Core (microarchitecture)

From Wikipedia, the free encyclopedia
Jump to: navigation, search

The Core microarchitecture (previously known as the Next-Generation Micro-Architecture, or NGMA) is a multi-core processor microarchitecture unveiled by Intel in Q1 2006. It is based around an updated version of the Yonah core and could be considered the latest iteration of the P6 microarchitecture, which traces its history back to the Pentium Pro introduced in 1995. The high power consumption and heat intensity of NetBurst-based processors, the resulting inability to effectively increase clock speed, and other bottlenecks such as the inefficient pipeline were the primary reasons Intel abandoned the NetBurst microarchitecture. The Core microarchitecture was designed by the Intel Israel (IDC) team that previously designed the Pentium M mobile processor[citation needed] .

The architecture features lower power usage than before and is competitive with AMD in heat production.[citation needed] It has multiple cores and hardware virtualization support (marketed as Intel VT-x), as well as Intel 64 and SSSE3.

The first processors that used this architecture were code-named Merom, Conroe, and Woodcrest; Merom is for mobile computing, Conroe is for desktop systems, and Woodcrest is for servers and workstations. While architecturally identical, the three processor lines differ in the socket used, bus speed, and power consumption. Mainstream Core-based processors are branded Pentium Dual-Core and low end branded Celeron; server and workstation Core-based processors are branded Xeon, while desktop and mobile Core-based processors are branded as Core 2. Despite their name, processors sold as Intel Core do not actually use the Core microarchitecture.


Contents

[edit] Technology

Intel CPU core roadmaps from NetBurst and Pentium M to Haswell. The Core family of processors are those with the light green background.

The Intel Core Microarchitecture was designed from the ground up, but is similar to the Pentium M microarchitecture in design philosophy. The pipeline is 14 stages long — less than half of Prescott's, a signature feature of wide order execution cores.[citation needed] Core's execution unit is 4 issues wide, compared to the 3-issue cores of P6, Pentium M, and NetBurst microarchitectures. The new architecture is a dual core design with linked L1 cache and shared L2 cache engineered for maximum performance per watt and improved scalability.

One new technology included in the design is Macro-Ops Fusion, which combines two x86 instructions into a single micro-operation. For example, a common code sequence like a compare followed by a conditional jump would become a single micro-op.

Other new technologies include 1 cycle throughput (2 cycles previously) of all 128-bit SSE instructions and a new power saving design. All components will run at minimum speed, ramping up speed dynamically as needed (similar to AMD's Cool'n'Quiet power-saving technology, as well as Intel's own SpeedStep technology from earlier mobile processors). This allows the chip to produce less heat, and consume as little power as possible.

Intel Core microarchitecture.

For most Woodcrest CPUs, the front side bus (FSB) runs at 1333 MT/s; however, this is scaled down to 1066 MT/s for lower end 1.60 and 1.86 GHz variants.[1][2] The Merom mobile variant was initially targeted to run at a FSB of 667 MT/s while the second wave of Meroms, supporting 800 MT/s FSB, were released as part of the Santa Rosa platform with a different socket in May 2007. The desktop-oriented Conroe began with models having an FSB of 800 MT/s or 1066 MT/s with a 1333 MT/s line officially launched on July 22, 2007.

The power consumption of these new processors is extremely low—average use energy consumption is to be in the 1-2 watt range in ultra low voltage variants, with thermal design powers (TDPs) of 65 watts for Conroe and most Woodcrests, 80 watts for the 3.0 GHz Woodcrest, and 40 watts for the low-voltage Woodcrest. However, this is subject to change. In comparison, an AMD Opteron 875HE processor consumes 55 watts, while the new Energy Efficient Socket AM2 line fits in the 35 watt thermal envelope (specified a different way so not directly comparable). Merom, the mobile variant, is listed at 35 watts TDP for standard versions and 5 watts TDP for Ultra Low Voltage (ULV) versions.

Previously, Intel warned that it would now focus on power efficiency, rather than raw performance. However, at IDF in the spring of 2006, Intel advertised both. Some of the promised numbers are:

[edit] Code names

The processors of the Core microarchitecture can be categorized by number of cores, cache size, and socket; each combination of these has a unique code name and product code that is used across a number of brands. For instance, code name "Allendale" with product code 80557 has two cores, 2 MB L2 cache and uses the desktop socket 775, but has been marketed as Celeron, Pentium, Core 2 and Xeon, each with different sets of features enabled. Most of the mobile and desktop processors come in two variants that differ in the size of the L2 cache, but the specific amount of L2 cache in a product can also be reduced by disabling parts at production time. Wolfdale-DP and all quad-core processors except Dunnington QC are multi-chip modules combining two dies. For the 65 nm processors, the same product code can be shared by processors with different dies, but the specific information about which one is used can be derived from the stepping.

Mobile Desktop, UP Server CL Server DP Server MP Server
Single-Core 65 nm Merom-L
80537
Conroe-L
80557
Single-Core 45 nm Penryn-L
80585
Wolfdale-CL
80588
Dual-Core 65 nm Merom-2M
80537
Merom
80537
Allendale
80557
Conroe
80557
Conroe-CL
80556
Woodcrest
80556
Tigerton-DC
80564
Dual-Core 45 nm Penryn-3M
80577
Penryn
80576
Wolfdale-3M
80571
Wolfdale
80570
Wolfdale-CL
80588
Wolfdale-DP
80573
Quad-Core 65 nm Kentsfield
80562
Clovertown
80563
Tigerton
80565
Quad-Core 45 nm Penryn-QC
80581
Yorkfield-6M
80580
Yorkfield
80569
Yorkfield-CL
80584
Harpertown
80574
Dunnington QC
80583
Six-Core 45 nm Dunnington
80582

[edit] Steppings

The Core microarchitecture uses a number of steppings, which unlike previous microarchitectures not only represent incremental improvements but also different sets of features like cache size and low power modes. Most of these steppings are used across brands, typically by disabling some of the features and limiting clock frequencies on low-end chips.

Steppings with a reduced cache size use a separate naming scheme, which means that the releases are no longer in alphabetic order. Additional steppings have been used in internal and engineering samples, but are not listed in the tables.

Many of the high-end Core 2 and Xeon processors use Multi-Chip Modules of two or three chips in order to get larger cache sizes or more than two cores.

[edit] Steppings using 65 nm process

Mobile (Merom) Desktop (Conroe) Desktop (Kentsfield) Server (Woodcrest, Clovertown, Tigerton)
Stepping Released Area CPUID L2 cache Max. clock Celeron Pentium Core 2 Celeron Pentium Core 2 Xeon Core 2 Xeon Xeon
B2 Jul 2006 143 mm² 06F6 4 MiB 2.93 GHz M5xx T5000 T7000 L7000 E6000 X6000 3000 5100
B3 Nov 2006 143 mm² 06F7 4 MiB 3.00 GHz Q6000 QX6000 3200 5300
L2 Jan 2007 111 mm² 06F2 2 MiB 2.13 GHz T5000 U7000 E2000 E4000 E6000 3000
E1 May 2007 143 mm² 06FA 4 MiB 2.80 GHz M5xx T7000 L7000 X7000
G0 Apr 2007 143 mm² 06FB 4 MiB 3.00 GHz M5xx T7000 L7000 X7000 E2000 E4000 E6000 3000 Q6000 QX6000 3200 5100 5300 7200 7300
G2 Mar 2009 143 mm² 06FB 4 MiB 2.16 GHz M5xx T5000 T7000 L7000
M0 Jul 2007 111 mm² 06FD 2 MiB 2.40 GHz 5xx T1000 T2000 T3000 T5000 T7000 U7000 E1000 E2000 E4000
A1 Jun 2007 81 mm² 10661 1 MiB 2.20 GHz M5xx U2000 220 4x0

Steppings B2/B3, E1 and G0 of model 15 (cpuid 06fx) processors are evolutionary steps of the standard Merom/Conroe die with 4 MiB L2 cache, with the short-lived E1 stepping only being used in mobile processors. Stepping L2 and M0 are the "Allendale" chips with just 2 MiB L2 cache, reducing production cost and power consumption for low-end processors.

The G0 and M0 steppings improve idle power consumption in C1E state and add the C2E state in desktop processors. In mobile processors, all of which support C1 through C4 idle states, steppings E1, G0, and M0 add support for the Mobile Intel 965 Express (Santa Rosa) platform with Socket P, while the earlier B2 and L2 steppings only appear for the Socket M based Mobile Intel 945 Express (Napa refresh) platform.

The model 22 stepping A1 (cpuid 10661h) marks a significant design change, with just a single core and 1 MiB L2 cache further reducing the power consumption and manufacturing cost for the low-end. Like the earlier steppings, A1 is not used with the Mobile Intel 965 Express platform.

Steppings G0, M0 and A1 mostly replaced all older steppings in 2008. In 2009, a new stepping G2 was introduced to replace the original stepping B2.[3]

[edit] Steppings using 45 nm process

Mobile (Penryn) Desktop (Wolfdale) Desktop (Yorkfield) Server (Wolfdale-DP, Harpertown, Dunnington)
Stepping Released Area CPUID L2 cache Max. clock Celeron Pentium Core 2 Celeron Pentium Core 2 Xeon Core 2 Xeon Xeon
C0 Nov 2007 107 mm² 10676 6 MiB 3.00 GHz E8000 P7000 T8000 T9000 P9000 SP9000 SL9000 X9000 E8000 3100 QX9000 5200 5400
M0 Mar 2008 82 mm² 10676 3 MiB 2.40 GHz 7xx SU3000 P7000 P8000 T8000 SU9000 E5000 E2000 E7000
C1 Mar 2008 107 mm² 10677 6 MiB 3.20 GHz Q9000 QX9000 3300
M1 Mar 2008 82 mm² 10677 3 MiB 2.50 GHz Q8000 Q9000 3300
E0 Aug 2008 107 mm² 1067A 6 MiB 3.33 GHz T9000 P9000 SP9000 SL9000 Q9000 QX9000 E8000 3100 Q9000 Q9000S QX9000 3300 5200 5400
R0 Aug 2008 82 mm² 1067A 3 MiB 2.93 GHz 7xx 900 SU2000 T3000 T4000 SU2000 SU4000 SU3000 T6000 SU7000 P8000 SU9000 E3000 E5000 E6000 E7000 Q8000 Q8000S Q9000 Q9000S 3300
A1 Sep 2008 503 mm² 106D1 3 MiB 2.67 GHz 7400

In the model 23 (cpuid 01067xh), Intel started marketing stepping with full (6 MiB) and reduced (3 MiB) L2 cache at the same time, and giving them identical cpuid values. All steppings have the new SSE4.1 instructions. Stepping C1/M1 was a bug fix version of C0/M0 specifically for quad core processors and only used in those. Stepping E0/R0 adds two new instructions (XSAVE/XRSTOR) and replaces all earlier steppings.

In mobile processors, stepping C0/M0 is only used in the Intel Mobile 965 Express (Santa Rosa refresh) platform, whereas stepping E0/R0 supports the later Intel Mobile 4 Express (Montevina) platform.

Model 30 stepping A1 (cpuid 106d1h) adds an L3 cache as well as six instead of the usual two cores, which leads to an unusually large die size of 503 mm².[4] As of February 2008, it has only found its way into the very high-end Xeon 7400 series (Dunnington).

[edit] Current processors

[edit] Mobile

Codename Processor name Processor no Architecture Active cores Clock speed FSB Active L2 cache
Merom Celeron M 5x0 65 nm 1 1.6-2.0 GHz 533 MT/s 1 MiB
Merom-L M 5x0 1.6-2.26 GHz
Celeron M ULV M 5x3 933-1000 MHz 533 MT/s 1 MiB
Merom-2M Celeron 5x5 65 nm 1 2.0-2.17 GHz 667 MT/s 1 MiB
Merom-L Core 2 Solo ULV U2xxx 65 nm 1 1.06-1.2 GHz 533 MT/s 1 MiB
Merom-2M Pentium Dual Core T2xxx 65 nm 2 1.46-2.0 GHz 533 MT/s 1 MiB
Merom-2M Pentium Dual Core T3xxx 65 nm 2 2-2.16 GHz 667 MT/s 1 MiB
Merom-2M Core 2 Duo ULV U7xxx 65 nm 2 1.06-1.33 GHz 533 MT/s 2 MiB
Core 2 Duo T5xxx 1.73 GHz 533 MT/s
T5xxx 1.5-2.16 GHz 667 MT/s
T5xxx 1.67-1.83 GHz
T5xxx 1.4-2.2 GHz 800 MT/s
Merom Core 2 Duo L7xxx 65 nm 2 1.33-1.5 GHz 667 MT/s 4 MiB
L7xxx 1.4-1.8 GHz 800 MT/s
Core 2 Duo T5xxx 1.6 GHz 533 MT/s 2 MiB
T5xxx 1.67-1.83 GHz 667 MT/s
T7xxx 2-2.33 GHz 4 MiB
T7xxx 2-2.6 GHz 800 MT/s
Merom XE Core 2 Extreme X7xxx 65 nm 2 2.6-2.8 GHz 800 MT/s 4 MiB
Penryn-L Celeron 9xx 45 nm 1 2 GHz 800 MT/s 1 MiB
Penryn-3M Pentium T4xxx 45 nm 2 2-2.2 GHz 800 MT/s 1 MiB
Penryn-3M Core 2 Duo T6xxx 45 nm 2 2.0-2.2 GHz 800 MT/s 2 MiB
Penryn-3M Core 2 Duo T8xxx 45 nm 2 2.1-2.4 GHz 800 MT/s 3 MiB
Penryn Core 2 Duo P7xxx 45 nm 2 2.0-2.26 GHz 1066 MT/s 3 MiB
P8xxx 2.26-2.66 GHz 3 MiB
P9xxx 2.53-2.8 GHz 6 MiB
Core 2 Duo T9xxx 2.5-2.6 GHz 800 MT/s 6 MiB
T9xxx 2.53, 3.067 GHz 1066 MT/s
Penryn XE Core 2 Extreme X9xxx 45 nm 2 2.8 GHz 800 MT/s 6 MiB
Penryn-L Celeron ULV (SFF) 7x3 45 nm 1 1.2-1.3 GHz 800 MT/s 1 MiB
Penryn-L Pentium ULV (SFF) SU2xxx 45 nm 1 1.3-1.4 GHz 800 MT/s 2 MiB
Penryn-L Core 2 Solo ULV (SFF) U3xxx 45 nm 1 1.2-1.4 GHz 800 MT/s 3 MiB
Penryn-3M Celeron ULV (SFF) SU2xxx 45 nm 2 1.2-1.4 GHz 800 MT/s 2 MiB
Penryn-3M Pentium ULV (SFF) SU4xxx 45 nm 2 1.3-1.5 GHz 800 MT/s 2 MiB
Penryn-3M Core 2 Duo ULV (SFF) SU7xxx 45 nm 2 1.3-1.4 GHz 800 MT/s 3 MiB
Penryn-3M SU9xxx 1.2-1.6 GHz
Penryn Core 2 Duo LV (SFF) SL9xxx 1.6-2.13 GHz 1066 MT/s 6 MiB
Core 2 Duo MV (SFF) SP9xxx 2.26-2.53 GHz
Penryn-QC Core 2 Quad Q9xxx 45 nm 4 2.0-2.4 GHz 1066 MT/s 6-12 MB
Penryn XE Core 2 Extreme X9xxx 45 nm 2 2.8-3.06 GHz 800-1066 MT/s 6 MiB
QX9xxx 4 2.53 GHz 1066 MT/s 12 MiB

[edit] Desktops

Codename Processor name Processor no Architecture No of cores Clock speed FSB L2 cache Virtualization
Conroe-L Celeron 220, 420, 430, 440, 450 65 nm 1 1.2, 1.6, 1.8, 2, 2.2 GHz 533/800 MT/s 512 kiB No
Allendale E1200, E1400, E1500 2 1.6, 2.0, 2.2 GHz
Allendale Pentium Dual Core E2140, E2160, E2180, E2200, E2220 1.6, 1.8, 2, 2.2, 2.4 GHz 800 MT/s 1 MiB
Core 2 Duo E4300, E4400, E4500, E4600, E4700 1.8, 2, 2.2, 2.4, 2.6 GHz 2 MiB
E6300, E6400 1.86, 2.13 GHz 1066 MT/s Yes
Conroe Core 2 Duo E6300, E6400 1.86, 2.13 GHz 1066 MT/s
E6320, E6420 4 MiB
E6600, E6700 2.40, 2.67 GHz
E6540 2.33 1333 MT/s
E6550, E6750, E6850 2.33, 2.67, 3 GHz
Wolfdale Celeron E3200, E3300 45 nm 2.4 GHz, 2.5 GHz 800 MT/s 1 MiB
Pentium Dual Core E5200, E5300, E5400, E5500 2.5, 2.6, 2.7, 2.8 GHz 2 MiB No
E6500, E6600 2.93, 3.06 GHz 1066 MT/s Yes
Core 2 Duo E7200, E7300, E7400, E7500 2.53, 2.66, 2.8, 2.93 GHz 3 MiB No
E8190 2.67 1333 MT/s 6 MiB
E8200, E8300, E8400, E8500, E8600 2.67, 2.83, 3, 3.16, 3.33 GHz Yes
Kentsfield Core 2 Quad Q6600, Q6700 65 nm 4 2.4, 2.67 GHz 1066 MT/s 8 MiB
Yorkfield Core 2 Quad Q8200, Q8300S, Q8300 45 nm 2.33, 2.5 GHz 1333 MT/s 4 MiB No
Q8400, Q8500S 2.67 GHz Yes
Q9300, Q9400/Q9500S, Q9500/Q9505/Q9505S 2.5, 2.67, 2.83 GHz 6 MiB
Q9450, Q9550/Q9550S, Q9650 2.67, 2.83, 3 GHz 12 MiB
Conroe XE Core 2 Extreme X6800 65 nm 2 2.93 GHz 1066 MT/s 4 MiB
Kentsfield XE Core 2 Extreme QX6700, QX6800 4 2.67, 2.93 GHz 1066 MT/s 8 MiB
QX6850 3 GHz 1333 MT/s
Yorkfield XE Core 2 Extreme QX9650 45 nm 3 GHz 1333 MT/s 12 MiB
QX9770, QX9775 3.2 GHz 1600 MT/s

[edit] Servers and workstations

Codename Processor name Processor no Architecture No of cores Clock speed FSB L2 cache L3 cache
Allendale Dual-Core Xeon 3040, 3050 65 nm 2 1.86, 2.13 GHz 1066 MT/s 2 MiB No
Conroe Dual-Core Xeon 3040, 3050 65 nm 2 1.86, 2.13 GHz 1066 MT/s 2 MiB
3060, 3070 2.4, 2.67 GHz 4 MiB
3065, 3075, 3085 2.33, 2.67, 3 GHz 1333 MT/s
Wolfdale Dual-Core Xeon E3110 45 nm 2 3.0 GHz 1333 MT/s 6 MiB
Woodcrest Dual-Core Xeon LV 5128, 5138 65 nm 2 1.86, 2.13 GHz 1066 MT/s 4 MiB
5148 2.33 GHz 1333 MT/s
Dual-Core Xeon 5110, 5120 1.6, 1.86 GHz 1066 MT/s
5130, 5140, 5150, 5160 2, 2.33, 2.67, 3 GHz 1333 MT/s
Wolfdale-DP Dual-Core Xeon E5205 45 nm 2 1.86 GHz, 1066 MT/s 6 MiB
E5220, E5240 2.33, 3, 3.16 GHz 1333 MT/s
X5260 3.33 GHz
X5272 3.4 GHz 1600 MT/s
Kentsfield Quad-Core Xeon X3210, X3220, X3230 65 nm 4 2.13, 2.4, 2.67 GHz 1066 MT/s 8 MiB
Clovertown Quad-Core Xeon LV L5310, L5320 65 nm 4 1.6, 1.86 GHz 1066 MT/s 8 MiB
L5335 2 GHz 1333 MT/s
Quad-Core Xeon E5310, E5320 1.6, 1.86 GHz 1066 MT/s
E5330, E5340, E5350 2.13, 2.4, 2.67 GHz
E5335, E5345, X5355, X5365 2, 2.33, 2.67, 3 GHz 1333 MT/s
Harpertown Quad-Core Xeon E5405, E5410, E5420, E5430 45 nm 4 2, 2.33, 2.5, 2.67 GHz 1333 MT/s 12 MiB
E5440, E5450, X5450, X5460 2.83, 3, 3, 3.16 GHz
E5462, E5472, X5472, X5482 2.8, 3, 3, 3.2 GHz 1600 MT/s
Harpertown LV Quad-Core Xeon LV L5410, L5420, L5430 45 nm 4 2.33, 2.5, 2.67 GHz 1333 MT/s 12 MiB
Tigerton-DC Dual-Core Xeon E7210, E7220 65 nm 2 2.4, 2.93 GHz 1066 MT/s 4 MiB
Tigerton Quad-Core Xeon LV L7345 65 nm 4 1.86 GHz 1066 MT/s 8 MiB
Quad-Core Xeon E7310, E7320 1.6, 2.13 GHz 4 MiB
E7330 2.4 GHz 6 MiB
E7340, X7350 2.4, 2.93 GHz 8 MiB
Wolfdale-DP Dual-Core Xeon X5270 45 nm 2 3.5 GHz 1333 MT/s 6 MiB
Dual-Core Xeon LV L5240, L5250 45 nm 2 2.93, 3.16 GHz 1333 MT/s 6 MiB
Yorkfield Quad-Core Xeon X3320, X3330 45 nm 4 2.5, 2.67 GHz 1333 MT/s 6 MiB
X3370 3 GHz 12 MiB
Harpertown LV Quad-Core Xeon LV L5440, L5450 45 nm 4 3, 3.16 GHz 1333 MT/s 12 MiB
Dunnington Six Core Xeon E7450, X7460 45 nm 6 2.4, 2.67 GHz 1066 MT/s 9 MiB 12/16 MiB
Six Core Xeon LV L7455 45 nm 6 2.13 GHz 12 MiB

[edit] System requirements

[edit] Motherboard compatibility

Conroe, Conroe XE and Allendale all use Socket LGA 775; however, not every motherboard is compatible with these processors.

Supporting chipsets are:

See also: List of Intel chipsets

The currently released Yorkfield XE model QX9770 (45 nm with 1600FSB) currently has limited chipset compatibility - with only X38, P35 (With Overclocking) and some high-performance X48 and P45 motherboards being compatible. BIOS updates are gradually being released to provide support for the new Penryn technology, and the new QX9775 is only compatible with D5400XS. The Wolfdale-3M model E7200 also has limited compatibility (at least the Xpress 200 chipset is incompatible)[citation needed].

Although a motherboard may have the required chipset to support Conroe, some motherboards based on the above mentioned chipsets do not support Conroe. This is because all Conroe-based processors require a new power delivery feature set specified in Voltage Regulator-Down (VRD) 11.0. This requirement is a result of Conroe's significantly lower power consumption, compared to the Pentium 4/D CPUs it is replacing. A motherboard that has both a supporting chipset and VRD 11 supports Conroe processors, but even then some boards will need an updated BIOS to recognize Conroe's FID (Frequency ID) and VID (Voltage ID).

[edit] Synchronous memory modules

Unlike the previous Pentium 4 and Pentium D design, the Core 2 technology sees a greater benefit from memory running synchronously with the Front Side Bus (FSB). This means that for the Conroe CPUs with FSB of 1066 MT/s, the ideal memory performance for DDR2 is PC2-8500. In a few configurations, using PC2-5300 instead of PC2-4200 can actually decrease performance. Only when going to PC2-6400 is there a significant performance increase. While DDR2 memory models with tighter timing specifications do improve performance, the difference in real world games and applications is often negligible.[5]

Optimally, the memory bandwidth afforded should match the bandwidth of the FSB, that is to say that a CPU with a 533 MT/s rated bus speed should be paired with RAM matching the same rated speed, for example DDR2 533, or PC2-4200. A common myth[citation needed] is that installing interleaved RAM will offer double the bandwidth. This myth is false; at most the increase in bandwidth by installing interleaved RAM is roughly 5–10%. The AGTL+ PSB used by all NetBurst processors as well as current and medium-term (pre-QuickPath) Core 2 processors provide a 64-bit data path. Current chipsets provide for a couple of either DDR2 or DDR3 channels.

Matched processor and RAM ratings
Processor model Front side bus Matched memory and maximum bandwidth
single channel / dual channel
DDR DDR2 DDR3
mobile: T5200, T5300, U2n00, U7n00 533 MT/s PC-3200 (DDR-400)
3.2 GB/s
PC2-4200 (DDR2-533)
4.264 GB/s
PC2-8500 (DDR2-1066)
8.532 GB/s
PC3-8500 (DDR3-1066)
8.530 GB/s
desktop: E6n00, E6n20, X6n00, E7n00, Q6n00 and QX6n00
mobile: T9400, T9550, T9600, P7350, P7450, P8400, P8600, P8700, P9500, P9600, SP9300, SP9400, X9100
1066 MT/s
mobile: T5n00, T5n50, T7n00 (Socket M), L7200, L7400 667 MT/s PC-3200 (DDR-400)
3.2 GB/s
PC2-5300 (DDR2-667)
5.336 GB/s
PC3-10600 (DDR3-1333)
10.670 GB/s
desktop: E6n40, E6n50, E8nn0, Q9nn0, QX6n50, QX9650 1333 MT/s
mobile: T5n70, T6400, T7n00 (Socket P), L7300, L7500, X7n00, T8n00, T9300, T9500, X9000
desktop: E4n00, Pentium E2nn0, Pentium E5nn0, Celeron 4n0, E3n00
800 MT/s PC-3200 (DDR-400)
3.2 GB/s
PC-3200 (DDR-400)
3.2 GB/s
PC2-6400 (DDR2-800)
6.400 GB/s
PC2-8500 (DDR2-1066)
8.532 GB/s
PC3-6400 (DDR3-800)
6.400 GB/s
PC3-12800 (DDR3-1600)
12.800 GB/s
desktop: QX9770, QX9775 1600 MT/s

On jobs requiring large amounts of memory access, the quad-core Core 2 processors can benefit significantly[6] from using a PC2-8500 memory, which runs exactly the same speed as the CPU's FSB; this is not an officially supported configuration, but a number of motherboards offer it.

The Core 2 processor does not require the use of DDR2. While the Intel 975X and P965 chipsets require this memory, some motherboards and chipsets support both the Core 2 and DDR memory. When using DDR memory, performance may be reduced because of the lower available memory bandwidth.

[edit] Chip errata

The Core 2 memory management unit (MMU) in X6800, E6000 and E4000 processors does not operate to previous specifications implemented in previous generations of x86 hardware. This may cause problems, many of them serious security and stability issues, with existing operating system software. Intel's documentation states that their programming manuals will be updated "in the coming months" with information on recommended methods of managing the translation lookaside buffer (TLB) for Core 2 to avoid issues, and admits that, "in rare instances, improper TLB invalidation may result in unpredictable system behavior, such as hangs or incorrect data."[7]

Among the issues noted:

Intel errata Ax39, Ax43, Ax65, Ax79, Ax90, Ax99 are said to be particularly serious.[8] 39, 43, 79, which can cause unpredictable behavior or system hang, have been fixed in recent steppings.

Among those who have noted the errata to be particularly serious are OpenBSD's Theo de Raadt[9] and DragonFly BSD's Matthew Dillon.[10] Taking a contrasting view was Linus Torvalds, calling the TLB issue "totally insignificant", adding, "The biggest problem is that Intel should just have documented the TLB behavior better."[11]

Microsoft has issued update KB936357 to address the errata by microcode update,[12] with no performance penalty. BIOS updates are also available to fix the issue.

[edit] See also

[edit] References

[edit] External links

Personal tools
Namespaces
Variants
Actions
Navigation
Interaction
Toolbox
Print/export
Languages