SUBSCRIBE TO NEW SCIENTIST

Physics & Math

Feeds

Home |Physics & Math |Tech | News

Single light wave flashes out from fibre laser

A long-elusive goal of physics has been reached – producing a pulse of light so short that it contains just a single oscillation of a light wave.

The flashes are almost as short as a light pulse can be, according to the laws of physics. The new super-short pulses could used as flashguns to sense very small, very fast events such as a single photon interacting with a single electron, says Alfred Leitenstorfer of the University of Konstanz in Germany. A single-cycle pulse packs in energy more densely than a pulse containing more wave peaks and troughs.

They could also show the way to boosting data transmission through fibre-optic cables, by shrinking the minimum amount of light needed to encode a single digital 1 or 0.

Leitenstorfer's group shunned the crystalline lasers typically used by physicists looking to make super-short light pulses and used optical-fibre lasers and wavelengths of light like those standard in telecommunications.

Technology milestone

"Single-cycle pulse generation with an essentially all-fibre system clearly marks a milestone in optical technology," says Martin Fermann of laser manufacturer Imra America, who was not involved with the work. He expects "the single-cycle regime will become a new standard" with applications in advanced imaging, sensing and signal processing.

The "uncertainty principle" formulated by 20th-century physicist Werner Heisenberg sets a limit on the shortest possible duration of a light pulse of any given wavelength in terms of time or number of cycles. The research team knew that at the infrared frequencies they were using the uncertainty principle meant they had to get the pulse down to a handful of femtoseconds (millionths of a billionth of a second).

The Konstanz researchers started with pulses from a single fibre laser and split them between two sets of fibres that contained atoms of the rare earth metal erbium to amplify the light waves. Each fibre then had a second stage that altered the light's wavelength, one stretching it by about 40 per cent, the other shrinking it by a similar amount. The two fibres then converged again, causing the two light beams to interfere with one another in a way that cancelled out most of the waves to leave just a single wave cycle lasting just 4.3 femtoseconds.

Pulses that are even shorter, as short as 3.9 femtoseconds, had been made before using wavelengths nearly 50 per cent shorter. But the relationship between wavelength and frequency means they weren't such pure fractions of a light wave, containing between 2 and 1.3 wave cycles.

Fibre key

The key to success, says Leitenstorfer, was using a single source to generate the two light pulses that combined to produce the short pulse. "It's because it's all-fibre technology that we can recombine these two parts," he told New Scientist. "The biggest challenge in this entire paper was to measure the pulse." A series of the short pulses were compared with each other to verify that they were each only one cycle long.

Further refinements should be possible. "We did these experiments in three weeks," Leitenstorfer says. His group say they can remove background noise to make their single cycle stand out more clearly.

Journal reference: Nature Photonics, DOI: 10.1038/nphoton.2009.258

If you would like to reuse any content from New Scientist, either in print or online, please contact the syndication department first for permission. New Scientist does not own rights to photos, but there are a variety of licensing options available for use of articles and graphics we own the copyright to.

Have your say
Comments 1 | 2 | 3 | 4

This comment breached our terms of use and has been removed.

This comment breached our terms of use and has been removed.

This comment breached our terms of use and has been removed.

This comment breached our terms of use and has been removed.

This comment breached our terms of use and has been removed.

This comment breached our terms of use and has been removed.

Not So Much Uncertainity Principle As Fourier Analysis

Mon Dec 21 20:41:56 GMT 2009 by Spock

Not so much Uncertainity Principle as Fourier Analysis - it was know long before "Wave Mechanics" that there was a reciprocal relation between pulse duration and frequency content.

Not So Much Uncertainity Principle As Fourier Analysis

Wed Dec 23 21:48:47 GMT 2009 by Rougar
http://freetubetv.net

I thought there was great variation. I'm still confused on what eigenfunctions really is.

This comment breached our terms of use and has been removed.

This comment breached our terms of use and has been removed.

Not So Much Uncertainity Principle As Fourier Analysis

Mon Dec 28 01:38:19 GMT 2009 by T. Roc
http://saposjoint.net/Forum/index.php

Very true, Mr. Spock.

This is a very typical mistake, that inflates the importance of the UP.

It is a result of the method - whether classical or 'quantum'.

More here: http://saposjoint.net/Forum/viewtopic.php?p=23136#p23136

Fractional Photons

Mon Dec 21 22:15:08 GMT 2009 by bluehigh

... they weren't such pure fractions of a light wave, containing between 2 and 1.3 wave cycles.

Is that 1.3 photons?

... A single-cycle pulse packs in energy more densely than a pulse containing more wave peaks and troughs.

Please explain.

This comment breached our terms of use and has been removed.

This comment breached our terms of use and has been removed.

Fractional Photons

Sat Jan 09 16:22:02 GMT 2010 by Eric Kvaalen

No, they don't mean 1.3 photons. They probably had many quanta of light making up their pulse.

As for the second sentence you quote, I think what they mean is that when they combine a range of frequencies, the sum of the waves comes out to something which is basically one hump, with quiet before and after, so the energy of all the contributing wavetrains gets concentrated into that one hump.

Actually, this is not the first time someone has made a one-hump wave. If you ever held a magnet or an object with static electricity and you lifted it up and then let it back down, you created an electromagnetic wave having just one hump or wave. Of course, it wasn't visible light, but then neither was the "light" in this experiment. The difference is that their wave was about a micron in length, and yours was about a million miles!

Comments 1 | 2 | 3 | 4

All comments should respect the New Scientist House Rules. If you think a particular comment breaks these rules then please use the "Report" link in that comment to report it to us.

If you are having a technical problem posting a comment, please contact technical support.

Super-short light pulses marks a milestone in optical technology (Image: Kim Steele/Getty)

Super-short light pulses marks a milestone in optical technology (Image: Kim Steele/Getty)

1 more image

ADVERTISEMENT

Quantum computers do chemistry

15:54 11 January 2010

Quantum computing's first big breakthrough could be to revolutionise the way chemists develop reactions needed to make new materials

How to make a liquid invisibility cloak

14:51 08 January 2010

An invisibility cloak could be made from silver-plated nanoparticles suspended in water

'Most beautiful' math structure appears in lab for first time

20:49 07 January 2010

A complex form of mathematical symmetry linked to string theory has been glimpsed in the real world for the first time

Electron-spotting could explain warm superconductors

19:00 07 January 2010

We still don't know why some materials conduct electricity without sapping its energy – a new kind of microscope is helping to clear up the mystery

Latest news

Zoologger: The rules of fish Fight Club

Let's take this outside (Image: The Palmer/iStock)

12:59 13 January 2010

Siamese fighting fish are as aggressive as they're beautiful, but their violence is not as mindless as it might seem. First in a new series

Cyberattacks lead Google to threaten to desert China

14:36 13 January 2010

Google may end its controversial practice of censoring search results in China, after experiencing a massive cyberattack

Silence that ringing cellphone with a whack

14:19 13 January 2010

A couple of smacks plus a few smart taps could let you communicate with your phone while it's still in your handbag or pocket

Arctic tern crowned 'king of commuters'

13:49 13 January 2010

High-tech tracking reveals that the bird's annual migration is the longest in the animal kingdom – and almost twice as long as previously thought

TWITTER

New Scientist is on Twitter

Get the latest from New Scientist: sign up to our Twitter feed

ADVERTISEMENT

Partners

We are partnered with Approved Index. Visit the site to get free quotes from website designers and a range of web, IT and marketing services in the UK.