Daylighting

From Wikipedia, the free encyclopedia
  (Redirected from Skylight (window))
Jump to: navigation, search
For the restoration of culverted streams to above-ground channels, see Daylighting (streams). For a similar operation with transportation tunnels, see Daylighting (tunnels).
A skylight providing internal illumination

Daylighting is the practice of placing windows or other openings and reflective surfaces so that during the day natural light provides effective internal lighting. Particular attention is given to daylighting while designing a building when the aim is to maximize visual comfort or to reduce energy use. Energy savings can be achieved from the reduced use of artificial (electric) lighting or from passive solar heating or cooling. Artificial lighting energy use can be reduced by simply installing fewer electric lights because daylight is present, or by dimming/switching electric lights automatically in response to the presence of daylight, a process known as daylight harvesting.

Daylighting is a technical term given to a common centuries-old, geography and culture independent design basic when "rediscovered" by 20th century architects. The amount of daylight received in an internal space can be analyzed by undertaking a daylight factor calculation. Today, the use of computers and proprietary industry software such as Radiance can allow an Architect or Engineer to quickly undertake complex calculations to review the benefit of a particular design.

There is no direct sunlight on the polar-side wall of a building from the autumnal equinox to the spring equinox[citation needed]. Traditionally, houses were designed with minimal windows on the polar side but more and larger windows on the equatorial-side. Equatorial-side windows receive at least some direct sunlight on any sunny day of the year (except in tropical latitudes in summertime) so they are effective at daylighting areas of the house adjacent to the windows. Even so, during mid-winter, light incidence is highly directional and casts deep shadows. This may be partially ameliorated through light diffusion, light pipes or tubes, and through somewhat reflective internal surfaces. In fairly low latitudes in summertime, windows that face east and west and sometimes those that face toward the pole receive more sunlight than windows facing toward the equator.

Windows[edit]

Main article: Window
A window

Windows are the most common way to admit daylight into a space. Their vertical orientation means that they selectively admit sunlight and diffuse daylight at different times of the day and year. Therefore windows on multiple orientations must usually be combined to produce the right mix of light for the building, depending on the climate and latitude. There are three ways to improve the amount of light available from a window:[1]

  • Placing the window close to a light colored wall.
  • Slanting the sides of window openings so the inner opening is larger than the outer opening.
  • Using a large light colored window-sill to project light into the room.

Different types and grades of glass and different window treatments can also affect the amount of light transmission through the windows.

The type of glazing is an important issue, expressed by its VT coefficient (Visual Transmittance).[2] As the name suggests, this coefficient measures how much visible light is admitted by the window.

A low VT (below 0.4) can reduce by half or more the light coming into a room. But be also aware of high VT glass: high VT numbers (say, above 0.60) can be a cause of glare.

On the other hand you should also take into account the undesirable effects of large windows.

According to some building codes the size of the windows should amount to at least 10% of the room's floor surface. But we should not forget that large windows can lead to high heating and cooling costs and lack of thermal comfort. Windows should be properly located and sized [3] to prevent glare but also undesired solar heat gains or heat loss.

Clerestory windows[edit]

Main article: Clerestory
Clerestory windows

Another important element in creating daylighting is the use of clerestory windows. These are high, vertically placed windows. They can be used to increase direct solar gain when oriented towards the equator. When facing toward the sun, clerestories and other windows may admit unacceptable glare. In the case of a passive solar house, clerestories may provide a direct light path to polar-side (north in the northern hemisphere; south in the southern hemisphere) rooms that otherwise would not be illuminated. Alternatively, clerestories can be used to admit diffuse daylight (from the north in the northern hemisphere) that evenly illuminates a space such as a classroom or office.

Often, clerestory windows also shine onto interior wall surfaces painted white or another light color. These walls are placed so as to reflect indirect light to interior areas where it is needed. This method has the advantage of reducing the directionality of light to make it softer and more diffuse, reducing shadows.

Skylights[edit]

Main article: Skylight
Modern skylight

Skylights are light transmitting fenestration (products filling openings in a building envelope which also includes windows, doors, etc.) forming all, or a portion of, the roof of a building space. Skylights are widely used in daylighting design in residential and commercial buildings, mainly because they are the most effective source of daylight on a unit area basis.

An alternative to a skylight is a roof lantern. A roof lantern is a daylighting cupola that sits above a roof, as opposed to a skylight which is fitted into a roof's construction. Roof lanterns serve as both an architectural feature and a method of introducing natural light into a space, and are typically wooden or metal structures with a number of glazed glass panels.

Light reflectors[edit]

Adjustable light reflector

Once used extensively in office buildings, the manually adjustable light reflector is seldom in use today having been supplanted by a combination of other methods in concert with artificial illumination. The reflector had found favor where the choices of artificial light provided poor illumination compared to modern electric lighting.

Light shelves[edit]

Light shelves

Light shelves are an effective way to enhance the lighting from windows on the equator-facing side of a structure, this effect being obtained by placing a white or reflective metal light shelf outside the window. Usually the window will be protected from direct summer season sun by a projecting eave. The light shelf projects beyond the shadow created by the eave and reflects sunlight upward to illuminate the ceiling. This reflected light can contain little heat content and the reflective illumination from the ceiling will typically reduce deep shadows, reducing the need for general illumination.

In the cold winter, a natural light shelf is created when there is snow on the ground which makes it reflective. Low winter sun (see Sun path) reflects off the snow and increases solar gain through equator-facing glass by one- to two-thirds which brightly lights the ceiling of these rooms. Glare control (drapes) may be required.

Light tubes[edit]

Main article: Light tube
Diagram of a light tube
Tubular daylighting devices, such as this one from Solatube International, harvest sunlight and transmit it through a highly reflective tube into an interior space at the ceiling level.

Another type of device used is the light tube, also called a tubular daylighting device (TDD), which is placed into a roof and admits light to a focused area of the interior. These somewhat resemble recessed ceiling light fixtures. They do not allow as much heat transfer as skylights because they have less surface area.

TDDs use modern technology to transmit visible light through opaque walls and roofs. The tube itself is a passive component consisting of either a simple reflective interior coating or a light conducting fiber optic bundle. It is frequently capped with a transparent, roof-mounted dome 'light collector' and terminated with a diffuser assembly that admits the daylight into interior spaces and distributes the available light energy evenly (or else efficiently if the use of the lit space is reasonably fixed, and the user desired one or more 'bright-spots').

The tubular daylighting device was invented by Solatube International in 1993 and is used to provide daylighting to residential and commercial buildings, contributing to sustainability from a lighting standpoint and reducing the carbon footprint.

Sawtooth roof[edit]

Another roof-angled glass alternative is a sawtooth roof (found on older factories). Sawtooth roofs have vertical roof glass facing away from the equator side of the building to capture diffused light (not harsh direct equator-side solar gain). The angled portion of the glass-support structure is opaque and well insulated with a cool roof and radiant barrier. The sawtooth roof's lighting concept partially reduces the summer "solar furnace" skylight problem, but still allows warm interior air to rise and touch the exterior roof glass in the cold winter, with significant undesirable heat transfer.

Heliostats[edit]

Main article: Heliostat
A heliostat. The mirror rotates on a computer-controlled, motor-driven altazimuth mount.

The use of heliostats, mirrors which are moved automatically to reflect sunlight in a constant direction as the sun moves across the sky, is gaining popularity as an energy-efficient method of lighting. A heliostat can be used to shine sunlight directly through a window or skylight, or into any arrangement of optical elements, such as light tubes, that distribute the light where it is needed.

Smart glass[edit]

Main article: Smart glass

Smart glass is the name given to a class of materials and devices that can be switched between a transparent state and a state which is opaque, translucent, reflective, or retro-reflective. The switching is done by applying a voltage to the material, or by performing some simple mechanical operation. Windows, skylights, etc., that are made of smart glass can be used to adjust indoor lighting, compensating for changes of the brightness of the light outdoors and of the required brightness indoors.

Fiber-optic concrete wall[edit]

Main article: LiTraCon

Another way to make a secure structural concrete wall translucent is to embed optical fiber cables in it.[4] Daylight (and shadow images) can then pass directly through a thick solid-concrete wall.

Hybrid solar lighting[edit]

Main article: Hybrid solar lighting

Oak Ridge National Laboratory (ORNL) has developed a new alternative to skylights called hybrid solar lighting. This design uses a roof-mounted light collector, large-diameter optical fiber, and modified efficient fluorescent lighting fixtures that have transparent rods connected to the optical fiber cables. Essentially no electricity is needed for daytime natural interior lighting.

Field tests conducted in 2006 and 2007 of the new HSL technology were promising, but the low-volume equipment production is still expensive. HSL should become more cost effective in the near future. A version that can withstand windstorms could begin to replace conventional commercial fluorescent lighting systems with improved implementations in 2008 and beyond. The U.S. 2007 Energy Bill provides funding for HSL R&D, and multiple large commercial buildings are ready to fund further HSL application development and deployment.

At night, ORNL HSL uses variable-intensity fluorescent lighting electronic control ballasts. As the sunlight gradually decreases at sunset, the fluorescent fixture is gradually turned up to give a near-constant level of interior lighting from daylight until after it becomes dark outside.

HSL may soon become an option for commercial interior lighting. It can transmit about half of the direct sunlight it receives.[5]

Solarium[edit]

Main articles: Sunroom and Greenhouse

In a well-designed isolated solar gain building with a solarium, sunroom, greenhouse, etc., there is usually significant glass on the equator side. A large area of glass can also be added between the sun room and the interior living quarters. Low-cost, high-volume-produced patio door safety glass is an inexpensive way to accomplish this goal.

The doors used to enter a room should be opposite the sun room interior glass, so that a user can see outside immediately when entering most rooms. Halls should be minimized with open spaces used instead. If a hall is necessary for privacy or room isolation, inexpensive patio door safety glass can be placed on both sides of the hall. Drapes over the interior glass can be used to control lighting. Drapes can optionally be automated with sensor-based electric motor controls that are aware of room occupancy, daylight, interior temperature, and time of day. Passive solar buildings with no central air conditioning system need control mechanisms for hourly, daily, and seasonal, temperature-and-daylight variations. If the temperature is correct, and a room is unoccupied, the drapes can automatically close to reduce heat transfer in either direction.

To help distribute sun room daylight to the sides of rooms that are farthest from the equator, inexpensive ceiling-to-floor mirrors can be used.

Building codes require a second means of egress, in case of fire. Most designers use a door on one side of bedrooms, and an outside window, but west-side windows provide very-poor summer thermal performance. Instead of a west-facing window, designers use an R-13 foam-filled solid energy-efficient exterior door. It may have a glass storm door on the outside so that light can pass through when the inner door is opened. East/west glass doors and windows should be fully shaded top-to-bottom or a spectrally selective coating can be used to reduce solar gain.

Daylight Autonomy[edit]

Daylight autonomy is the percentage of time that daylight levels are above a specified target illuminance within a physical space or building.[6] The calculation is based on annual data and the predetermined lighting levels. The goal of the calculation is to determine how long an individual can work in a space without requiring electrical lighting, while also providing optimal visual and physical comfort.[6]

Daylight autonomy is beneficial when determining how daylight enters and illuminates a space. The drawback, however, is that there is no upper limit on luminance levels. Therefore, a space with a high internal heat gain deemed uncomfortable by occupants, would still perform well in the analysis. Achieving daylight autonomy requires an integrated design approach that guides the building form, siting, climate considerations, building components, lighting controls, and lighting design criteria.

Continuous Daylight Autonomy[edit]

Continuous daylight autonomy, is similar to daylight autonomy but partial credit is attributed to time steps when the daylight illuminance lies below the minimum illuminance level.[7] For example, if the target illuminance is 400 lux and the calculated value is 200 lux, daylight autonomy would give zero credit, while continuous daylight autonomy would give 0.5 credit (400/200 = 0.5). The benefit of continuous daylight autonomy is that it does not give a hard threshold of acceptable illuminance. Instead, it addresses the transition area—allowing for realistic preferences within any given space. For example, office occupants usually prefer to work at daylight below the illuminance threshold since this level avoids potential glare and excessive contrast.[7]

Useful Daylight Illuminance[edit]

Useful daylight illuminance focuses on the direct sunlight that falls into a space. The useful daylight illuminance calculation is based on three factors—the percentage of time a point is below, between, or above an illuminance value. The range for these factors is typically 100-2,000 lux. Useful daylight illuminance is similar to daylight autonomy but has the added benefit of addressing glare and thermal discomfort.[8] The upper threshold is used to determine when glare or thermal discomfort is occurring and may need resolution.

LEED Documentation[edit]

The LEED 2009 daylighting standards were intended to connect building occupants with the outdoors through use of optimal daylighting techniques and technologies. According to these standards, the maximum value of 1 point can be achieved through four different approaches. The first approach is a computer simulation to demonstrate, in clear sky conditions, the daylight illuminance levels 108-5,400 lux on, September 21 between 9:00 a.m. and 3:00 p.m. Another prescriptive approach is a method that uses two types of side-lighting, and three types of top-lighting to determine if a minimum of 75% daylighting is achieved in the occupied spaces. A third approach uses indoor light measurements showing that between 108-5,400 lux have been achieved in the space. The last approach is a combination of the other three calculation methods to prove that the daylight illumination requirements are achieved.[9]

The LEED 2009 documentation is based upon the daylight factor calculation. The daylight factor calculation is based on uniform overcast skies. It is most applicable in Northern Europe and parts of North America.[10] Daylight factor is “the ratio of the illuminance at a point on a plane, generally the horizontal work plane, produced by the luminous flux received directly or indirectly at that point from a sky whose luminance distribution is known, to the illuminance on a horizontal plane produced by an unobstructed hemisphere of this same sky."[10]

LEED v4 daylighting standards are the most current as of 2014. The new standards are similar to the old standards, but also intend to “reinforce circadian rhythms, and reduce the use of electrical lighting by introducing daylight in the space.[11] Two options exist for achieving the maximum value of these two most recent points. One option is to use a computer simulation to demonstrate that a spatial daylight autonomy of 300 lux for at least 50% of the time, and an annual sunlight exposure of 1,000 lux for 250 occupied hours per year, exists in the space. Another option is to show that illuminance levels are between 300 lux and 3,000 lux between 9:00 a.m. and 3:00 p.m. on a clear day at the equinox for 75% or 90% of the floor area in the space.[11] The overall goal of the LEED v4 daylighting metrics is to analyze both the quantity and quality of the light, as well as to balance the use of glazing to ensure more light and less cooling load.

See also[edit]

References[edit]

  1. ^ Sun/Earth Buffering and Superinsulation page 68 ISBN 0-9604422-4-3
  2. ^ [ http://www.nfrc.org/windowratings/Energy-ratings.html “Window energy ratings"]; The National Fenestration Rating Council
  3. ^ [ http://www.house-energy.com/Windows/Daylighting.htm “We need natural lighting but windows shouldn’t be too large or too many"]; House-energy.com
  4. ^ Oliver Graydon (March 11, 2004). "Concrete casts new light in dull rooms". optics.org. Retrieved 2010-08-27. 
  5. ^ Muhs, Jeff. "Design and Analysis of Hybrid Solar Lighting and Full-Spectrum Solar Energy Systems". Oak Ridge National Laboratory. Retrieved 2007-12-23. 
  6. ^ a b Reinhart, Christoph; Mardaljevic, John & Rogers, Zach (2006). "Dynamic Daylight Performance Metrics for Sustainable Building Design" (PDF). Leukos 3 (1): 7–31. doi:10.1582/LEUKOS.2006.03.01.001. Retrieved December 11, 2014. 
  7. ^ a b Jakubiec, Alstan & Reinhart, Christoph (2011). "DIVA 2.0: Integrating Daylight and Thermal Simulations Using Rhinoceros 3D, Daysim and EnergyPlus" (PDF). Proceedings of Building Simulation 2011 14 (16): 2202–2209. Retrieved December 10, 2014. 
  8. ^ Nabil, Azza; Mardaljevic, John (2006). "Useful daylight illuminances: A replacement for daylight factors". Energy and Buildings 38 (7): 1858–1866. doi:10.1016/j.enbuild.2006.03.013. 
  9. ^ "Daylight and views - daylight". U.S. Green Building Council. USGBC. Retrieved 10 December 2014. 
  10. ^ a b Rea, Mark (2000). IESNA Lighting Handbook (9th ed.). Illuminating Engineering; 9 edition (July 2000). ISBN 0879951508. 
  11. ^ a b "Daylight". U.S. Green Building Council. USGBC. Retrieved 10 December 2014. 

External links[edit]