial uses), *Toxicity* (which prohibits toxic chemicals in toxic amounts) and *Tastes and Odors* (which prohibits adverse tastes and odors or nuisance conditions). Additional objectives and numerical limits may apply to petroleum fuels in surface waters in addition to those contained in this memorandum.

The *Policy for Application of Water Quality Objectives*, in Chapter IV of the Basin Plans, requires consideration of numerical water quality limits to implement each of these objectives. In most cases, the most stringent of the listed limits for each chemical would implement all objectives applicable to groundwater. A discussion of the use of numerical limits to implement narrative water quality objectives is contained in the staff report *A Compilation of Water Quality Goals*.

California Environmental Protection Agency

Certain of the recommended limits are lower than applicable analytical detection limits in water. In these cases, the confirmed detection of any amount of these constituents in water indicates that beneficial uses have been impaired.

In addition, an assessment of existing and potential water quality impacts must take into account State Water Board Resolution Nos. 68-16, Statement of Policy With Respect to Maintaining High Quality of Waters in California, and 92-49, Policies and Procedures for Investigation and Cleanup and Abatement of Discharges Under Water Code Section 13304. Conformance with these policies in the Central Valley Region is described in the Chapter IV of the Basin Plans under the headings, Antidegradation Implementation Policy and Policy for Investigation and Cleanup of Contaminated Sites. Requiring cleanup to technologically and economically achievable levels which are lower than beneficial use-protective limits, would be consistent with these policies for water quality control.

Attachment

JBM\H:\Documents\W. Q. Goals\Memos/Limits For Fuels April 2004.doc

Water Quality Numerical Limits for Petroleum Fuel Mixtures, Constituents and Additives

	Water Quality	Numerical Limit Interpreting Water Quality Ot	ojective	
Constituent	Objective (a)	Source	Limit	Units
Aromatic Hydrocarbons:				
Benzene	Chemical Constituents	California Primary MCL (b)	1.0	ug/L
	Toxicity	California Public Health Goal (OEHHA)	0.15	ug/L
	Tastes and Odors	Amoore and Hautala, J. Applied Tox., Vol.3, No.6, 1983	170	ug/L
n-Butylbenzene	Toxicity	California Drinking Water Action Level (DHS)	260	ug/L
sec-Butylbenzene	Toxicity	California Drinking Water Action Level (DHS)	260	ug/L
tert-Butylbenzene	Toxicity	California Drinking Water Action Level (DHS)	260	ug/L
Ethylbenzene	Chemical Constituents	California Primary MCL (b)	300	ug/L
	Toxicity	California Public Health Goal (OEHHA)	300	ug/L
	Tastes and Odors	Federal Register, Vol. 54, No. 97, pp. 22138,22139	29	ug/L
Isopropyl benzene	Toxicity	USEPA IRIS Reference Dose (i)	700	ug/L
	Tastes and Odors	Amoore and Hautala, J. Applied Tox., Vol.3, No.6, 1983		ug/L
Toluene	Chemical Constituents	California Primary MCL (b)	150	ug/L
	Toxicity	California Public Health Goal (OEHHA)	150	ug/L
	Tastes and Odors	Federal Register, Vol. 54, No. 97, pp. 22138,22139	42	ug/L
1,2,4-Trimethylbenzene	Toxicity	California Public Health Goal (OEHHA)	330	ug/L
	Tastes and Odors	Amoore and Hautala, <i>J. Applied Tox.</i> , Vol.3, No.6, 1983		ug/L
1,3,5-Trimethylbenzene	Toxicity	California Public Health Goal (OEHHA)	330	ug/L
	Tastes and Odors	Amoore and Hautala, <i>J. Applied Tox.</i> , Vol.3, No.6, 1983		ug/L
Xylenes (sum of isomers)	Chemical Constituents	California Primary MCL (b)	1750	ug/L
Ayleries (sum or isomers)	Toxicity	California Public Health Goal (OEHHA)	1800	ug/L
	Tastes and Odors	Federal Register, Vol. 54, No. 97, pp. 22138,22139	17	ug/L
Aliahadia Ukadaa adaa aa	rastes and Odors	ir ederal (register, vol. 54, No. 37, pp. 22130,22133	17	ug/L
Aliphatic Hydrocarbons:	Taviaitu	LICEDA Llootto Advisory (a)	400	//
n-Hexane	Toxicity	USEPA Health Advisory (e)	400	ug/L
	Tastes and Odors	Amoore and Hautala, J. Applied Tox., Vol.3, No.6, 1983	6.4	ug/L
Hydrocarbon Mixtures:	I	Lucros of the state of the		
Diesel or Kerosene	Toxicity	USEPA Superfund Provisional Reference Dose (i)	56-140	ug/L
	Tastes and Odors	Taste & odor threshold from USEPA Health Advisory	100	ug/L
Gasoline	Toxicity	USEPA Superfund Provisional Cancer Slope Factor (c)	21	ug/L
	Tastes and Odors	McKee & Wolf, Water Quality Criteria , SWRCB, p. 230	5	ug/L
Additives:			_	
Lead	Chemical Constituents		15	ug/L
	Toxicity (h)	California Public Health Goal (OEHHA)	2	ug/L
Ethylene dibromide (EDB)	Chemical Constituents	, , ,	0.05	ug/L
	Toxicity	California Public Health Goal (OEHHA)	0.01	ug/L
Ethylene dichloride	Chemical Constituents	California Primary MCL (b)	0.5	ug/L
(1,2-Dichloroethane)	Toxicity	California Public Health Goal (OEHHA)	0.4	ug/L
	Tastes and Odors	Amoore and Hautala, J. Applied Tox., Vol.3, No.6, 1983	7000	ug/L
Methyl t-butyl ether (MtBE)	Chemical Constituents	California Primary MCL (b)	13	ug/L
	Chemical Constituents	California Secondary MCL (f)	5	ug/L
	Toxicity	California Public Health Goal (OEHHA)	13	ug/L
	Tastes and Odors	California Secondary MCL	5	ug/L
Di-isoproply ether (DIPE)	Tastes and Odors	Amoore and Hautala, J. Applied Tox., Vol.3, No.6, 1983	0.8	ug/L
t-Butyl alcohol (TBA)	Toxicity	California Drinking Water Action Level (DHS)	12	ug/L
	Tastes and Odors	Amoore and Hautala, J. Applied Tox., Vol.3, No.6, 1983		
Ethanol	Tastes and Odors	Amoore and Hautala, <i>J. Applied Tox.</i> , Vol.3, No.6, 1983		
Methanol	Toxicity	USEPA IRIS Reference Dose (i)	3500	ug/L
	Tastes and Odors	Amoore and Hautala, <i>J. Applied Tox.</i> , Vol.3, No.6, 1983		
		1	,	

Water Quality Numerical Limits for Petroleum Fuel Mixtures, Constituents and Additives

	Water Quality	Numerical Limit Interpreting Water Quality Objective			ОЕННА				
Constituent	Objective (a)	Source	Limit	Units	PEF				
Polynuclear Aromatic Hydrocarbons (PAHs or PNAs) and derivatives:									
Acenaphthene	Toxicity	USEPA IRIS Reference Dose (i)	420	ug/L					
	Tastes and Odors	USEPA National Ambient Water Quality Criteria	20	ug/L					
Anthracene	Toxicity	USEPA IRIS Reference Dose (i)	2100	ug/L					
Benz(a)anthracene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.04	ug/L	0.1				
Benzo(a)pyrene	Chemical Constituents	California Primary MCL	0.2	ug/L					
	Toxicity	Public Health Goal	0.004	ug/L	1 (index)				
Benzo(b)fluoranthene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.04	ug/L	0.1				
Benzo(j)fluoranthene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.04	ug/L	0.1				
Benzo(k)fluoranthene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.04	ug/L	0.1				
Chrysene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.4	ug/L	0.01				
Dibenz(a,j)acridine	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.04	ug/L	0.1				
Dibenz(a,h)acridine	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.04	ug/L	0.1				
Dibenz(a,h)anthracene	Toxicity	Cal/EPA Cancer Potency Factor (c)	0.0085	ug/L					
7H-Dibenzo(c,g)carbazole	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.004	ug/L	1				
Dibenzo(a,e)pyrene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.004	ug/L	1				
Dibenzo(a,h)pyrene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.0004	ug/L	10				
Dibenzo(a,I)pyrene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.0004	ug/L	10				
Dibenzo(a,I)pyrene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.0004	ug/L	10				
7,12-Dimethylbenz(a)anthracene	Toxicity	Cal/EPA Cancer Potency Factor (c)	0.00014	ug/L					
1,6-Dinitropyrene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.0004	ug/L	10				
1,8-Dinitropyrene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.004	ug/L	1				
Fluoranthene	Toxicity	USEPA IRIS Reference Dose (i)	280	ug/L					
Fluorene	Toxicity	USEPA IRIS Reference Dose (i)	280	ug/L					
Indeno(I ,2,3-c,d)pyrene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.04	ug/L	0.1				
3-Methylcholanthrene	Toxicity	Cal/EPA Cancer Potency Factor (c)	0.0016	ug/L					
5-Methylchrysene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.004	ug/L	1				
2-Methylnaphthalene	Toxicity	USEPA IRIS Reference Dose (i)	28	ug/L					
Naphthalene	Toxicity	California DHS Action Level in drinking water	170	ug/L					
	Tastes and Odors	Amoore and Hautala, J. Applied Tox., Vol.3, No.6, 1983	21	ug/L					
5-Nitrtoacenaphthene	Toxicity	Cal/EPA Cancer Potency Factor (c)	0.27	ug/L					
6-Nitrocrysene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.0004	ug/L	10				
2-Nitrofluorene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.4	ug/L	0.01				
I-Nitropyrene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.04	ug/L	0.1				
4-Nitropyrene	Toxicity	Public Health Goal for benzo(a)pyrene & OEHHA PEFs	0.04	ug/L	0.1				
Pyrene	Toxicity	USEPA IRIS Reference Dose (i)	210	ug/L					

Water Quality Numerical Limits for Petroleum Fuel Mixtures, Constituents and Additives

Notes for Table 1:

(a) Water Quality Objectives for groundwater from the *Water Quality Control Plan (Basin Plan) for the Sacramento River Basin and the San Joaquin River Basin*, Fourth Edition. Similar language is found in the Tulare Lake Basin Plan. Chemical Constituents

Ground waters shall not contain chemical constituents in concentrations that adversely affect beneficial uses.

At a minimum, ground waters designated for use as domestic or municipal supply (MUN) shall not contain concentrations of chemical constituents in excess of the maximum contaminant levels (MCLs) specified in the following provisions of Title 22 of the California Code of Regulations, which are incorporated by reference into this plan: Tables 64431-A (Inorganic Chemicals) and 64431-B (Fluoride) of Section 64431, Table 64444-A (Organic Chemicals) of Section 64444, and Tables 64449-A (Secondary Maximum Contaminant Levels-Consumer Acceptance Limits) and 64449-B (Secondary Maximum Contaminant Levels-Ranges) of Section 64449. This incorporation-by-reference is prospective, including future changes to the incorporated provisions as the changes take effect. At a minimum, water designated for use as domestic or municipal supply (MUN) shall not contain lead in excess of 0.015 mg/l. To protect all beneficial uses, the Regional Water Board may apply limits more stringent than MCLs.

Toxicity

Ground waters shall be maintained free of toxic substances in concentrations that produce detrimental physiological responses in human, plant, animal, or aquatic life associated with designated beneficial use(s). This objective applies regardless of whether the toxicity is caused by a single substance or the interactive effect of multiple substances.

Tastes and Odors

Ground waters shall not contain taste- or odor-producing substances in concentrations that cause nuisance or adversely affect beneficial uses.

- (b) Primary MCLs are human health based, but also may reflect other factors relating to technologic and economic feasibility of attainment and monitoring in a water distribution system and at the tap. These factors may not be relevant for the water resource.
- (c) 1-in-a-million cancer risk estimate derived from published oral cancer slope factor by assuming 2 liters/day water consumption and 70 kg body weight.
- (d) If adopted as proposed, this limit would become the numerical limit used to interpret this objective.
- (e) Health advisory = 4000 ug/L for 10 day exposure or less. No lifetime exposure advisory has been developed. However, lifetime health advisories are normally at least ten-fold lower than 10-day advisories. Therefore, a level of 400 ug/L would be a reasonable estimate of a lifetime protective level.
- (f) Secondary MCLs are human welfare based, but also may reflect other factors relating to technologic and economic feasibility of attainment and monitoring in a water distribution system and at the tap. These factors may not be relevant for the water resource.
- (g) Value listed is for 1,3,5-trimethylbenzene. Taste and odor treshold should be similar for 1,2,4-trimethylbenzene.
- (h) Liability under Proposition 65 may also exist for responsible parties where levels in water exceed 0.25 ug/L.
- Listed value assumes 2 liters/day water consumption, 70 kg body weight, and 20% relative source contribution from drinking water.
- (j) Concentrations of individual PAHs are adjusted by dividing the concentrations by the potency equivalency factors (PEFs) in the table on the following page. The limit applies to the sum of these adjusted concentrations.